Properties of Poultry-Manure-Derived Biochar for Peat Substitution in Growing Media
Abstract
:1. Introduction
1.1. Peat in Horticulture
1.2. Biochars as Substrate for Peat Substitution
1.3. Poultry-Manure-Derived Biochars
2. Materials and Methods
2.1. Poultry Manure for Biochar Production
2.2. Laboratory Biochar Production
2.3. Analysis of Biochar Properties
2.4. Sorption of NNH4 and PPO4 by Poultry-Manure-Derived Biochars
3. Results
3.1. Biochar Yield
3.2. Physico-Chemical and Physical Properties of Biochars
3.3. Sorption Properties of Biochars
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kitir, N.; Yildirim, E.; Şahin, Ü.; Turan, M.; Ekinci, M.; Ors, S.; Ünlü, H. Peat Use in Horticulture. Peat; Topcuoglu, B., Turan, M., Eds.; IntechOpen: London, UK, 2018; pp. 75–90. [Google Scholar]
- Hirschler, O.; Ostenburg, B. Peat extraction, trade and use in Europe: A material flow analysis. Mires Peat 2022, 28, 27. [Google Scholar] [CrossRef]
- EC. 2020. Available online: https://cinea.ec.europa.eu/system/files/2021-02/PeatlandsforLIFE-19062020.pdf (accessed on 1 January 2020).
- Escuer, O.; Karp, K.; Escuer-Gatius, J.; Raave, H.; Teppand, T.; Shanskiy, M. Hardwood biochar as an alternative to reduce peat use for seed germination and growth of Tagetes patula. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 408–421. [Google Scholar] [CrossRef]
- Pedersen, S.F.; Løes, A.-K. Phasing Out Peat in Growing Media—Results from Scandinavian Studies, NORSØK REPORT 7, 1. 2022. Available online: https://orgprints.org/id/eprint/43319/1/NORSOK%20report%20no%201%20vol%207%202022%20Phasing%20out%20peat%20in%20growing%20media%20-%20results%20from%20Scandinavian%20studies.pdf (accessed on 3 August 2023).
- GME—Growing Media Europe. Terminology for the Growing Media and Horticultural Sector, Brussels. 2020. Available online: https://www.growing-media.eu/single-post/2020/06/22/terminology-for-the-growing-media-and-horticultural-sector (accessed on 3 August 2023).
- Hirschler, O.; Osterburg, B.; Weimar, H.; Glasenapp, S.; Ohmes, M.-F. Peat Replacement in Horticultural Growing Media: Availability of Bio-Based Alternative Materials; Thünen Working Paper; Thünen Institute, Federal Research Institute for Rural Areas, Forests and Fisheries: Braunschweig, Germany, 2022. [Google Scholar] [CrossRef]
- Rezanezhad, F.; Price, J.S.; Quinton, W.L.; Lennartz, B.; Milojevic, T.; Van Cappellen, P. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chem. Geol. 2016, 429, 75–84. [Google Scholar] [CrossRef]
- Target. 2022. Available online: https://www.target.com.pl/porady-i-inspiracje/poradniki/dbamy-i-pielegnujemy-ogrod/torf-w-ogrodzie--jak-wykorzystac/ (accessed on 1 July 2022).
- Lasy Polskie. 2013. Available online: http://www.encyklopedia.lasypolskie.pl/doku.php?id=p:podloza-jednorodne (accessed on 3 August 2023).
- OrganicPLUS Report. 2019. Available online: https://orgprints.org/id/eprint/40080/ (accessed on 1 May 2021).
- Taparia, T.; Hendrix, E.; Nijhuis, E.; de Boer, W.; van der Wolf, J. Circular alternatives to peat in growing media: A microbial perspective. J. Clean. Prod. 2021, 327, 129375. [Google Scholar] [CrossRef]
- Schmutz, U.; Rayns, F.; Katsoulas, N.; Løes, A.K.; De Marchi, M.; Sørensen, C.G.; Evans, A. Phasing out contentious inputs in organic and non-organic horticulture—Organic-PLUS. Acta Hortic. 2020, 1286, 211–218. [Google Scholar] [CrossRef]
- Dittrich, C.; Pecenka, R.; Løes, A.-K.; Cáceres, R.; Conroy, J.; Rayns, F.; Schmutz, U.; Kir, A.; Kruggel-Emden, H. Extrusion of Different Plants into Fibre for Peat Replacement in Growing Media: Adjustment of Parameters to Achieve Satisfactory Physical Fibre-Properties. Agronomy 2021, 11, 1185. [Google Scholar] [CrossRef]
- Prasad, M.; Tzortzakis, N.; McDaniel, N. Chemical characterization of biochar and assessment of the nutrient dynamics by means of preliminary plant growth tests. J. Environ. Manag. 2018, 216, 89–95. [Google Scholar] [CrossRef]
- Wetlands International Europe. Available online: https://europe.wetlands.org/ (accessed on 3 August 2023).
- Løes, A.-K. Peat, Plastic and Fertiliser in Organic Growing Across Europe—Current Use and Future Options. Organic World Congress. 2020. Available online: https://www.academia.edu/83345348/Peat_plastic_and_fertiliser_in_organic_growing_across_Europe_current_use_and_future_options (accessed on 3 August 2023).
