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Abstract: This paper focused on determining the increased tendency of cracking after the die forging
process of high nickel and chromium steel. The increase in carbon content in austenitic nickel–
chromium steel promoted the tendency of valve forgings to forging intergranular crack on the
valve head. Attention was paid to issues related to the chemical composition of the material to be
considered when hot forming nickel–chromium steel components. Optical and scanning electron
microscopies were used to examine the microstructure and fracture features of the samples removed
from a fractured valve head. The embrittlement was due to microcavity formation at grain boundaries.
Creep theory at grain boundaries was used to explain crack formation. The tensile behavior was
interpreted from the evolution of the microstructure during deformation and referred to intermediate
brittleness to explain the effect of carbon. It was found that the increased carbon content of the
nickel–chromium steel and the strong undercooling observed at the edges of the valve head are
factors that promote a reduction in grain boundary cohesion and enhance intermediate temperature
embrittlement. Finally, it was found that the formation of a heterogeneous structure manifested by
the presence of grain boundary M23C6-type carbides in the austenitic matrix was most likely related
to the occurring brittleness.

Keywords: iron-nickel-chromium alloy; NCF 3015; precipitation-hardenable austenitic steel; forging;
carbon content; M23C6-type carbides; intermediate embrittlement

1. Introduction

Automotive engine valves are exploited at temperatures and stresses that promote
creep phenomena and low-cycle fatigue. The combustion pressure exceeds 20 MPa, while
temperatures exceed 650 ◦C for exhaust valves and 350 ◦C for inlet valves [1,2]. Exposure
to increased pressure and temperature poses a major technological challenge. At the
same time, increasing rigorous emission standards are becoming a major challenge in
the selection of steels for automotive valves [2,3]. To provide adequate creep strength to
austenitic stainless steel, simple solution strengthening is insufficient. In such situations,
precipitation strengthening methods are used, mainly in the form of carbide precipitation
in the form of M23C6-type carbides, (Nb, Ti)C carbides, and carbide–nitride precipitation.
Therefore, NCF3015 valve steel is used for these applications [1,2,4,5]. This leads to the
formation of a heterogeneous microstructure, which can lead to process problems during
forging.

Austenitic steels belong to materials with low stacking fault energy [6,7]. Temperatures
higher than half the material melting point ensure the occurrence of dynamic recrystallisa-
tion, which is initiated at critical stress. This has a significant effect on reducing the external
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forces required to shape the material, and thus facilitates the metal forming operation. The
initial forging temperature of austenitic stainless steel generally does not exceed 1200 ◦C.
The final temperature is up to 825 to 850 ◦C and is limited by the temperature-sensitive pre-
cipitation of M23C6 carbide. With the exception of stable and ultralow carbon stainless steels,
the final forging temperature of almost all austenitic stainless steels should be controlled
above the sensitive range of these temperatures and cooled rapidly within this temperature
range. During hot forming, austenitic steels are subjected to several phenomena, such as
work hardening, dynamic recovery (DRV), and recrystallisation (DRX). The effects of these
metallurgical phenomena are often manifested in melt flow curves [8]. The influence of
strain rate and temperature on microstructural changes was also observed [9,10].

Instability in the chemical composition and inhomogeneity of steels can significantly
affect the final properties of steel products. Figure 1 shows the time–temperature de-
pendence of intergranular carbide precipitation in austenitic chromium–nickel steels as
a function of carbon content. It shows a clear dependence of the temperature and time
required for the precipitation of M23C6 carbides at the austenite grain boundaries (GBs) on
the carbon content of the steel. Hawryluk et al. [4] studied the ranges of chromium carbide
precipitation for NCF3015 steel with a carbon content of 0.04%. They found that during
cooling, the first carbides could form as early as 850 ◦C. The higher carbon content shifts the
onset of precipitation of these carbides toward higher temperatures and shorter times. The
large role of plastic deformation in precipitation mechanisms is indicated as accelerating
carbide precipitation processes [11,12]. The authors of the paper [6] observed the precipita-
tion of M23C6-type in steel with 0.04%C content during deformation in the temperature
range 800–850 ◦C. Studies also indicate that the formation and growth of precipitates are
significantly dependent on the strain rate. Lower deformation rates favour the formation
and growth of precipitates by promoting diffusion, which favours the formation of larger
precipitates [6]. Increasing the strain rate should counteract precipitate formation. The
measured strain activation energy of the austenitic AISI 321 stainless steel with a carbon
content of 0.04 wt% was 453 kJ/mol in the temperature range 900–1100 ◦C [6]. In the range
between 800 and 900 ◦C, a marked increase in this energy was observed, which was related
to the formation of M23C6 carbides at the grain boundary (GB) of austenite.
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Figure 1. Diagram representing the temperature and time dependence of the precipitation of M23C6-
type carbides on the carbon content according to [13]. The carbon content in the analyzed materials
was marked in bold.

