Influence of Various Nanomaterials on the Rheology and Hydration Kinetics of Oil Well Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement and Other Additives
2.1.2. Nanomaterials
2.1.3. Slurry Design
2.2. Methods
2.2.1. Mixing
2.2.2. Stability Test
2.2.3. Rheology Test
2.2.4. Hydration Test
3. Results and Discussion
3.1. Stability Test
3.2. Rheology
3.3. Hydration Kinetics Results
3.3.1. Control Slurries
3.3.2. Nanomaterial-Enriched Slurries
4. Prospects of Nanomaterial Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahafid, S.; Ghabezloo, S.; Duc, M.; Faure, P.; Sulem, J. Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density. Cem. Concr. Res. 2017, 95, 270–281. [Google Scholar] [CrossRef]
- Agofack, N.; Ghabezloo, S.; Sulem, J.; Garnier, A.; Urbanczyk, C. Experimental investigation of the early-age mechanical behaviour of oil-well cement paste. Cem. Concr. Res. 2019, 117, 91–102. [Google Scholar] [CrossRef]
- Nelson, E.B.; Guillot, D. Well Cementing, 2nd ed.; Schlumberger: Sugar Land, TX, USA, 2006; p. 797. [Google Scholar]
- Nazar, S.; Yang, J.; Thomas, B.S.; Azim, I.; Ur Rehman, S.K. Rheological properties of cementitious composites with and without nano-materials: A comprehensive review. J. Clean. Prod. 2020, 272, 122701. [Google Scholar] [CrossRef]
- Kumar, S.; Bera, A.; Shah, S.N. Potential applications of nanomaterials in oil and gas well cementing: Current status, challenges and prospects. J. Pet. Sci. Eng. 2022, 213, 110395. [Google Scholar] [CrossRef]
- Reches, Y. Nanoparticles as concrete additives: Review and perspectives. Constr. Build. Mater. 2018, 175, 483–495. [Google Scholar] [CrossRef]
- Shah, S.N.; Fakoya, M.F. Chapter 18–Nanomaterials in the oil and gas industry. In Advances in Smart Nanomaterials and Their Applications; Husen, A., Siddiqi, K.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 423–444. [Google Scholar] [CrossRef]
- Wang, X.; Wang, K.; Tanesi, J.; Ardani, A. Effects of Nanomaterials on the Hydration Kinetics and Rheology of Portland Cement Pastes. Adv. Civ. Eng. Mater. 2014, 3, 142–159. [Google Scholar] [CrossRef]
- Norhasri, M.S.M.; Hamidah, M.S.; Fadzil, A.M. Applications of using nano material in concrete: A review. Constr. Build. Mater. 2017, 133, 91–97. [Google Scholar] [CrossRef]
- Orakzai, M.A. Hybrid effect of nano-alumina and nano-titanium dioxide on Mechanical properties of concrete. Case Stud. Constr. Mater. 2021, 14, e00483. [Google Scholar] [CrossRef]
- Thakkar, A.; Raval, A.; Chandra, S.; Shah, M.; Sircar, A. A comprehensive review of the application of nano-silica in oil well cementing. Petroleum 2020, 6, 123–129. [Google Scholar] [CrossRef]
- Shokravi, H.; Mohammadyan-Yasouj, S.E.; Koloor, S.S.R.; Petrů, M.; Heidarrezaei, M. Effect of Alumina Additives on Mechanical and Fresh Properties of Self-Compacting Concrete: A Review. Processes 2021, 9, 554. [Google Scholar] [CrossRef]
- Rodrigues, K.; Dos Santos, A.; Oskarsson, H.; Jankowski, S.; Ferm, P. Smart Retarder for Cementing Systems with Accelerated Set and Gel Strength Properties with Potential for Improved Operational Safety. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Dubai, United Arab Emirates, 15–18 November 2021. [Google Scholar]