- Tietjan, S.; Graubner, I.; Sradnikc, A. Reducing peat in substrate mixture formulations for press pots using Taguchi method. Sci. Hortic. 2020, 295, 110838. [Google Scholar] [CrossRef]
- Rozas, A.; Aponte, H.; Maldonado, C.; Contreras-Soto, R.; Medina, J.; Rojas, C. Evaluation of compost and biochar as a partial substitutes of peat in growing media and their influence in microbial counts, enzyme activity and Lactuca sativa L. seedling growth. Horticulture 2023, 9, 168. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, S. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Szewczuk-Karpisz, K.; Nowicki, P.; Sokołowska, Z.; Pietrzak, R. Hay-based activated biochars obtained using two different heating methods as effective low-cost sorbents: Solid surface characteristics, adsorptive properties and aggregation in the mixed Cu(II)/PAM system. Chemosphere 2020, 250, 126312. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Prasad, M.; Kavanagh, A.; Tzortzakis, N. Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production. Agronomy 2019, 9, 693. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Bavariani, M.; Ronaghi, A.; Ghasemi, R. Influence of pyrolysis temperatures on FTIR analysis, nutrient bioavailability, and agricultural use of poultry manure biochars. Commun. Soil Sci. Plant Anal. 2019, 50, 402–411. [Google Scholar] [CrossRef]
- Li, J.; Cao, L.; Yuan, Y.; Wang, R.; Wen, Y.; Man, J. Comparative study for microcystin-LR sorption onto biochars produced from various plant-and animal-wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties. Bioresour. Technol. 2018, 247, 794–803. [Google Scholar] [CrossRef]
- Huang, F.; Gao, L.Y.; Deng, J.H.; Chen, S.H.; Cai, K.Z. Quantitative contribution of Cd2+ adsorption mechanisms by chicken-manure-derived biochars. Environ. Sci. Pollut. Res. 2018, 25, 28322–28334. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Pan, J.; Ma, J.; Liu, X.; Zhai, L.; Ouyang, X.; Liu, H. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 2019, 275, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Sobik-Szołtysek, J.; Wystalska, K.; Malińska, K.; Meers, E. Influence of Pyrolysis Temperature on the Heavy Metal Sorption Capacity of Biochar from Poultry Manure. Materials 2021, 14, 6566. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, D. Production and Use of Organic Soil Enhancers and Growing Media From Agro-Residues. Ph.D. Thesis, Czestochowa University of Technology, Częstochowa, Poland, Ghent University, Ghent, Belgium, 2022. [Google Scholar]
- Meier, S.; Curaqueo, G.; Khan, N.; Bolan, N.; Cea, M.; Eugenia, G.M.; Cornejo, P.; Ok, Y.; Borie, F. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. J. Soils Sediments 2017, 17, 741–750. [Google Scholar] [CrossRef]
- Qi, F.; Yan, Y.; Lamb, D.; Naidu, R.; Bolan, N.S.; Liu, Y.; Ok, Y.; Donne, S.; Semple, K.T. Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresour. Technol. 2017, 246, 48–56. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Biochar and poultry manure effects on soil properties and radish (Raphanus sativus L.) yield. Biol. Agric. Hortic. 2019, 35, 33–45. [Google Scholar] [CrossRef]
- Agbede, T.M.; Oyewumi, A. Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropic agricultural soils. Resour. Environ. Sustain. 2022, 7, 100051. [Google Scholar] [CrossRef]
- Srinivasan, P.; Sarmah, A.K.; Smernik, R.; Das, O.; Farid, M.; Gao, W. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications. Sci. Total Environ. 2015, 512, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Kameyama, K.; Miyamoto, T.; Iwata, Y.; Shiono, T. Influences of feedstock and pyrolysis temperature on the nitrate adsorption of biochar. Soil Sci. Plant Nutr. 2016, 62, 180–184. [Google Scholar] [CrossRef]
- Cuixia, Y.; Yingming, X.; Lin, W.; Xuefeng, L.; Yuebing, S.; Hongtao, J. Effect of different pyrolysis temperatures on physico-chemical characteristics and lead (II) removal of biochar derived from chicken manure. RSC Adv. 2020, 10, 3667–3674. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Hertath, H.M.S.K. Polycyclic aromatic hydrocarbons (PAHs) in biochar—Their formation, occurrence and analysis: A review. Org. Geochem. 2017, 114, 1–11. [Google Scholar] [CrossRef]
- Sormo, E.; Krahn, K.M.; Flatabo, G.O.; Hartnik, T.; Arp, H.P.H.; Cornelissen, G. Distribution of PAHs, PCBs, and PCDD/Fs in products from full-scale relevant pyrolysis of diverse contaminated organic waste. J. Hazard. Mater. 2023, 132546, in press. [Google Scholar] [CrossRef]
- Mercurio, M.; Olusegun, S.J.; Malinska, K.; Wystalska, K.; Sobik-Szoltysek, J.; Dabrowska, A.; Krysinski, P.; Osial, M. Removal of tetracycline and rhodamine from aqueous systems by pristine biochar derived from poultry manure. Desalination Water Treat. 2023, 288, 72–86. [Google Scholar] [CrossRef]
- He, P.; Liu, Y.; Shao, L.; Zhang, H.; Lü, F. Particle size dependence of the physicochemical properties of biochar. Chemoshpere 2018, 212, 385–392. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 18122:2016-01 Polish Version; Solid Biofuels—Determination of Ash Content. Polish Committee for Standardization: Warsaw, Poland, 2016.
- PN-EN 1236 Polish Vesion; Nawozy–oznaczani gęstości nasypowej (luźnej). Polish Committee for Standarization: Warsaw, Poland, 1999.
- ASTM D2216-10; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. Available online: astm.org (accessed on 3 August 2023).
- PN-ISO 10694:2002 Polish Version; Jakość gleby—Oznaczanie zawartości węgla organicznego i całkowitej zawartości węgla po suchym spalaniu (analiza elementarna). Polish Committee for Standardization: Warsaw, Poland, 2002.
- CSN ISO 29541 ISO 29541:2010; Solid Mineral Fuels—Determination of Total Carbon, Hydrogen and Nitrogen Content—Instrumental Method. ISO: Geneva, Switzerland, 2010.
- CSN EN ISO 16994; Solid Mineral Fuels—Determination of Total Carbon, Hydrogen and Nitrogen Content—Instrumental Method. 2010.