Some studies have reported several types of intergranular cracks in the intermediate
temperature range that occur during steel heating to high temperatures (intermediate
temperature embrittlement). They are usually associated with cracks that occur during
welding processes. When considering the mechanisms of their formation, which are
closely related to the presence of tensile stresses, they can be considered not only as
thermal stresses arising during welding, but also as stresses induced by plastic deformation
at high temperatures. One of these is the phenomenon of ductility dip cracking (DDC).
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DDC is an intermediate temperature solid-state GB embrittlement phenomenon. For
austenitic steels, the range of ductility dip associated with this phenomenon occurs between
0.5 and 0.7 of the melting points [14,15]. The phenomenon is indicated to be related to GB
migration, which is favoured by the presence of stresses, and the phenomenon itself is
similar to creep [14]. Materials with curly GBs are said to be less sensitive than materials
with long and straight GBs [14,16]. The latter are more susceptible to sliding and migration
at elevated temperatures. Also, (Nb, Ti)C precipitates limit GB mobility [17]. However,
there is no consensus on the exact role of carbides and their effect on DDC sensitivity. It
has been observed that the loss range of ductility corresponds to the temperature range of
the release of M23C6 type carbide. Therefore, the mechanism is often associated with the
precipitation of this type of carbide at the GBs. Then, in the areas where these intergranular
carbides occur, nucleation of microcavities is observed [18]. Crack formation is possible as
a result of creep and the merging of voids formed on the particles of the precipitates during
sliding at the GBs [18]. The transition from austenite to carbide phases is accompanied
by an increase in volume, which is a potential source of stress due to high strain [19].
Formation of (Nb, Ti)C carbides should reduce the amount of carbon that causes the
formation of M23C6 and therefore the tendency for DCC [20]. However, on the other hand,
there is a body of evidence that the presence of intergranular precipitates promotes the
strengthening of the grain interior, which also translates into a weakening of the GBs [21].
It was found in [22] that the presence of precipitates at the GBs forming a carbon content of
0.024 wt% reduced the sensitivity to DDC compared to an alloy with an ultra-low carbon
content. However, research was focused on additive-manufactured nickel alloy. Due to the
possibility of precipitation formation at the GBs, this mechanism is also associated with
the term precipitation-induced cracking (PIC). When discussing the role of precipitates in
corrosion resistant steels, the influence of the σ phase, the presence of which can drastically
affect the ductility of the steel, should also not be neglected [23,24].

Another type of cracking is called reheat cracking (RC) or stress relief/relaxation cracking
(SRC), which is an intergranular failure caused by the relaxation of residual macro stresses
at high temperatures [18,21]. The main mechanical condition for the appearance of RC has
been found to be the presence of tensile residual stresses in the material prior to exposure
to high temperatures. These stresses can be introduced during the plastic deformation
of the material. Typically, the maximum tensile stresses usually do not exceed the yield
strength of the tested material [25]. However, carbide precipitations can also influence this
mechanism. Under long-term ageing conditions, intergranular M23C6 carbides formed in
Super304H steels were found to be more prone to fracture than intergranular nitrocarbides
Nb(C,N) [21].

A third mechanism that affects GB cohesion is the segregation of impurities. The
presence of impurity elements, such as phosphorus, facilitates the nucleation of the creep
cavity by reducing the cohesive energy of the GB [12,26]. An increased phosphorus content
was found to increase the number of microcavities forming at the GBs; however, it was
not the dominant mechanism responsible for intergranular damage. It was also found that
the mechanisms of intergranular precipitation of M23C6-type carbide and segregation of
phosphorus can influence each other. P-segregation accelerates both nucleation and growth
of M23C6-type carbide participation [27].

The presence of carbides is not among the only possible causes of intergranular
fracture. Another mechanism associated with intergranular damage in austenitic steels
may be the result of hydrogen-induced loss of ductility [28]. The presence of hydrogen
in steel has a significant effect on the strength and ductility properties of steel, which
decrease significantly with an increase in the hydrogen content in the metal, contributing
to the possibility of intergranular cracking. Hydrogenation occurs through hydrogen
adhesion, penetration, diffusion, and local concentration in materials. Facilitated by the
small diameter of the atoms, hydrogen easily diffuses into iron crystal structures even
at room temperature. The resulting phenomenon is referred to as hydrogen embrittlement
(HE). Hydrogen ingress into steel can occur during operation but also when technological
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processes are not carried out properly. Nevertheless, austenitic steels are considered to be
among the materials that are more resistant to hydrogen ingress.

