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Abstract: Monitoring and warning of ice on pavement surfaces are effective means to improve
traffic safety in winter. In this study, a high-precision piezoelectric sensor was developed to monitor
pavement surface conditions. The effects of the pavement surface temperature, water depth, and
wind speed on pavement icing time were investigated. Then, on the basis of these effects, an early
warning model of pavement icing was proposed using an artificial neural network. The results
showed that the sensor could detect ice or water on the pavement surface. The measurement accuracy
and reliability of the sensor were verified under long-term vehicle load, temperature load, and harsh
natural environment using test data. Moreover, pavement temperature, water depth, and wind
speed had a significant nonlinear effect on the pavement icing time. The effect of the pavement
surface temperature on icing conditions was maximal, followed by the effect of the water depth.
The effect of the wind speed was moderate. The model with a learning rate of 0.7 and five hidden
units had the best prediction effect on pavement icing. The prediction accuracy of the early warning
model exceeded 90%, permitting nondestructive and rapid detection of pavement icing based on
meteorological information.

Keywords: icy pavement; intelligent monitoring; meteorological parameter; early warning

1. Introduction

Ice refers to a pollutant on a pavement surface formed by rain condensation, melting
snow, or humid air in low-temperature environments. Ice adheres to pavement surfaces
and masks the surfaces’ texture [1], thereby causing a rapid reduction in pavement anti-
sliding characteristics [2]. Accidents on icy pavements have a high occurrence probability
and serious consequences. They also gravely threaten the personal safety of drivers [3,4].
The presence of ice on pavements should be accurately detected, and timely warning must
be provided to reduce the occurrence of traffic accidents in winter.

The accurate detection of pavement ice may contribute considerably to traffic control
decision-making and improve traffic safety [5,6]. Accordingly, various ice sensors with
different technologies have been developed to detect pavement conditions. In accordance
with the detection method, sensors can be divided into destructive sensing and nondestruc-
tive sensing. Destructive detection sensors are installed on pavements to detect ice (e.g.,
sonic wave [7–9], resistance [10], capacitance [11], and vibration [12]). The limitations of
the aforementioned sensors, such as sluggish response times and poor durability, prevent
their application in pavement engineering. Additionally, nondestructive detection sensors,
such as infrared [13,14] and optical fiber [15], are installed above the pavement surface.
Although the accuracy of nondestructive sensing technology is high under normal opera-
tions, the interference of pavement lights and installation height have potential influence on
the technology’s detection accuracy, making stable and accurate detection results difficult
to obtain. In addition, the current sensors are relatively expensive. China’s extensive
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transportation network makes it difficult to use these sensors for coverage applications.
Therefore, ice sensors for pavement engineering should be developed considering cost,
durability, and accuracy.

Meteorological factors are the main cause of pavement icing. The effects of various
factors on the icing state have been studied. Zhang et al. simulated the icing environment
to study the nonlinear formation of ice on a cold surface under the action of meteorological
factors. The test results showed that the icing time increased with the decrease in tempera-
ture and wind speed [16]. Xu et al. measured the icing time of a pavement and established
an empirical relationship among pavement temperature, water freezing point, and icing
time [17]. Samodurova analyzed the influence of various factors on pavement icing and
proposed a linear discriminant forecast function with crucial factors: temperature and
precipitation [18,19].

Having clarified the influence of meteorological factors on icing, researchers have
also attempted to achieve nondestructive detection and warning of pavement icing using
meteorological factors. On the basis of the pavement meteorological data collected by the
Pavement Weather Information System, the Swedish Transport Administration studied
the effects of pavement temperature and precipitation on the pavement icing state and
developed the pavement icing expert analysis system [20,21]. The relevant departments in
Germany also attach great importance to pavement weather forecasts. A pavement man-
agement department analyzed the influence of temperature and wind speed on pavement
icing and proposed a pavement icing warning method that considers the meteorological
information in the past 24 h [22]. The National Weather Service in the United States estab-
lished a pavement information monitoring system. The system can predict the thickness of
pavement ice accretion on the basis of the variations in several factors (e.g., air temperature,
wind speed, and precipitation rate) [23]. Korotenko investigated the relationship among
temperature, water, and pavement icing; a second-order diffusion equation with empiri-
cally parameterized flux terms was proposed for the numerical icing forecasting system in
Northern Europe and North America [24]. Meanwhile, Martorina and Loglisci conducted
thermal mapping of main pavements in Piemonte to infer the pavement temperature along
all pavement networks. The researchers proposed a small-scale pavement ice forecasting
system in accordance with the variation in air temperature, dew point, wind speed, and
cloud amount in the past three hours [25]. Alexander summarized and predicted the
icing-sensitive areas of the Danish highway network using observed data (pavement tem-
perature, air temperature, and dew point temperature) from a meteorological station from
2003 to 2007. The researchers suggested improving the quality and accuracy of pavement
icing prediction through thermal mapping measurements [26].