- CSN EN ISO 16948; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO: Geneva, Switzerland, 2015.
- CSN EN 15407; Solid Recovered fuels-Methods for the Determination of Carbon (C), Hydrogen (H) and Nitrogen (N) Content. Comite Europeen de Normalisation: Brussels, Belgium, 2011.
- CSN ISO 19579; Solid Mineral Fuels—Determination of Sulfur by IR Spectrometry. ISO: Geneva, Switzerland, 2006.
- CSN EN 15408; Solid Recovered Fuels. Methods for the Determination of Sulphur (S), Chlorine (Cl), Fluorine (F) and Bromine (Br) Content. European Standards, 2006.
- CSN ISO 10694; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). International Standards, 1995.
- US EPA 1613B; Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. U.S. Environmental Protection Agency: Washington, DC, USA, 1994.
- CSN EN 16190; Soil, Treated Biowaste and Sludge—Determination of Dioxins and Furans and Dioxin-like Polychlorinated Biphenyls by Gas Chromatography with High Resolution Mass Selective Detection (HR GC-MS). European Standards, 2018.
- US EPA 8270D; Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry. U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- US EPA 8082A; Polychlorinated Biphenyls (PCBs) by Gas Chromatography. U.S. Environmental Protection Agency: Washington, DC, USA, 2007.
- CSN EN 15527; Plastics—Compression-Moulded Sheets of Polyethylene (PE-UHMW, PE-HD)—Requirements and Test Methods. European Standards, 2018.
- ISO 18287; Soil Quality—Determination of Polycyclic Aromatic Hydrocarbons (PAH)—Gas Chromatographic Method with Mass Spectrometric Detection (GC-MS). ISO: Geneva, Switzerland, 2006.
- ISO 10382; Soil Quality—Determination of Organochlorine Pesticides and Polychlorinated Biphenyls—Gas-Chromatographic Method with Electron Capture Detection. ISO: Geneva, Switzerland, 2002.
- CSN EN 15308; Characterization of Waste—Determination of Selected Polychlorinated Biphenyls (PCB) in Solid Waste by Using Capillary Gas Chromatography with Electron Capture or Mass Spectrometric Detection. European Standards, 2008.
- US EPA 3546; Microwave Extraction, part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. U.S. Environmental Protection Agency: Washington, DC, USA, 2007.
- Worwąg, M.; Sobik-Szołtysek, J. The Influence of Soil Fertilization with Struvite on Water Efficiency—Lysymetric Columns. Rocz. Ochr. Sr. 2019, 21, 894–905. Available online: https://ros.edu.pl/index.php?option=com_content&view=article&id=757:055-ros-v21-r2019&Itemid=103&lang=pl (accessed on 26 January 2023).
- Roberts, D.A.; Cole, J.A.; Whelan, A.; de Nys, R.; Paul, N.A. Slow pyrolysis enhances the recovery and reuse of phosphorus and reduces metal leaching. Waste Manag. 2017, 64, 133–139. [Google Scholar] [CrossRef]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner Ch Das, K.C.; Ahmedna, M.; Rehrah, D.; Watts, D.W.; Busscher, W.J.; Schomberg, H. Characterizaton of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Hadroug, S.; Jellali, S.; Leahy, J.J.; Kwapinska, M.; Jeguirim, M.; Hamdi, H.; Kwapinski, W. Pyrolysis Process as a Sustainable Management Option of Poultry Manure: Characterization of the Derived Biochars and Assessment of their Nutrient Release Capacities. Water 2019, 11, 2271. [Google Scholar] [CrossRef]
- Gąsior, D.; Tic, W.J. Application of the biochar-based technologies as the way of realization of the sustainable development strategy. Econ. Environ. Stud. 2017, 17, 597–611. [Google Scholar] [CrossRef]
- Adhikari, S.; Mahmud Parvez, M.A.; Nguyen, M.C.; Timms, W. Evaluating fundamental biochar properties in relation to water holding capacity. Chemosphere 2023, 328, 138620. [Google Scholar] [CrossRef]
- Teixeira, W.G.; Verheijen, F.; de Oliveira Marques, D.J. Water holding capacity of biochar and biochar-amended soils. In Biochar as a Renewable-Based Material; World Scientific Publishing: Singapore, 2020; pp. 61–83. [Google Scholar] [CrossRef]
- Li, S.; Chen, G. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Manag. 2018, 78, 198–207. [Google Scholar] [CrossRef]
- EBC (2012–2022) ‘European Biochar Certificate—Guidelines for a Sustainable Production of Biochar’. European Biochar Foundation (EBC), Arbaz, Switzerland. Available online: http://european-biochar.org (accessed on 7 November 2022).
- International Biochar Initiative, Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. 2015. Available online: https://biochar-international.org/wp-content/uploads/2023/01/IBI_Biochar_Standards_V2.1_Final.pdf (accessed on 26 February 2022).
- Uchimiya, M.; Chang, S.; Klasson, K.T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 2011, 190, 432–441. [Google Scholar] [CrossRef]
- Regulation (EU) 1009/2019; Fertilizing Product Directive. Europian Union: Brussels, Belgium, 2019.