Heating steel to very high temperatures can also result in a phenomenon known as
constitutional liquation (CL). This mechanism is closely related to the heating rate and usually
occurs in the heat affected zones of massive-welded parts. It results from a combination
of thermal stresses arising during rapid heating and the very low ductility of the material
caused by the presence of a liquid phase in the GB. The phenomenon was proposed
by Pepe and Savage, who observed its occurrence in 18-Ni steel during the welding
process [29]. The mechanism is directly related to rapid heating. When the alloy is slowly
heated under equilibrium conditions, the M23C6 carbides are completely dissolved in the
matrix. However, if the heating rate of the material is high, then there is not enough time
for diffusion, so that the dissolved atoms released from the partially dissolved M23C6
carbides could dissolve in the surrounding matrix. Consequently, rapid heating causes
concentration of dissolved substances by dissolution in the solid state at the deposit–
matrix interface. In this way, the surrounding matrix will be saturated with the elements
resulting from their dissolution (chromium and carbon), causing a change in the chemical
composition of the matrix adjacent to the carbides. When the local temperature and solute
concentration reach eutectic precipitation–matrix equilibrium, this results in the formation
of a thin film of metastable liquid at the GBs. When these liquid films merge to form
a large single membrane zone, the occurrence of tensile stress can induce CL-induced
cracking [30]. Residual elements such as S, P, or B may play an important role in increasing
the susceptibility to CL. Carbon is considered to have an adverse effect on CL and from
this point of view should be kept low. However, it is emphasised that many liquation
cracks are associated with alloying elements such as niobium or titanium. The influence
can be particularly significant when Ti or Nb is present. Their effect on liquation cracking
susceptibility is generally unfavorable.

The aim of this research was to explain the mechanism of embrittlement that occurs
with hot forging of nickel–chromium austenitic steel at intermediate temperature. The
reasons for this embrittlement mechanism are not known. The formation of cracks during
hot forging of steel causes economic loss during production. Identification and characteri-
zation of the origin of these defects would allow for a better understanding of the detailed
embrittlement mechanism and reduced production costs.

2. Materials and Methods

The tests were carried out on steel used in the manufacture of a nickel–chromium
austenitic steel NCF 3015 valve forging with the alloy designation UNS66315 (US). The
steels tested were supplied by two suppliers, identified as D1 and D2, respectively. The
chemical compositions of the steels tested, determined by the GD OES method using the
GDS-500A analyzer (Leco Corporation, St. Joseph, MI, USA) are presented in Table 1. The
steel belongs to the group of austenitic precipitation-strengthened steels. In the delivered
state, it is characterized by the presence of chromium carbide precipitates occurring at the
GBs. Microstructural studies of the tested steels are presented in the next section.

Table 1. Chemical composition of the steels tested.

Element C Si Mn P S Cr Ni

Supplier D1 0.025 0.24 0.34 0.006 0.002 14.53 31.6
Supplier D2 0.078 0.26 0.13 0.012 0.001 13.92 31.2

Requirements Max. 0.08 Max. 0.5 Max. 0.5 Max. 0.015 Max. 0.001 13.5 ÷ 17.00 30.0 ÷ 33.5

Element Mo Al Ti Nb B N Fe

Supplier D1 0.60 1.92 2.51 0.58 0.004 0.004 balance
Supplier D2 0.66 1.87 2.50 0.61 0.002 0.006 balance

Requirements 0.4 ÷ 1.0 1.6 ÷ 2.2 2.3 ÷ 2.9 0.4 ÷ 0.9 0.001 ÷ 0.004 Max. 0.015 balance
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A series of valves from supplier D2 showed a tendency to develop brittle cracks during
cooling after hot forging. Figure 2 shows a general view of the example valve made of
steel from supplier D2. Numerous transverse cracks were observed at the edge of the valve
head. The tiny cracks were initiated in the bulged surface. Such a phenomenon was not
observed in the case of valves made of steel from supplier D1.
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The aim of the investigation was to determine the metallurgical or microstructural
causes leading to the presented differences between the investigated steels occurring during
valve forging. Therefore, the following research methods were applied:

1. Macro- and microstructural studies:

Observations using light microscopic imaging were carried out to compare the two ma-
terials in terms of microstructure. In order to understand the structural changes occurring in
the successive stages of a properly performed forging, microscopic examinations of material
D1 after induction heating were carried out, and the flow lines formed during operations I
and II were determined at the macroscopic testing stage. Microstructural observations were
carried out using a Leica DM6000M light microscope (Leica Microsystems, Wetzlar, Hesse,
Germany). Macroscopic examinations of the fracture surfaces were carried out using a
Leica M205 C (Leica Microsystems, Wetzlar, Hesse, Germany) stereoscopic microscope. The
main metallographic examinations were carried out in the plane A-A′ marked in Figure 3.
Macroscopic and microscopic observations were also made on a cross-section cut out of the
head valve in the plane B-B′. The tests were carried out in the etched state after using the
reagent of 10% oxalic acid or aqua regia (HNO3 + 3HCl).