Moreover, an accurate, nondestructive detection and early warning model provides
essential benefits. Ye et al. showed that the ice early warning system developed by
the California Department of Transportation has economized at least USD 1.7 million
and reduced the occurrence of accidents by 18% [27]. The models above can predict
pavement icing successfully through the nonlinear regression of the historical data of
meteorological factors. However, this type of early warning entails some problems. In low-
temperature environments, the water on pavements takes some time to completely turn into
ice. The abovementioned models are complicated because excessive factors are considered.
Too many model input parameters lead to the need for a large calculation capacity and
long warning times, which cannot meet the needs of rapid warning of pavement icing.
Furthermore, the models exhibit strong temporal and spatial characteristics, which limit
their application. With the continuous change in the global climate, the applicability of
these models decreases, causing a decline in early warning accuracy. Thus, fast-response,
self-adaptive early warning models of pavement icing are needed.

Due to a variety of factors, China’s road management still lacks an effective nonde-
structive detection and early warning system for pavement icing. In order to eliminate
the negative effects of ice on highways in Hebei Province, this paper preliminarily realizes
the rapid, nondestructive detection and precise, accurate early warning of pavement icing
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for the meteorological conditions of Hebei Province. Specifically, this study proposes a
pavement surface icing sensor that enables the accurate measurement of icing thickness
through the piezoelectric properties of the material. The effects of key meteorological
factors on pavement icing were clarified, and an adaptive learning pavement icing warning
model was developed to nondestructive detect pavement icing by inputting meteorological
parameters. The study provides novel insights into and a technical reference for the safe
and efficient operation of pavement infrastructure.

2. Sensor and Method
2.1. Sensor Development

Accurate acquisition of pavement icing information is the key to improving traffic
safety in the winter. Since sensors have a high failure rate and low accuracy when used to
obtain pavement icing information because of the hostile natural environment of the pave-
ment, manual observation is still the primary method used to obtain this information today.
This observational method relies on the empirical assessment of pavement maintenance
workers, which might be very subjective and prone to inaccuracy. In order to increase the
precision and automation of ice detection, this paper proposes a durable ice sensor for
acquiring icing condition information.

2.1.1. Sensor Design

1. Sensor Principle

Through the change in the overall resonant frequency of the sensing element and the
attached material, the sensor determines the thickness of the material on the surface of the
sensing element. When the sensor is in operation, a stimulus electrical signal is applied
to the input electrode of the sensing element in a certain step, and periodically increases,
causing the piezoelectric ceramic to vibrate. The output electrode of the sensor element
produces a voltage signal that contains information about the vibration frequency as a result
of the inverse piezoelectric effect. The output electrical signal will be greatest when the
frequency of the input signal and the resonance frequency of the sensing element coincide.
And when the output voltage signal is at its strongest, the frequency of the stimulus signal
at the input electrode is the resonant frequency. Figure 1 depicts the structure of the sensing
element. The proposed sensor uses PTZ (Piezoelectric Ceramic Transducer) and 3J53 alloy
bonded with conductive adhesive as its sensing element.
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Figure 1. Ice sensing element structure.

The sensor measures the resonance frequency of the ice sensing element and the
material on its surface to detect the presence of ice or water [28]. The sensor has a measuring
range of 0~4 mm. The resonance frequency f of the electronic ceramic material is related
to its equivalent stiffness and equivalent mass and is calculated as Equation (1). When
ice or water are present on the surface of the sensing element, the ice or water form a
new whole with the sensing element and change the original equivalent stiffness and
equivalent mass of the sensing element. Different amounts of substances have different
effects on the equivalent stiffness and equivalent mass of the sensing element, and a regular
change in resonant frequency is produced, thus achieving the accurate detection of ice or
water thickness.

f =
1

2π

√
K
m

(1)
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where K denotes the equivalent stiffness of the electronic ceramic material, m is the equiva-
lent mass of the electronic ceramic material.