- Maj, I.; Kalisz, S.; Ciukaj, S. Properties of Animal-Origin Ash—A Valuable Material for Circular Economy. Energies 2022, 15, 1274. [Google Scholar] [CrossRef]
- Quiroga, G.; Castrillón, L.; Fernández-Nava, Y.; Marañón, E. Physico-chemical analysis and calorific values of poultry manure. Waste Manag. 2010, 30, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, Z.; Cempa, M.; Białecka, B. Popiół bogaty w fosfor ze spalania odchodów drobiowych w reaktorze ze złożem fluidalnym. Minerały 2021, 11, 785. [Google Scholar] [CrossRef]
- Weber, R.; Sakurai, T. Formation characteristics of PCDD and PCDF during pyrolysis processes. Chemosphere 2001, 45, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Bucheli TDHilber, I.; Schmidt, H.P. Polycyclic aromatic hydrocarbons and polychlorinated aromatic compounds in biochar. In Biochar for Environmental Management; Routledge: London, UK, 2015. [Google Scholar]
- Zielińska, A.; Oleszczuk, P. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars. Chemosphere 2016, 163, 480–489. [Google Scholar] [CrossRef]
- Hilber, I.; Mayer, P.; Gouliarmou, V.; Hale, S.E.; Cornelissen, G.; Schmidt, H.-P.; Bucheli, T.D. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically treated) biochars. Chemosphere 2017, 174, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Stefaniuk, M.; Oleszczuk, P. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil. Environ. Pollut. 2016, 218, 242–251. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Oleszczuk, P.; Różyło, K. Co-application of sewage sludge with biochar increases disappearance of polycyclic aromatic hydrocarbons from fertilized soil in long term field experiment. Sci. Total Environ. 2017, 599–600, 854–886. [Google Scholar] [CrossRef]
- Rathnayake, D.; Schmidt, H.-P.; Leifeld, J.; Mayer, J.; Epper, C.A.; Bucheli, T.D.; Hagemann, N. Biochar from animal manure: A critical assessment on technical feasibility, economic viability, and ecological impact. GCB Bioenergy 2023, 15, 1078–1104. [Google Scholar] [CrossRef]
- Muñoz, C.; Ginebra, M.; Zagal, E. Variation of greenhouse gases fluxes and soil properties with addition of biochar from farm-wastes in volcanic and non-volcanic soils. Sustainability 2019, 11, 1831. [Google Scholar] [CrossRef]
- Uchimiya, M.; Hiradate, S. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J. Agric. Food Chem. 2014, 62, 1802–1809. [Google Scholar] [CrossRef]
- Kuo, Y.-L.; Lee, C.-H.; Jien, S.-H. Reduction of Nutrient Leaching Potential in Coarse-Textured Soil by Using Biochar. Water 2020, 12, 2012. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar applications to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Novak, J.M.; Johnson, M.G.; Spokas, K.A. Concentration and release of phoshporus and potassium from lignocellulocis- and manure-based biocharsfor fertilizer reuse. Front. Sustain. Foos Syst. 2018, 2, 54. [Google Scholar] [CrossRef]
- Gao, T.; Gao, M.; Peng, J.; Li, N. Effects of different amount of biochar on nitrogen, phosphorus and potassium nutrients in soil. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 2. [Google Scholar] [CrossRef]
- Brtnicky, M.; Mustafa, A.; Hammerschmiedt, T.; Kintl, A.; Trakal, L.; Beesley, L.; Ryant, P.; Omara-Ojungu, C.; Baltazar, T.; Holatko, J. Pre-activated biochar by fertilizers mitigates nutrient leaching and stimulates soil microbial activity. Chem. Biol. Technol. Agric. 2023, 10, 57. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, X.; Zhang, X.; Wan, L.; Wang, Z. Effects of biochar application on soil nitrogen and phosphorus leaching loss and oil peony growth. Agric. Water Manag. 2021, 255, 107022. [Google Scholar] [CrossRef]
- Wystalska, K.; Malińska, K.; Barczak, M. Poultry manure derived biochars—The impact of pyrolysis temperature on selected properties and potentials for further modifications. J. Sustain. Dev. Energy Water Environ. Syst. 2021, 9, 1080337. [Google Scholar] [CrossRef]