A microstructural study of the cracked valve from supplier D2 was also carried out.
The aim was to determine the nature of the crack formation. The light microscopic tests
were extended to include detailed microscopic observations of areas from around the
crack conducted using Phenom World ProX (Thermo Fisher Scientific, Waltham, MA, USA)
scanning electron microscope (SEM), equipped with EDX detector. These were enriched
with microanalyses of the chemical composition of the precipitates present in the material
microstructure. Tests were carried out in the etched state on conventionally prepared
metallographic specimens.
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2. Hardness:

Hardness measurements were carried out for both materials in the as-delivered con-
dition. The Vickers method was used to determine the overall hardness at a load of 1 kg.
Once the inhomogeneity of the D2 material was established, additional hardness tests were
performed for it at a load of 50 g to determine the existing differences resulting from the
existing inhomogeneity. To determine the nature of the variations in hardness occurring in
different areas of the valve after the forging process, hardness measurements were carried
out on a cross-section of the valve from supplier D1. Hardness measurements were made
with the LECO LC100 hardness tester (Leco Corporation, St. Joseph, MI, USA)

3. Static tensile test:

The research of both supplied materials involving tensile tests was carried out in
accordance with ASTM A48 on a Zwick type 1478 universal testing machine with a nominal
load of 100 kN (ZwickRoell, Ulm, Baden-Württemberg, Germany) equipped with the
following:

• HBM rheometer (maximum range up to 165% Fnom of the head used)—accuracy class
0.5/1, range in accordance with the force measuring head used in accordance with
PN-EN ISO 6892-1:2020-05 [31]

• macroextensometer with MT25 sensor with a measurement range of 0–150 mm and a
resolution of 0.2 µm

• resistance furnace for heating (10 ◦C/s, in the range 0–1500 ◦C)
• licenced testXpert® software (version 3.3.0.4258).

The initial test speed was 0.2 mm/min. Once the force sufficient to determine Young’s
modulus had been reached, the test execution speed was increased to V = 2 mm/min. Total
elongation was determined from the extensometer for a 50 mm test base. Standardised
tensile test specimens were made from input material supplied by both suppliers, D1
and D2. In the case of supplier D2, in addition to testing the material in the condition
as-delivered, tests were also carried out on samples after heat treatment consisting of
annealing at 200 ◦C for 24 h. The objective of the heat treatment was to assess the possible
dehydrogenation of the samples from supplier D2. The tests were carried out on three
samples for each of the tested materials.

3. Results
3.1. Characterisation of the Material as Delivered
3.1.1. Microstructural Examination

Microscopic observations carried out for both materials showed differences in their
austenite grain size. The material from supplier D1 was characterised by a slightly larger but
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more homogeneous grain size (Figure 4). The equivalent index of grain size corresponded
to G = 9.5 according to the EN ISO 643 standard [32]. Material from D2 was characterised
by significant heterogeneity in grain size (Figure 5). In the case of supplier D2, 70% of the
grains corresponded to the G10 index, while the remaining 30% corresponded to the G8.5
index in accordance with the EN ISO 643 standard [32]. However, it should be noted that
very fine grain size was observed for both materials. The fineness of the grain size can
effectively increase the strength of the steel, which is also commonly known as Hall–Petch
strengthening. However, GBs also act as preferential sites for crack nucleation and GB
migration, especially at elevated temperatures. Larger initial grain sizes favour the delayed
onset of dynamic recrystallisation (DRX) [33], which affects the flow stress of the material.
The occurrence of DRX in a material with a small grain size is more likely due to an increase
in the density of nucleation sites for new grains [7]. Fine M23C6 particles delay or hinder
the recrystallisation process, while large M23C6 particles stimulate recrystallisation [34].
Large particles of alloy carbides (Ti, Nb, Mo, Zr)C as well as titanium nitrides were also
observed in the microstructure. The authors presented research on phase identification in
the work [4]. The distribution of elements carried out using the EDS method for both types
of carbides is also presented later in the work. As mentioned earlier, precipitates of (Nb,
Ti)C inhibit the sliding of GBs [17]. For this reason, some authors indicate that elements
that form strong MC-type carbides, such as Nb and Ti, reduce the sensitivity to DDC. It has
been indicated that these elements, by increasing the amount of primary carbides, lead to
the formation of winding GBs that hinder DDC propagation. (Nb, Ti)C precipitated at GBs
inhibits cavity coalescence at high temperature [17]. Consequently, it has been suggested
that cracking can be mitigated by increasing the niobium and titanium content. It has also
been indicated that DDC can be limited by reducing the mismatch between matrix and
carbide precipitates by lowering Cr and Fe concentrations, as well as by minimizing global
stresses (caused by welding or deformation) [20].
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On analysing the chemical composition of the tested materials (Table 1), it can be
concluded that the niobium and titanium contents are similar, which is why the increased
carbon content should not contribute to the increased niobium carbides and titanium car-
bides present in the microstructure of the tested steel. No significant qualitative differences
in these precipitates were observed between the tested materials. Carbon translates into
solution strengthening, as confirmed by the strength tests presented later in this article.
Carbon strengthens the steel interstitially, which clearly translates into a strengthening
effect.
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When supersaturated austenite is cooled, the excess carbon released is bound into
carbides, and the tendency of the steel to precipitate carbides during cooling is dependent
on the carbon concentration in the steel. At higher carbon content, carbide release requires
a shorter time and is also initiated at higher temperatures (Figure 1). Diffusion is easier
at GBs, with the result that precipitates appear faster at GBs. Pommier et al. [18] found
that the formation of M23C6-type carbides at the GBs of 316L steel with a carbon content of
0.028% promoted a reduction in GB strength compared to steel containing 0.011% C. These
carbides formed at the misoriented GBs from 25 to 55◦.