- Land, G.; Stephan, D. Controlling cement hydration with nanoparticles. Cem. Concr. Compos. 2015, 57, 64–67. [Google Scholar] [CrossRef]
- Pang, X.; Boul, P.J.; Jimenez, W.C. Nanosilicas as Accelerators in Oilwell Cementing at Low Temperatures. SPE Drill. Complet. 2014, 29, 98–105. [Google Scholar] [CrossRef]
- Goel, G.; Sachdeva, P.; Chaudhary, A.K.; Singh, Y. The use of nanomaterials in concrete: A review. Mater. Today Proc. 2022, 69, 365–371. [Google Scholar] [CrossRef]
- Björnström, J.; Martinelli, A.; Matic, A.; Börjesson, L.; Panas, I. Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chem. Phys. Lett. 2004, 392, 242–248. [Google Scholar] [CrossRef]
- Kawashima, S.; Hou, P.; Corr, D.J.; Shah, S.P. Modification of cement-based materials with nanoparticles. Cem. Concr. Compos. 2013, 36, 8–15. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Chen, S.J.; Long, G.; Liu, Y.M.; Duan, W.H. Effects of Nanoalumina and Graphene Oxide on Early-Age Hydration and Mechanical Properties of Cement Paste. J. Mater. Civ. Eng. 2017, 29, 04017087. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, K.; Liu, Z.; He, F. Chemical effect of nano-alumina on early-age hydration of Portland cement. Cem. Concr. Res. 2019, 116, 159–167. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles. Mater. Sci. Eng. A 2011, 528, 1183–1191. [Google Scholar] [CrossRef]
- Shao, Q.; Zheng, K.; Zhou, X.; Zhou, J.; Zeng, X. Enhancement of nano-alumina on long-term strength of Portland cement and the relation to its influences on compositional and microstructural aspects. Cem. Concr. Compos. 2019, 98, 39–48. [Google Scholar] [CrossRef]
- Naganna, S.R.; Jayakesh, K.; Anand, V.R. Nano-TiO2 particles: A photocatalytic admixture to amp up the performance efficiency of cementitious composites. Sādhanā 2020, 45, 280. [Google Scholar] [CrossRef]
- Maagi, M.T.; Jun, G. Effect of the particle size of nanosilica on early age compressive strength in oil-well cement paste. Constr. Build. Mater. 2020, 262, 120393. [Google Scholar] [CrossRef]
- Santra, A.; Boul, P.J.; Pang, X. Influence of Nanomaterials in Oilwell Cement Hydration and Mechanical Properties. In Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 12–14 June 2012. [Google Scholar]
- Heikal, M.; Ismail, M.N.; Ibrahim, N.S. Physico-mechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles. Constr. Build. Mater. 2015, 91, 232–242. [Google Scholar] [CrossRef]
- Ma, B.; Li, H.; Mei, J.; Li, X.; Chen, F. Effects of Nano-TiO2 on the Toughness and Durability of Cement-Based Material. Adv. Mater. Sci. Eng. 2015, 2015, 583106. [Google Scholar] [CrossRef]
- Chen, J.; Kou, S.-C.; Poon, C.-S. Hydration and properties of nano-TiO2 blended cement composites. Cem. Concr. Compos. 2012, 34, 642–649. [Google Scholar] [CrossRef]
- Maagi, M.T.; Lupyana, S.D.; Gu, J. Effect of Nano-SiO2, Nano-TiO2 and Nano-Al2O3 Addition on Fluid Loss in Oil-Well Cement Slurry. Int. J. Concr. Struct. Mater. 2019, 13, 62. [Google Scholar] [CrossRef]
- Sarmah, P.; Al Tawat, N.; Yadav, P.; Agrawal, G. High Compressive Strength, Ultra-Lightweight and Lightweight Cement–Formulated with Raw Material Locally Available in Saudi Arabia. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 25–28 April 2016. [Google Scholar] [CrossRef]