- Hasnan, F.I.; Iamail, K.N.; Musa, M.; Jaapar, J.; Alwi, H.; Hamid, K.K.K. Characterization of bio char derived from tapioca skin. IOP Conf. Ser. Mater. Sci. Eng. 2018, 334, 012016. [Google Scholar] [CrossRef]
- Hibler, I.; Blum, F.; Leifeld, J.; Schmidt, H.P.; Buche, T.D. Quantitative determination of PAHs in biochar: A prerequisite to ensure its quality and safe ap-plication. J. Agric. Food Chem. 2012, 60, 3042–3050. [Google Scholar] [CrossRef]
- Fabbri, D.; Rombolà, A.G.; Torri, C.; Spokas, K.A. Determ. Poly-cyclic aromatic carbons in biochar and biochar amended soil. J. Anal. Appl. Pyrolysis 2013, 103, 60–67. [Google Scholar] [CrossRef]
- Novak, J.; Cantrell, K.; Watts, D.; Johnson, M. Designing Relevant Biochars to Revitalize Soil Quality: Current Status and Advances. In Functions of Natural Organic Matter in Changing Environment; Xu, J., Wu, J., He, Y., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Zhao, X.; Wang, S.; Xing, G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels 2013, 27, 5890–5899. [Google Scholar] [CrossRef]
- Yu, O.Y.; Harper, M.; Hoepfl, M.; Domermuth, D. Characterization of biochar and its effects on the water holding capacity of loamy sand soil: Comparison of hemlock biochar and switchblade grass biochar characteristics. Environ. Prog. Sustain. Energy 2017, 36, 1474–1479. [Google Scholar] [CrossRef]
- Chantanumat, Y.; Phetwarotai, W.; Sangthong, S.; Palamanit, A.; Abu Bakar, M.S.; Cheirsilp, B.; Phusunti, N. Characterization of bio-oil and biochar from slow pyrolysis of oil palm plantation and palm oil mill wastes. Biomass Convers. Biorefin. 2022, 1–13. [Google Scholar] [CrossRef]
- Chen, J.; Fang, D.; Duan, F. Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor. Appl. Energy 2018, 218, 54–65. [Google Scholar] [CrossRef]
- Tsai, W.T.; Liu, S.C.; Chen, H.R.; Chang, Y.M.; Tsai, Y.L. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, B.; Chen, L.; Li, Y.; Li, W.; Luo, Z. Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chem. Speciat. Bioavailab. 2018, 30, 57–67. [Google Scholar] [CrossRef]
- Yue, Y.; Lin, Q.; Xu, Y.; Li, G.; Zhao, X. Slow pyrolysis as a measure for rapidly treating cow manure and the biochar characteristics. J. Anal. Appl. Pyrolysis 2017, 124, 355–361. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Gasco, G.; Paz-Ferreiro, J.; Cely, P.; Plaza, C.; Mendez, A. Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes. Ecol. Eng. 2016, 95, 19–24. [Google Scholar] [CrossRef]
- Dróżdż, D.; Wystalska, K.; Malińska, K.; Grosser, A.; Grobelak, A.; Kacprzak, M. Management of poultry manure in Poland—Current state and future perspectives. J. Environ. Manag. 2020, 264, 110327. [Google Scholar] [CrossRef] [PubMed]
- Camps-Arbestain, M.; Amonette, J.; Singh, B.; Wang, T.; Schmidt, H.-P. A biochar classification system and associated test methods. In Biochar for Environmental Management: Science, Technology and Implementation; Routledge: New York, NY, USA, 2015. [Google Scholar]
- He, Z.; Pagliari, P.H.; Waldrip, H.M. Applied and environmental chemistry of animal manure: A review. Pedosphere 2016, 26, 779–816. [Google Scholar] [CrossRef]
Temp. °C | pH | Ash % | N % | TC % | Ca g·kg−1 | Mg g·kg−1 | P g·kg−1 | K g·kg−1 | BET m2·g−1 | BD kg·m−3 | WHC % | CEC cmol (+) kg−1 | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 7.20 | - | 3.53 | 39.7 | - | - | 3.39 | 1.04 | - | - | - | 580 | [25] |
300 | 7.30 | - | 3.80 | 42.4 | - | - | 4.13 | 1.26 | - | - | - | 690 | |
300 | 8.00 | 36.50 | 3.52 | 39.07 | - | - | - | - | 4.00 | - | - | - | [26] |
300 | 9.68 | 40.09 | 4.30 | 40.47 | 0.07 | 0.03 | 39.20 | 5.85 | 4.51 | - | - | - | [27] |
300 | 9.5 | 47.87 | 4.91 | 37.99 | 23.88 | 0.28 | 16.59 | 32.01 | 2.8 | - | 64.32 | 52 | [28] |
350 | 9.9 | - | - | - | - | - | - | - | 4.00 | - | - | - | [29] |
350 | 10.3 | 51.29 | 3.49 | 37.65 | 22.57 | 0.13 | 13.33 | 34.18 | 3.5 | - | 59.56 | 45 | [28] |