3.1.2. Hardness of the Material

The observed differences resulted in a higher material hardness of D2, amounting
to 399 ± 8 HV1. The average hardness of D1 material was 347 ± 5 HV1. The observed
heterogeneity in grain size in the material from D2 also resulted in a variation in micro-
hardness in different areas of the material. It averaged around 400 HV0.05 in areas with
larger grain size, while it ranged from 468 to as much as 528 HV0.05 in areas with very fine
grains, whose overall larger surface area resulted in the accumulation of chromium carbides
present in these areas. A similar structural effect associated with grain inhomogeneity was
observed by the authors of work [35] in 5Cr21Mn9Ni4N grade steel.

3.1.3. Temperature-Dependent Tensile Test

The stress–strain curves obtained for both materials at high temperatures are shown
in Figure 6. The research was carried out on three samples, and the results obtained were
consistent. The curves are shown for one of the example samples. The ductile properties of
the steels are significantly affected by the presence of hydrogen in the steel, which strongly
decreases with increasing hydrogen content in the metal, contributing to the possibility of
intergranular cracking. To exclude this mechanism, both materials were dehydrogenized
by heat treatment. For this purpose, a batch of material was subjected to 24 h of annealing
at 200 ◦C. However, no clear differences were observed in the forging process carried out
on the material without dehydrogenation and after hydrogenation. There were also no
differences between the annealed samples (D2_200) and the delivered samples (D2) in
the static tensile test. If the material exhibited hydration characteristics, this would have
resulted in a lower elongation. This excludes this mechanism as responsible for valve
fracture.
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The tensile curves obtained allow the conclusion that a higher carbon content in
the steel from D2 translates into higher strength parameters. In addition to solution
strengthening, the strength may be influenced by a lot of strengthening processes, such as
strain or grain boundary strengthening, and strengthening associated with the presence
of precipitates. In the analyzed case, the influence of strain hardening was excluded
because the material is characterized by a microstructure typical of the annealed state.
As mentioned earlier, the chemical composition analysis shows similar content related
to the elements forming MC-type carbides well as titanium nitrides. Qualitatively, no
significant differences were observed for both materials in this respect, which was also
confirmed by microscopic observations. For this reason, the impact of these precipitates on
strength would be similar in both materials, which allows their impact to be omitted from
the considerations. Differences occur in the grain size, which, according to the Hall–Petch
relationship, could translate into strength. However, it should be noted that the material
with lower strength should have a larger grain size. In the analysed case, the D2 alloy
had non-uniform grain-size areas with very fine grains and areas with much larger grains
than the material from supplier D1 being observed. It cannot be completely ruled out that
these differences influenced the strength. However, it seems that the main mechanism
causing the increase in strength that should be considered is solution strengthening. The
higher the temperature, the more evident these differences in strength were. Furthermore,
slightly higher elongations can also be observed for the D1 provider compared to D2,
which allows us to conclude that the deformability of the D2 material is lower (even after
dehydrogenation) than for D1 without additional treatments.

3.2. Characterisation of the Valve Forging Process

To understand the macro- and microstructural changes occurring during the forging
process, microstructure analyses were carried out at various stages of the process. The
valve is produced by the fine forging process in two closed die operations (Figure 7). A
forging of this type is used as a key component for engines in trucks, and therefore high-
performance properties are required, which are mainly related to ensuring the correct flow
of the forging material during shaping, the absence of surface and internal flaws, high
quality, and dimensional and shape accuracy. The forging is made in two stages: in the first
step, a so-called ‘pear’ is coextruded from a roller heated to 1050 ◦C. The transport of the
heated charge material inside the press takes place to the first cavity, where the roller is
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dropped into the preliminary die (1st operation), in which the valve stem is shaped using
the hot extrusion process. This is followed by the second stage (2nd operation), where the
valve head is forged in seamless dies. For this purpose, the forging is transported to the die
located in the second cavity, where the forging process takes place. The element obtains a
shape similar to the finished product.
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Figure 7. Diagram presenting two-stage fine forging process of a valve forging.

To obtain the required temperature of the material before forging, induction heating
was performed at 1050–1080 ◦C. The charge materials were heated in an induction heater,
where the appropriate length of the inductor, power and press cycle time guarantee optimal
parameters. The temperature was controlled for each editorial using a pyrometer. Forging
conditions were constant for both tested samples. The method of cooling the samples after
induction heating was the same in terms of cooling rate as in the case of valves, i.e., cooling
in water.