- Li, H.; Pang, X.; Zhang, J.; Shi, X. Mechanical properties of low-density cement under shale oil in-situ conversion conditions. Constr. Build. Mater. 2023, 393, 131970. [Google Scholar] [CrossRef]
- Manuel, I.; Plank, J. Synthesis and Properties of a Polycarboxylate Superplasticizer with a Jellyfish-Like Structure Comprising Hyperbranched Polyglycerols. Ind. Eng. Chem. Process Des. Dev. 2019, 58, 12913–12926. [Google Scholar] [CrossRef]
- American Petroleum Institute. Recommended Practice for Testing Well Cements 10B-2; American Petroleum Institute: New York, NY, USA, 2013; p. 110. [Google Scholar]
- Jiao, D.; Shi, C.; Yuan, Q.; An, X.; Liu, Y.; Li, H. Effect of constituents on rheological properties of fresh concrete—A review. Cem. Concr. Compos. 2017, 83, 146–159. [Google Scholar] [CrossRef]
- Tariq, Z.; Murtaza, M.; Mahmoud, M. Development of New Rheological Models for Class G Cement with Nanoclay as an Additive Using Machine Learning Techniques. ACS Omega 2020, 5, 17646–17657. [Google Scholar] [CrossRef]
- Hong, R.; Ren, Z.; Han, Y.P.; Li, H.; Zheng, Y.; Ding, J. Rheological properties of water-based Fe3O4 ferrofluids. Chem. Eng. Sci. 2007, 62, 5912–5924. [Google Scholar] [CrossRef]
- Sarwar, W.; Ghafor, K.; Mohammed, A. Modeling the rheological properties with shear stress limit and compressive strength of ordinary Portland cement modified with polymers. J. Build. Pathol. Rehabil. 2019, 4, 25. [Google Scholar] [CrossRef]
- Shahriar, A.; Nehdi, M. Rheological properties of oil well cement slurries. Proc. ICE-Constr. Mater. 2012, 165, 25–44. [Google Scholar] [CrossRef]
- Skare, E.L.; Sheiati, S.; Cepuritis, R.; Mørtsell, E.; Smeplass, S.; Spangenberg, J.; Jacobsen, S. Rheology modelling of cement paste with manufactured sand and silica fume: Comparing suspension models with artificial neural network predictions. Constr. Build. Mater. 2022, 317, 126114. [Google Scholar] [CrossRef]
- Qin, J.; Pang, X.; Cheng, G.; Bu, Y.; Liu, H. Influences of different admixtures on the properties of oil well cement systems at HPHT conditions. Cem. Concr. Compos. 2021, 123, 104202. [Google Scholar] [CrossRef]
- Shi, Z.; Qi, S.; Zeng, L. Effect of Nanostructured TiO2 on Rheological Properties of Fresh Cement Slurry. J. Nanosci. Nanotechnol. 2020, 20, 4907–4913. [Google Scholar] [CrossRef]
- Hou, P.; Wang, X.; Zhao, P.; Wang, K.; Kawashima, S.; Li, Q.; Xie, N.; Cheng, X.; Shah, S.P. Physicochemical effects of nanosilica on C3A/C3S hydration. J. Am. Ceram. Soc. 2020, 103, 6505–6518. [Google Scholar] [CrossRef]
- Javan, M.; Moghaddam, A.; Farvizi, M.; Abbasian, A.R.; Shirvani, K.; Hadavi, M.; Rahimipour, M. Effect of aluminum to alumina particles size ratio on the microstructural aspects of aluminide coatings by LTHA Pack Cementation. Mater. Res. Express 2019, 6, 096437. [Google Scholar] [CrossRef]
- Pourchet, S.; Comparet, C.; Nicoleau, L.; Nonat, A. Influence of PC Superplasticizers on Tricalcium Silicate Hydration. In Proceedings of the 12th International Congress on the Chemistry of Cement, Montreal, Canada, 8–13 July 2007. [Google Scholar]