400 | 10.4 | 56.62 | 1.46 | 36.10 | 13.08 | 0.07 | 7.00 | 36.67 | 4.0 | - | 52.38 | 40 | [28] |
400 | 9.98 | - | 4.70 | 47.9 | - | - | 5.58 | 1.72 | - | - | - | 750 | [25] |
425 | 10.40 | 52.07 | 4.81 | 37.98 | 12.70 | 1.32 | 3.65 | 4.93 | 12 | - | - | 31.9 | [30] |
450 | 10.00 | - | - | - | - | - | - | - | 7.00 | - | - | - | [29] |
450 | 10.5 | 58.66 | 1.15 | 35.22 | 9.56 | 0.06 | 5.07 | 39.17 | 4.5 | - | 48.30 | 38 | [28] |
475 | 12.04 | 50.20 | 3.73 | 30.76 | 14.69 | 1.00 | 19.27 | 3.24 | - | - | - | - | [31] |
500 | 11.3 | 60.58 | 1.12 | 34.47 | 9.18 | 0.05 | 4.44 | 40.40 | 5.0 | - | 46.18 | 35 | [28] |
500 | 11.02 | 50.00 | 3.15 | 34.41 | 0.05 | 0.11 | 45.93 | 6.40 | 8.08 | - | - | - | [27] |
500 | 11.50 | - | 4.50 | 55.1 | - | - | 6.38 | 1.97 | - | - | - | 865 | [25] |
500 | 9.1 | - | 2.13 | 29.67 | 54.00 | 5.1 | 19.4 | 17.2 | 11.51 | - | 60 | 35.59 | [32] |
550 | 10.20 | - | - | - | - | - | - | - | 6.00 | - | - | - | [29] |
550 | 11.00 | 60.65 | 1.25 | 33.88 | 8.54 | 0.05 | 4.15 | 43.89 | 5.5 | - | 44.47 | 32 | [28] |
550 | 7.69 | 46.20 | 3.81 | 33.7 | - | - | - | - | 6.97 | - | - | 222 | [33] |
525 | 10.65 | 61.74 | 2.50 | 29.00 | 16.30 | 1.41 | 3.28 | 4.47 | 17 | - | - | 118.9 | [30] |
580 | 7.56 | 8.21 | 0.65 | 52.3 | 0.75 | 0.26 | 0.73 | 1.25 | - | - | - | - | [34] |
580 | 7.86 | 8.32 | 0.85 | 55.7 | 4.63 | 0.07 | 0.38 | 1.92 | - | <0.1 | - | - | [35] |
600 | 11.50 | 60.78 | 1.33 | 32.52 | 8.24 | 0.05 | 2.82 | 44.61 | 6.0 | - | 41.85 | 30 | [28] |
600 | 9.22 | 49.99 | 1.86 | 32.30 | - | - | - | - | 86.67 | - | - | - | [26] |
675 | 12.55 | - | 3.07 | 30.56 | 14.03 | 1.00 | 17.23 | 3.01 | - | - | - | - | [31] |
680 | 10.1 | 11.16 | 1.3 | 86.79 | - | - | - | - | 6.96 | - | - | - | [36] |
700 | 11.81 | 54.78 | 2.84 | 33.77 | 0.15 | 0.21 | 49.51 | 6.39 | 10.89 | - | - | - | [27] |
725 | 12.45 | 78.38 | 2.76 | 37.42 | 18.1 | 1.50 | 4.00 | 5.55 | 19 | - | - | 386.3 | [30] |
775 | 13.40 | - | 3.69 | 30.29 | 14.87 | 0.93 | 15.46 | 2.66 | - | - | - | - | [31] |
800 | 12.2 | 68.2 | 2.2 | 23.9 | - | - | - | - | - | - | - | - | [37] |
800 | 10.11 | 64.63 | 2.01 | 30.35 | - | - | - | - | - | - | - | - | [38] |
425 °C | 525 °C | 625 °C | 725 °C | |
---|---|---|---|---|
Biochar yield, % | 51.24 ± 0.77 | 47.43 ± 0.45 | 44.41 ± 0.51 | 39.59 ± 0.82 |
PMB 425 °C | PMB 525 °C | PMB 625 °C | PMB 725 °C | |
---|---|---|---|---|
pHH2O | 9.24 | 10.18 | 11.10 | 12.35 |
Ash, % (d.m.) | 55.61 | 63.91 | 63.50 | 73.34 |
Total carbon (TC), % (d.m.) | 38.57 | 37.70 | 38.20 | 31.28 |
Ca, % (d.m.) | 12.50 | 12.20 | 15.10 | 16.70 |
Mg, % (d.m.) | 0.83 | 1.45 | 1.43 | 1.53 |
P, % (d.m.) | 2.03 | 3.91 | 3.70 | 3.68 |
K, % (d.m.) | 2.74 | 4.96 | 4.76 | 5.13 |
Brunauer–Emmett–Teller (BET) surface area, m2·g−1 | 12 | 13 | 11 | 18 |
t-plot micropore area, m2·g−1 | 5.3 | 3.2 | 2.5 | 2.6 |
Cation exchange capacity (CEC), cmol (+)·kg−1 | 136.2 | 111.7 | 226.1 | 481.5 |
Bulk density (BD wet), kg·m−3 | 200 | 199 | 182 | 251 |
Water holding capacity (WHC), % w/w | 158 | 219 | 217 | 232 |
% (d.m) | PMB 425 °C | PMB 525 °C | PMB 625 °C | PMB 725 °C |
---|---|---|---|---|
TOC | 29.30 | 29.16 | 35.78 | 32.47 |
H | 2.37 | 1.56 | 1.17 | 1.36 |
N | 4.00 | 3.26 | 3.03 | 3.02 |
S | 0.30 | 0.52 | 0.49 | 0.51 |
H/Corg | 0.89 | 0.57 | 0.42 | 0.56 |
Heavy Metals mg·kg−1 (d.m.) | Permissible Limits according to the Regulation (EU) 1009/2019 | PMB 425 °C | PMB 525 °C | PMB 625 °C | PMB 725 °C |
---|---|---|---|---|---|
Cd | 2 | 0.580 | 0.610 | <0.300 | <0.300 |
Pb | 120 | <2 | 2.05 | <2 | 2.02 |
Cr | 2 | 17.10 | 29.80 | 29.60 | 24.60 |
Cu | 300 | 84.6 | 156 | 158 | 144 |
Ni | 50 | 16.4 | 26.6 | 28.0 | 32.8 |
Zn | 800 | 434 | 831 | 775 | 747 |
Hg | 1 | <0.0006 | <0.0006 | 0.0008 | 0.0007 |
Type of Contaminant ng·kg−1 (d.m.) | PMB 425 °C | PMB 525 °C | PMB625 °C | PMB 725 °C |
---|---|---|---|---|
2378-TCDD | <9.20 | <1.10 | <1.10 | <1.10 |
12378-PeCDD | <1.40 | <1.30 | <1.20 | <1.30 |