To assess the regularity of the microstructure of the material at this stage of the
process, a microscopic examination of the material was carried out after the preforms
were heated. The microstructure of the preforms after induction heating showed the
presence of polygonal austenite grains with a grain size larger than the supplied material.
The equivalent index of grain size corresponded to G = 8.5 according to the EN ISO 643
standard [32]. M23C6-type carbides were fully dissolved due to heating (Figure 8). Grain
boundaries were slightly etched, indicating the absence of secondary phases at the grain
boundaries. So, the carbides disappeared, and the grain size increased compared to the as-
delivered state. For this reason, the microstructure present as delivered did not contribute
to cracking of the valves during their cooling after forging. Precipitates of primary carbides
and carbide–nitrides of the alloying elements were visible within the grains. A detailed
metallographic analysis of the microstructure can be found in our work [4].

To determine the course of the flow lines formed during the hot forging process of
automotive valves, metallographic examinations were made on the cross section of the
forging after the first and second operations. The tests were carried out on a normal valve
forged from material supplied by supplier D1. The general appearance is shown in Figure 9.
The arrangement of flow lines observed on the macro-sections was correct and in line with
the shape of the component, which will positively influence the achieved strength of the
valve. No structural abnormalities leading to packed flow lines and stress concentrations
were observed. After the first operation, the flow lines were compressed together at the
cross-sectional change (Figure 9a). Cracks appeared after the second operation; therefore,
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further tests were carried out on the final product. The flow lines were clearly narrowed in
the valve stem area, due to the significant reduction in cross-sectional area that occurred
in this area of the valve. They were created at the stage of the first operation. During the
second operation, there was a change in the flow direction of the material in the area of the
valve head (Figure 9b).
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Hardness measurements taken in selected areas of the forging after the second op-
eration showed variation in hardness (Figure 10). The lowest hardness was recorded in
the central part of the valve head, while the highest hardness was recorded in the valve
stem. High hardness values were also observed at the edge of the valve head. Due to the
variation in hardness present, hardness distributions in the areas of forming cracks were
also measured (Figure 11). The tests were carried out along the lines shown in Figure 9b.
The highest hardness of approx. 450 HV0.1 was observed in the initial range of vectors
1 and 2. This sudden packing together of the flow lines causes an increase in hardness.
The result was an increase in stress in this area. This is particularly important when the
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material shows brittleness. In ductile materials, local yielding will allow for stresses to be
redistributed and will reduce the stress concentrations. In the further section of vectors
1 and 2, the hardness value was stabilized at the level of 350–300 HV0.1. Along the entire
length of vector 3, the hardness proved constant with values oscillating around 300 HV0.1.
These observations are compliant with the distribution shown in Figure 10.

Figure 12 shows a photograph taken during the course of the process. It can be
observed that the area of the valve head’s edge is significantly more overcooled than that
of the other part of the valve. This is indicated by the darkening of the steel observed in
this area. It should be noted that this temperature drop occurs in the area of high stress
concentration, as indicated by the higher material hardness. Taking this into account, a cross-
sectional examination of the valve head was carried out, which revealed the presence of a
near-surface layer. Its thickness was approximately 1 mm (Figure 13). Therefore, lowering
the temperature in this area has an impact on the microstructure present in it. Microscopic
examinations carried out in these areas showed that the microstructure in the near-surface
layer was marked by austenite grains strongly deformed and elongated along the rolling
direction, whereas the core of the valve head was characterised by polygonal grains of fully
recrystallised austenite. This was also confirmed by the microscopic observations shown
in Figure 14. The grain size of recrystallized austenite is a function of temperature and
deformation rate. The recrystallization temperature depends very clearly on the degree
of previous deformation. The recrystallization process at a higher temperature range
occurs in a shorter time. Ensuring evenly distributed plastic deformation and the same
temperature throughout the element, allows the homogeneity of the microstructure after
recrystallization to be ensured. However, in the case of forgings with a complex form
and different thickness, the plastic deformation is not evenly distributed, so that the size
of the recrystallized austenite grains in different areas is usually diversified. Also, the
rapid deformation during the second operation and the breaks needed to transfer the
produced element between operations do not create favorable conditions for the full course
of recrystallization in the near-surface area.
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Figure 11. Hardness distribution obtained in selected places of the forging after the second operation
for line 1 (a), line 2 (b), and line 3 (c) shown in Figure 9.
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3.3. Testing a Fractured Valve

Microscopic examinations performed on the face of the valve head showed that the
cracks observed in the macroscopic stage develop and run along the grain boundaries (GBs)
of austenite (Figure 15). The neighboring micro-cracks merged and coalesced into large
cracks. A decohesion of the GBs was observed, leading to the formation of clenched cracks
occurring at a slight distance from the surface (Figures 16 and 17).
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Figure 17. Decohesion of GBs. Visible bypassing of carbide precipitates (a) and local formation of an
extended fracture surface (b). Light microscopy images, etching with 10% oxalic acid.