- Cook, R.; Ma, H.; Kumar, A. Mechanism of tricalcium silicate hydration in the presence of polycarboxylate polymers. SN Appl. Sci. 2019, 1, 145. [Google Scholar] [CrossRef]
- Chaitanya, R.; Gaurav, B.; Divyanshi, T.; Apoorva, C. Analysis on Use of Superplasticizer Content on Mix Design of High Strength Concrete (M100). Int. Res. J. Eng. Technol. 2018, 5, 915–918. [Google Scholar]
- Tao, C.; Kutchko, B.G.; Rosenbaum, E.; Massoudi, M. A Review of Rheological Modeling of Cement Slurry in Oil Well Applications. Energies 2020, 13, 570. [Google Scholar] [CrossRef]
- Lavergne, F.; Belhadi, R.; Carriat, J.; Ben Fraj, A. Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste. Cem. Concr. Compos. 2019, 95, 42–55. [Google Scholar] [CrossRef]
- Land, G.; Stephan, D. The influence of nano-silica on the hydration of ordinary Portland cement. J. Mater. Sci. 2012, 47, 1011–1017. [Google Scholar] [CrossRef]
- Zhan, B.J.; Xuan, D.X.; Poon, C.S. The effect of nanoalumina on early hydration and mechanical properties of cement pastes. Constr. Build. Mater. 2019, 202, 169–176. [Google Scholar] [CrossRef]
- Liu, H.; Qin, J.; Zhou, B.; Liu, Z.; Yuan, Z.; Zhang, Z.; Ai, Z.; Pang, X.; Liu, X. Effects of Curing Pressure on the Long-Term Strength Retrogression of Oil Well Cement Cured under 200 °C. Energies 2022, 15, 6071. [Google Scholar] [CrossRef]
- Qin, J.; Pang, X.; Santra, A.; Cheng, G.; Li, H. Various admixtures to mitigate the long-term strength retrogression of Portland cement cured under high pressure and high temperature conditions. J. Rock Mech. Geotech. Eng. 2023, 15, 191–203. [Google Scholar] [CrossRef]
- Pang, X. The effect of water-to-cement ratio on the hydration kinetics of Portland cement at different temperatures. In Proceedings of the 14th International Congress on Cement Chemistry, Beijing, China, 13–16 October 2015. [Google Scholar]
C3S | C2S | C3A | C4AF | CaSO4 | Free Lime |
---|---|---|---|---|---|
55.73 | 15.3 | 2.29 | 8.61 | 5.15 | 0.15 |
Property | NS | NT | ANA | GNA |
---|---|---|---|---|
Size (nm) | 15–25 | 20–30 | 0–30 | 20 |
Surface area (m2/g) | - | 30–50 | 10–20 | 100–300 |
Density (g/cm3) | 2.39 | 3.9 | 3.63 | 3.27 |
Slurry | Cement (%) | W/C | NS %bwoc | NT %bwoc | ANA %bwoc | GNA %bwoc | PCE %bwoc | DG %bwoc | G603 %bwoc |
---|---|---|---|---|---|---|---|---|---|
C-1 | 100 | 0.718 | - | - | - | - | 1.6 | 0.02 | 0.2 |
C-2 | 100 | 0.735 | - | - | - | - | - | 0.02 | 0.2 |
C-3 | 100 | 0.718 | - | - | - | - | 1.6 | - | 0.2 |
NS-1 | 100 | 0.723 | 1 | - | - | - | 1.6 | 0.01 | 0.2 |
NS-3 | 100 | 0.73.3 | 3 | - | - | - | 1.6 | - | 0.2 |
NS-5 | 100 | 0.742 | 5 | - | - | - | 1.6 | - | 0.2 |
NS-7 | 100 | 0.752 | 7 | - | - | - | 1.6 | - | 0.2 |
NT-1 | 100 | 0.727 | - | 1 | - | - | 1.6 | 0.01 | 0.2 |
NT-3 | 100 | 0.745 | - | 3 | - | - | 1.6 | 0.01 | 0.2 |
NT-5 | 100 | 0.763 | - | 5 | - | - | 1.6 | 0.01 | 0.2 |
NT-7 | 100 | 0.78 | - | 7 | - | - | 1.6 | 0.01 | 0.2 |
ANA-1 | 100 | 0.727 | - | - | 1 | - | 1.6 | 0.01 | 0.2 |
ANA-3 | 100 | 0.743 | - | - | 3 | - | 1.6 | 0.01 | 0.2 |
ANA-5 | 100 | 0.761 | - | - | 5 | - | 1.6 | 0.01 | 0.2 |
ANA-7 | 100 | 0.777 | - | - | 7 | - | 1.6 | 0.01 | 0.2 |
GNA-1 | 100 | 0.726 | - | - | - | 1 | 1.6 | 0.01 | 0.2 |
GNA-3 | 100 | 0.741 | - | - | - | 3 | 1.6 | - | 0.2 |