123478-HxCDD | <1.80 | <1.60 | <1.70 | <1.70 |
123678-HxCDD | <1.80 | <1.60 | <1.70 | <1.70 |
123789-HxCDD | <1.80 | <1.60 | <1.70 | <1.70 |
1234678-HpCDD | <1.90 | <1.80 | <2.20 | <2.30 |
OCDD | <9.30 | <2.10 | <2.70 | <3.20 |
2378-TCDF | <1.20 | <1.10 | <1.20 | <1.10 |
12378-PeCDF | <1.50 | <1.40 | <1.40 | <1.30 |
23478-PeCDF | <1.50 | <1.40 | <1.40 | <1.30 |
123478-HxCDF | <1.90 | <1.80 | <1.90 | <1.80 |
123678-HxCDF | <1.90 | <1.80 | <1.90 | <1.80 |
123789-HxCDF | <1.90 | <1.80 | <1.90 | <1.80 |
234678-HxCDF | <1.90 | <1.80 | <1.90 | <1.80 |
1234678-HpCDF | <2.20 | <1.90 | <2.30 | <2.50 |
1234789-HpCDF | <2.20 | <1.90 | <2.30 | <2.50 |
OCDF | <2.40 | <2.30 | <3.50 | <2.50 |
TEQ-Lowerboud | 0.00 | 0.00 | 0.00 | 0.00 |
TEQ-Upperbound | 3.90 | 3.80 | 3.90 | 3.90 |
Type of Contaminant mg·kg−1 (d.m.) | PMB 425 °C | PMB 525 °C | PMB 625 °C | PMB 725 °C |
---|---|---|---|---|
Naphthalene | 0.097 | 0.089 | 1.460 | 16.700 |
Acenaphthylene | <0.010 | <0.010 | 0.214 | 1.430 |
Acenaphthene | <0.010 | <0.010 | 0.052 | 0.748 |
Fluorene | 0.032 | <0.010 | <0.040 | <0.220 |
Phenanthrene | 0.035 | 0.036 | 0.207 | 3.160 |
Anthracene | 0.010 | <0.010 | 0.045 | <1.090 |
Fluoranthene | <0.010 | <0.010 | 0.050 | <0.560 |
Pyrene | <0.010 | <0.010 | 0.070 | 0.647 |
Benzo(a)anthracene | <0.010 | <0.010 | <0.030 | - * |
Chrysen | 0.016 | <0.010 | <0.011 | - * |
Benzo(b)fluoranthene | <0.010 | <0.010 | 0.012 | - * |
Benzo(k)fluoranthene | <0.010 | <0.010 | <0.011 | - * |
Benzo(a)pyrene | <0.010 | <0.010 | <0.011 | - * |
Indeno(1.2.3.cd)pyrene | <0.010 | <0.010 | <0.030 | - * |
Benzo(g.h.i)perylene | <0.010 | <0.010 | - * | - * |
Dibenzo(a.h)anthracene | <0.010 | <0.010 | <0.030 | - * |
Sum of 16 PAHs | 0.190 | <0.160 | - * | - * |
PCB 28 | <0.0030 | <0.0030 | <0.0030 | <0.1290 |
PCB 52 | <0.0030 | <0.0030 | <0.0030 | <0.0030 |
PCB 101 | <0.0030 | <0.0030 | <0.0030 | <0.1140 |
PCB 118 | <0.0030 | <0.0030 | <0.0030 | <0.0210 |
PCB 138 | <0.0030 | <0.0030 | <0.0030 | <0.0030 |
PCB 153 | <0.0020 | <0.0020 | <0.0020 | <0.0020 |
PCB 180 | <0.0030 | <0.0030 | <0.0030 | <0.2550 |
Sum of 6 PCBs | <0.0170 | <0.0170 | <0.0170 | <0.5060 |
Sum of 7 PCB | <0.0200 | <0.0200 | <0.0200 | <0.5270 |
Type of Biochar | NNH4, % (the Solution Containing NNH4) | PPO4, % (the Solution Containing PPO4) | NNH4 i PPO4, % (the Solution Containing Both NNH4 + PPO4) | |
---|---|---|---|---|
NNH4, % | PPO4, % | |||
PMB 425 °C | −8.99 * | 97.91 | −9.81 * | 81.27 |
PMB 525 °C | −62.26 * | 97.20 | −46.05 * | 91.54 |
PMB 625 °C | −2.45 * | 77.72 | −2.45 * | 71.11 |
PMB 725 °C | 4.66 | 99.33 | 6.27 | 98.52 |
Type of Biochar | Temp. °C | pH | Ash % | N % | TC % | Ca | Mg | P | K | BET m2·g−1 | BD g·m−3 | WHC % | CEC cmol (+) kg−1 | Yield % | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant derived | |||||||||||||||
Peanut hull | 400 | 7.6 | 8.2 | 2.7 | 74.8 | - | - | 0.04 | 0.15 | - | - | - | 2.4 | - | [97] |
Peanut hull | 500 | 7.8 | 9.3 | 2.7 | 81.8 | - | - | 0.03 | 0.17 | - | - | - | 2.1 | - | |
Pecan shell | 350 | 6.3 | 2.4 | 0.26 | 64.5 | - | - | 0.02 | 0.06 | - | - | - | 3.1 | - | |
Pecan shell | 700 | 7.8 | 5.2 | 0.51 | 91.2 | - | - | 0.03 | 0.04 | - | - | - | 2.9 | - | |
Switchgrass | 250 | 6.2 | 2.6 | 0.43 | 55.3 | - | - | 0.03 | 0.06 | - | - | - | 2.5 | - | |
Switchgrass | 500 | 7.0 | 7.8 | 1.07 | 84.4 | - | - | 0.03 | 0.08 | - | - | - | 2.3 | - | |
Hardwood wastes | 500 | 6.6 | 8.9 | 3.0 | 71.4 | - | - | 0.02 | 0.06 | - | - | - | 2.3 | - | |
Rice straw | 500 | 10.7 | 27.9 | 1.18 | 47.22 | 5.63 | 9.94 | 1.05 | 0.47 | 1.89 | - | - | 23.1 | 37.6 | [98] |
Rice straw | 700 | 11.1 | 31.8 | 0.83 | 41.65 | 6.33 | 6.56 | 1.31 | 0.6 | 199 | - | - | 20.0 | 33.7 | |
Wheat straw | 500 | 9.2 | 14.5 | 0.53 | 49.78 | 0.90 | 0.31 | 0.70 | 24.0 | 2.48 | - | - | 20.1 | 30.6 | |
Wheat straw | 700 | 10.7 | 17.9 | 0.34 | 52.59 | 0.94 | 0.31 | 0.73 | 25.7 | 319 | - | - | 15.4 | 26.8 | |