SEM observations of microcavities show that they result from microvoid coalescence
formed on the GB (Figure 18). The microvoids nucleate and then grow assisted by strain.
Eventually, they merge, a crack is formed, and the material fractures. The formation of voids
should be associated with the accumulation of dislocations near the migrating boundaries
of thermally activated grains [14]. As a result of stress relaxation, GBs with extensive accu-
mulations of dislocations serve as preferential sites for the initiation of microcavities and
associated fractures [36]. GBs cannot tolerate stress redistribution that leads to boundary de-
cohesion. Microscopic observations show that in the early stages of crack development, the
formation of characteristic “bridges” is observed, which maintain GB cohesion. Disruption
of this bridging leads to GB decohesion and eventual crack development. The formation of
multiple intergranular cavities results in crack propagation. In order to bridge the crack
with the microcracks that occur before the main crack, much lower stresses are needed
compared to normal ductile tearing. Such a crack development results in GBs characterised
by a jagged contour at the site. The surfaces of these cracks do not show plastic defor-
mation (Figures 19 and 20a). The fracture surface in the microscopic image shows many
irregularities caused by the formation of microcavities. Such intergranular cavities and
microvoids on the fracture surface were also observed by other authors [14,37]. Damage
development depends on stress relaxation and GB structure, which are directly related to
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the chemical composition of austenitic stainless steel. Such preferential cavity generation
has also been observed in austenitic steels and nickel alloys by other authors [14,17,18].
Pommier found that microcavity nucleation occurs in areas of high residual stresses due to
the presence of intergranular M23C6 carbides [18]. The appearance of carbides results in a
discontinuous stress distribution at the intergranular carbide–matrix interface [21]. Hence,
micro-cracks initiate at this weakest interface under tensile stress. Some authors [21] state
that the presence of intergranular particles can induce intergranular strengthening and
weakening of the boundary zones. This results in a difference in strength between GBs
and grain interiors. When the intragrain areas are strengthened by the particles within
them, deformation is confined to a weak, narrow GB area. This forces the relaxation of
residual stresses by creep deformation on the GB. This is followed by a concentration of
deformation at the GB [21]. Due to the weaker GBs, intergranular cracking occurs.
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Figure 20. (a) SEM microscopic image of a composite with Fe and Nb distribution. Visible ‘frayed’
GB at the site of intergranular crack progression and intragranular carbide MC precipitation;
(b) carbon distribution in the examined area.

The plastically deformed austenite provides more places suitable for carbide nucle-
ation, occurring not only at GBs, but also at intersecting slip bands. It also provides an
increased rate of diffusion, which accelerates the precipitation of the carbide phases. As
M23C6 carbides are preferential locations for microvoid nucleation, the higher carbon con-
tent of steel favours their formation [18]. The occurrence of M23C6-type precipitates in GB
was not observed in the SEM microscopic image. However, this does not mean that their
occurrence should be ruled out. The more so, as increased carbon content was observed in
these areas, which indicates its diffusion (Figure 20b).

The single and irregular particle visible at the GBs in grey contrast is MC carbide
(Figure 19). Niobium is the main component of these carbides (Figure 20a). The crack that
spreads across the GBs bypasses the precipitations without compromising their cohesion.
However, it should be remembered that by strengthening the grain interior, they contribute
to the weakening of GBs [21].

Microscopic observations indicate that there were also some intracrystalline microc-
racks nucleating in large-size precipitates, suggesting their damaging role in fracture. Li
et al. [38] indicated that a large number of MC-type particles can cause brittle steel fracture.
The propagation of the crack follows the interfacial boundaries [39]. The large difference
in elastic modulus that occurs between carbide and matrix is seen to be the main cause of
cracking [19,40]. In this case, cracks are observed at the MC-particle–matrix interface, and
then the crack propagates further. Figure 21 shows an example of the complex precipitation
observed in the microstructure. The inner part is TiN, while the outer carbide is composed
of Mo, Nb, and Ti, elements which form MC-type carbides. Chromium is not present
in this particle. The formation of such complex particles results from the fact that TiN
particles are high-temperature precipitates and fully precipitated before MC-type particles
are formed [41]. For these particles present in the matrix, an observable tendency occurs to
inhibit cracking. Cracks also occurred in the carbide and extended further into the matrix.
Similar observations were made by the authors of the paper [19]. Simultaneously, the
progressive stress concentration in their surroundings leads to the formation of cracks in
the carbides themselves. This is due to the high stresses induced at the carbide–matrix
interfacial boundaries, which result from the high hardness and brittleness of these carbides.
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4. Discussion

Based on the results of the experiments, we suggest a cracking mechanism of the
engine valves at the forging temperature. The formation of intergranular cracks during
plastic deformation at high temperatures is associated with a significant reduction in the
ductility on the GB (grain boundary). SEM microscopic studies showed that progressive
merging of voids formed on the GB was a characteristic feature of cracks forming. The
phenomenon of cavity formation is considered to follow a creep-like course and involves
dislocation sliding. The presence of obstacles in the slip-plane hinders the slip process,
which is directly responsible for the formation and growth of microcavities. Dislocation
pile-up and diffusional relaxation occur along the GB. This mechanism has traditionally
been attributed to stress concentrations generated at the obstacles, which may be due to the
following: precipitation of intergranular carbide phases, shear stress relaxation by local
grain deformation, or GB migration. The strain concentration occurs at the GBs adjacent
to the carbide precipitates, which are much weaker than the grain interior. The plastic
deformation that occurs is a factor that further supports these processes. Any deformation
occurs via GB sliding. Increasing the carbon content of the austenitic steel raises the
tendency to planar slip [42]. It was found that in low carbon steels, phosphorus segregation
may be a contributing factor, which additionally reduces GB strength [43].