GNA-5 | 100 | 0.757 | - | - | - | 5 | 1.6 | - | 0.2 |
GNA-7 | 100 | 0.772 | - | - | - | 7 | 1.6 | - | 0.2 |
C-3 | NS-2 | NS-5 | NS-7 | |||||
---|---|---|---|---|---|---|---|---|
Segment | ρ g/cm3 | Δρ % | ρ g/cm3 | Δρ % | ρ g/cm3 | Δρ % | ρ g/cm3 | Δρ % |
1 (Top) | 1.23 | 66.33 | 1.655 | 97.01 | 1.68 | 99.70 | 1.680 | 99.77 |
2 | 1.50 | 81.28 | 1.706 | 100.00 | 1.67 | 99.11 | 1.678 | 99.65 |
3 | 1.91 | 103.45 | 1.712 | 100.35 | 1.68 | 99.70 | 1.685 | 100.07 |
4 | 2.07 | 112.15 | 1.708 | 100.12 | 1.69 | 100.30 | 1.686 | 100.13 |
5 | 2.13 | 115.15 | 1.719 | 100.76 | 1.69 | 100.30 | 1.685 | 100.07 |
6 (Bottom) | 2.28 | 123.22 | 1.736 | 101.76 | 1.70 | 100.89 | 1.689 | 100.31 |
Bingham Plastic Model | Power Law Model | |||||
---|---|---|---|---|---|---|
Slurry | R2B | μp (PaS) | τy (Pa) | R2P | K (Pasn) | n |
C-1 | 0.998 | 0.0218 | 3.12 | 0.969 | 1.65 | 0.32 |
NS-1 | 0.977 | 0.0242 | 3.03 | 0.991 | 1.26 | 0.38 |
NS-3 | 1 | 0.0137 | 0.99 | 0.969 | 0.46 | 0.43 |
NS-5 | 1 | 0.0157 | 5.24 | 0.913 | 3.67 | 0.18 |
NS-7 | 0.899 | 0.0244 | 14.46 | 0.876 | 10.52 | 0.14 |
NT-1 | 0.992 | 0.0170 | 2.66 | 0.977 | 1.35 | 0.32 |
NT-3 | 0.989 | 0.0174 | 1.70 | 0.993 | 0.68 | 0.42 |
NT-5 | 0.999 | 0.0130 | 1.83 | 0.934 | 1.05 | 0.31 |
NT-7 | 0.998 | 0.0136 | 1.50 | 0.963 | 0.75 | 0.36 |
ANA-1 | 0.995 | 0.0150 | 1.77 | 0.962 | 0.88 | 0.35 |
ANA-3 | 0.994 | 0.0176 | 1.06 | 0.992 | 0.38 | 0.50 |
ANA-5 | 0.979 | 0.0156 | 0.84 | 0.973 | 0.17 | 0.63 |
ANA-7 | 0.987 | 0.0148 | 0.92 | 0.995 | 0.30 | 0.52 |
GNA-1 | 0.995 | 0.0179 | 1.89 | 0.981 | 0.86 | 0.39 |
GNA-3 | 0.997 | 0.0130 | 2.15 | 0.959 | 1.20 | 1.29 |
GNA-5 | 0.789 | 0.0272 | 16.53 | 0.845 | 11.11 | 0.15 |
GNA-7 | 0.774 | 0.080 | 28.91 | 0.917 | 14.32 | 0.25 |
Slurry | Initial Gel Strength lb/100 ft2 | 10 Min Gel Strength lb/100 ft2 |
---|---|---|
C-1 | 4.9 | 7.9 |
NS-1 | 4.4 | 24.6 |
NS-3 | 1.8 | 12.5 |
NS-5 | 9.1 | 22.9 |
NS-7 | 21.6 | 38.3 |
NT-1 | 4.4 | 15.8 |
NT-3 | 3.7 | 11.7 |
NT-5 | 3.7 | 11.7 |
NT-7 | 3.7 | 11.7 |
ANA-1 | 4.4 | 15.8 |
ANA-3 | 2.4 | 8.5 |
ANA-5 | 1 | 9.5 |
ANA-7 | 2.1 | 9.5 |
GNA-1 | 2.9 | 10.4 |
GNA-3 | 4.7 | 13.3 |
GNA-5 | 25.1 | 31.2 |
GNA-7 | 45.7 | 50.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baragwiha, M.B.; Fikeni, K.G.; Zhao, Y.; Cheng, G.; Ge, H.; Pang, X. Influence of Various Nanomaterials on the Rheology and Hydration Kinetics of Oil Well Cement. Materials 2023, 16, 6514. https://doi.org/10.3390/ma16196514
Baragwiha MB, Fikeni KG, Zhao Y, Cheng G, Ge H, Pang X. Influence of Various Nanomaterials on the Rheology and Hydration Kinetics of Oil Well Cement. Materials. 2023; 16(19):6514. https://doi.org/10.3390/ma16196514
Chicago/Turabian StyleBaragwiha, Michael Boniface, Kenedy Geofrey Fikeni, Yukun Zhao, Guodong Cheng, Han Ge, and Xueyu Pang. 2023. "Influence of Various Nanomaterials on the Rheology and Hydration Kinetics of Oil Well Cement" Materials 16, no. 19: 6514. https://doi.org/10.3390/ma16196514
APA StyleBaragwiha, M. B., Fikeni, K. G., Zhao, Y., Cheng, G., Ge, H., & Pang, X. (2023). Influence of Various Nanomaterials on the Rheology and Hydration Kinetics of Oil Well Cement. Materials, 16(19), 6514. https://doi.org/10.3390/ma16196514