Maize straw | 500 | 10.3 | 30.0 | 2.18 | 48.81 | 1.03 | 0.41 | 7.00 | 16.6 | 0.17 | - | - | 26.1 | 32.3 | |
Maize straw | 700 | 10.7 | 29.4 | 1.97 | 51.12 | 1.12 | 0.49 | 7.96 | 18.8 | 20.5 | - | - | 24.8 | 26.1 | |
Rice husk | 500 | 10.0 | 37.9 | 1.09 | 37.16 | 0.31 | 0.11 | 2.10 | 2.74 | 12.2 | - | - | 11.7 | 37.6 | |
Rice husk | 700 | 10.8 | 40.4 | 0.92 | 37.51 | 0.29 | 0.13 | 2.40 | 2.65 | 136 | - | - | 7.4 | 33.7 | |
Cocount shell | 500 | 10.3 | 7.3 | 0.35 | 56.10 | 0.33 | 0.21 | 0.72 | 20.4 | 69.4 | - | - | 31.1 | 32.7 | |
Cocount shell | 700 | 10.8 | 8.7 | 0.21 | 56.00 | 0.28 | 0.18 | 1.31 | 24.3 | 341 | - | - | 20.2 | 27.8 | |
Bamboo wood | 500 | 10.0 | 2.3 | 0.34 | 37.77 | 0.12 | 0.27 | 0.39 | 17.1 | 169 | - | - | 3.0 | 25.3 | |
Bamboo wood | 700 | 8.9 | 2.5 | 0.26 | 38.59 | 0.25 | 0.14 | 0.30 | 2.34 | 306 | - | - | 0.5 | 23.0 | |
Elm wood | 500 | 7.8 | 1.1 | 0.16 | 45.92 | 0.26 | 0.06 | 0.19 | 4.97 | 84.3 | - | - | 1.7 | 29.3 | |
Elm wood | 700 | 9.2 | 1.8 | 0.03 | 47.04 | 0.44 | 0.13 | 0.16 | 3.71 | 325 | - | - | 0.1 | 21.2 | |
Hemlock | 500 | 7.4 | - | - | - | 46 | 11 | 6 | 4 | - | - | - | 0.9 | - | [99] |
Switchblade grass | 500 | 9.3 | - | - | - | 64 | 14 | 22 | 50 | - | - | - | 1.4 | - | |
Palm waste | 600 | - | 13.86 | 0.93 | 67.28 | - | - | - | - | 3.28 | - | - | - | 26 | [100] |
Manure derived | |||||||||||||||
Dairy manure | 100 | 8.0 | 95 | 3.12 | 36.8 | 3.23 | 1.11 | 0.91 | - | 2.0 | - | - | - | 38.1 | [101] |
Dairy manure | 200 | 7.0 | 58.0 | 2.98 | 31.1 | 6.09 | 1.68 | 1.74 | - | 2.8 | - | - | - | 45.0 | |
Dairy manure | 350 | 10.0 | 25.0 | 2.22 | 25.2 | 8.89 | 2.65 | 2.41 | - | 7.1 | - | - | - | 61.1 | |
Dairy manure | 500 | 10.1 | 12.1 | 0.04 | 1.67 | 9.75 | 3.02 | 2.66 | - | 12.0 | - | - | - | 83.2 | |
Swine manure | 400 | 7.5 | 43.5 | 3.2 | 1.0 | 5.5 | 3.0 | 6.1 | 3.1 | 5.7 | - | - | - | 31.0 | [102] |
Swine manure | 500 | 10.2 | 45.8 | 2.6 | 1.0 | 5.7 | 3.4 | 6.9 | 2.7 | 3.9 | - | - | - | 32.1 | |
Swine manure | 700 | 11.8 | 52.8 | 2.0 | 0.9 | 5.0 | 3.4 | 7.5 | 2.7 | 59 | - | - | - | 35.3 | |
Swine manure | 800 | 11.4 | 51.8 | 1.6 | 1.1 | 5.3 | 3.4 | 7.7 | 2.7 | 63 | - | - | - | 30.2 | |
Yak manure | 300 | 7.8 | - | 3.2 | 41.6 | 5.67 | 1.98 | 4.52 | 2.78 | 3.6 | - | - | - | 20.6 | [103] |
Yak manure | 500 | 10.2 | - | 3.0 | 41.3 | 6.13 | 2.34 | 5.41 | 2.85 | 17.3 | - | - | - | 23.9 | |
Cow manure | 300 | 8.3 | - | 1.7 | 51.3 | - | - | 1.36 | 1.3 | - | - | - | - | 58.07 | [104] |
Cow manure | 500 | 10.6 | - | 1.45 | 52.54 | - | - | 6.12 | 3.5 | - | - | - | - | 39.84 | |
Cow manure | 700 | 10.5 | - | 1.06 | 52.85 | - | - | 1.68 | 4.4 | - | - | - | - | 37.12 | |
Cow manure | 500 | 9.2 | - | 1.51 | 33.61 | 2.12 | 1.4 | 8.14 | 0.14 | - | - | - | 4.84 | - | [105] |
Pig manure | 300 | 7.8 | 50.25 | 2.24 | - | 1.3 | 0.8 | 2.8 | 0.8 | - | - | - | 35.6 | - | [106] |
Pig manure | 500 | 8.2 | 73.88 | 1.19 | - | 0.8 | 0.8 | 1.2 | 0.8 | - | - | - | 32.7 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wystalska, K.; Malińska, K.; Sobik-Szołtysek, J.; Dróżdż, D.; Meers, E. Properties of Poultry-Manure-Derived Biochar for Peat Substitution in Growing Media. Materials 2023, 16, 6392. https://doi.org/10.3390/ma16196392
Wystalska K, Malińska K, Sobik-Szołtysek J, Dróżdż D, Meers E. Properties of Poultry-Manure-Derived Biochar for Peat Substitution in Growing Media. Materials. 2023; 16(19):6392. https://doi.org/10.3390/ma16196392
Chicago/Turabian StyleWystalska, Katarzyna, Krystyna Malińska, Jolanta Sobik-Szołtysek, Danuta Dróżdż, and Erik Meers. 2023. "Properties of Poultry-Manure-Derived Biochar for Peat Substitution in Growing Media" Materials 16, no. 19: 6392. https://doi.org/10.3390/ma16196392
APA StyleWystalska, K., Malińska, K., Sobik-Szołtysek, J., Dróżdż, D., & Meers, E. (2023). Properties of Poultry-Manure-Derived Biochar for Peat Substitution in Growing Media. Materials, 16(19), 6392. https://doi.org/10.3390/ma16196392