The research indicates that the material that underwent fracture during forging ex-
hibited an increased carbon content, which was reflected in an increased solid solution
strengthening of the steel tested in the delivery state. Analysing the times required for the
initiation of carbide precipitation, as well as the high temperatures, allow the conclusion
that the carbon content present in the material also increases the probability of nucleation
of M23C6 carbide precipitation, which reduces the cohesion energy of the GBs. Although no
precipitates were observed in the GB areas, the possibility of nucleation of finely dispersed
carbide precipitates, which are coherent with the matrix and which are invisible in the
light microscopy and SEM images, cannot be excluded. The valve head edge should be
expected to be a favorable area for the initiation of precipitation processes occurring during
forging. This is because of the high overcooling occurring there, as well as the significant
plastic deformation, which promotes the migration of GBs over long distances and the
strain of the material in this area. At the same time, as the study shows, the near-surface
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area of the valve head is characterised by higher hardness and microstructure of partially
recrystallized austenite compared to the centre of the valve head. This is an additional
factor that promotes relaxation of residual macro-stresses in this area during deformation at
high temperatures. The mechanism known as DDC is strongly related to GB migration, and
the edge of the head is the area accompanied by the highest displacements during forging.
However, it is also important to keep in mind that an increase in carbon content enhances
the strength of austenite, which may further promote the loss of GB cohesion. It should also
be taken into account that the D2 material was characterised by microstructural heterogene-
ity, which meant that locally the carbon content could be higher than the average content
in the steel. Increased carbon content will also favor easier precipitation of chromium
carbides in service at high temperature, which will promote accelerated deterioration of
the valve [35]. The very initiation of diffusion processes associated with the preparation for
carbide formation may be sufficient to reduce GB cohesion.

To summarise the research conducted, the following can be concluded:

• If the presence of internal stresses present in the material prior to forging was the cause
of crack formation at the heating stage (RC mechanism), then a higher randomness of
the locations where cracks occur would be expected. Instead, they occur only in the
most stressed area, i.e., at the edge of the valve head, which allows this mechanism to
be ruled out.

• No increase in phosphorus content was observed in the chemical composition of
the material of the tested materials, which also allows the exclusion of segregation of
impurities as the main cause of cracking. However, it should be noted that phosphorus
may intensify the negative effect of carbon in this respect.

• The presence of intracrystalline particles (such as carbide nitrides and carbides of
titanium, niobium, and molybdenum) can induce a strengthening of the grain interior,
which may contribute to a reduction in the strength of the boundary areas with
respect to the grain interiors. This is because the presence of these particles increases
the resistance to deformation and reduces the ductility. Also, strong grain interiors
induced by increased carbon content can cause deformation concentrated at the GBs.

The microscopic images did not reveal the presence of low-melting components of the
structure. Furthermore, the limited heating temperature of the steel before forging excludes
the possibility of CL as the mechanism responsible for fracture. The scope of the occurrence
of this phenomenon is definitely due to higher temperatures.

It is difficult to unequivocally say which of these mechanisms had a decisive influence
on valve cracking during forging. Most likely, all of these factors contributed to the cracking
simultaneously. Hence, the austenite deformation mechanism requires additional research
to determine the role of the chemical composition and microstructural inhomogeneity on
hot forging. In particular, this concerns the role of carbides, leading to the formation of the
heterogeneous microstructure of the alloy. However, regardless of the final mechanism,
it can be seen that the direct cause of cracking was the carbon content being in the upper
range provided for this steel.

5. Conclusions

The mechanism of embrittlement of a nickel–chromium steel containing a large pro-
portion of alloying elements, which results in heterogeneity of the forming microstructure,
was studied. The characteristic embrittlement behavior was observed in the forging tem-
perature range. Crack formation is related to changes in ductility and the nature of the
stress state in the ongoing structural transformation process. The increased carbon content
present in the steel material supplied by the D2 supplier should be considered the direct
cause of crack formation in the material NCF2015 during valve forging. Here we report
that, by careful control of the carbon content in the alloy, the tendency to crack the valve
forgings can be reduced. First, the increased carbon content favours the precipitation
processes occurring in the steel, creating microstructural heterogeneity. When the final
forging temperature in the head area is in the temperature range where carbide nucleation
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is possible, just before or during deformation, this causes a susceptibility to valve cracking.
This was also confirmed by in-service tests currently being carried out. Future experimental
studies will focus on further structural studies. In particular, it is planned to carry out
research using transmission electron microscopy (TEM) methods.
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