To monitor the ice thickness on a pavement surface using a sensor, the relationship
between the sensor’s resonant frequency and the water and ice film thickness needs to
be clarified. In this study, different water and ice film thicknesses were prepared on the
sensor element surface first. Then, the resonance frequency of the sensor with different film
thicknesses of water and ice was recorded, as shown in Figure 2.
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Figure 2. Fitting curve between resonant frequency and film thickness: (a) lgf and water film
thickness; (b) lgf and ice film thickness.

Figure 2 shows that the initial lgf value of the sensor was 3.5 (when the sensor surface
was air), which was the turning point to distinguish whether the material on the sensor
surface was water or ice. Resonance frequency was linearly correlated with the amount
of water or ice covering the sensor. The denary logarithm of resonance frequency f was
less than 3.5 when water was present on the sensor surface. As the water film thickness
increased, the resonance frequency decreased because when the water volume increased,
the electronic ceramic material’s equivalent stiffness was nearly unchanged, whereas the
equivalent mass increased. When the sensor surface was covered with ice, the denary
logarithm value of resonance frequency f exceeded 3.5. The resonant frequency increased
with increasing ice thickness because the equivalent mass and stiffness of the electronic
ceramic material increased, and the latter dominated the change in resonance frequency.
According to this information, a sensor using piezoelectric technology can measure the
thickness of ice or water to accurately acquire pavement surface information.

2. Sensor Structure

The sensor in this study is composed of a shell, a base, an ice sensing element, a
temperature sensor, a signal generator, and a microcomputer, as illustrated in Figure 3. The
shell of the sensor was made of stainless steel to resist corrosion and loads, and the protec-
tion rank could reach IP68. For easy installation, a 74 mm diameter shell that was slightly
smaller than the coring machine was used, and the height of the shell was 62 mm. By com-
prehensively considering the efficacy and size of the sensor, the AD9834 signal generator
and STC12C5A60S2 microcontroller were selected to generate, collect, and transmit the
electrical signals of the sensor. The signal generator and microcontroller was provided by
Shenzhen Yatai Yingke Electronics Co., Ltd, Guangdong, China. Approximately 3000 RMB
are required to produce a sensor with this configuration. This low-priced sensor is suitable
for overlay applications in countries such as China, which has a vast network of roads.
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2.1.2. Sensor Operating Characteristics

1. Sensor Calibration

The developed piezoelectric sensor is expected to maintain good working character-
istics within the operation temperature range. Therefore, different ice thicknesses were
prepared at different temperatures to calibrate the sensor and examine its measurement
accuracy. The accuracy of the sensor was calculated as Equations (2) and (3). The output
value of the sensor was automatically calculated by complying with the relationship in
Figure 2. The actual thickness of the ice or water film was calculated as the ratio of its
volume to the surface area of the sensor.

ε =
|ThicknessA − ThicknessO|

ThicknessA
× 100% (2)

ThicknessA =
Volumewater/ice

Sensing element sur f ace area
(3)

where ThicknessA denotes the actual thickness of ice or water film, mm; ThicknessO is the
output value of the sensor, mm.

As shown in Figure 4, all data points were concentrated near the standard line. The
deviation between the output and actual values was small. The average maximum error of
the output value was less than 0.08 mm, which was only 2% of the measurement range.
The accuracy of the sensor at −10, −15, and −20 ◦C was 4%, 3.7%, and 3.5%, respectively.
This result indicates that the sensor can work in harsh environments with good accuracy.
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2. Sensor Installation

In this study, two sensors were installed on an expressway surface to verify the long-
term service performance of the piezoelectric sensors. The installation site was located
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in Laiqu Expressway in Hebei Province, China. The installation process included the
preparation of safety work, the installation of the sensors, and the establishment of data
transmission pathways, as shown in Figure 5. During installation, the sensing element
was kept flush with the pavement surface. Data transmission was achieved using a data
transmission box. The data transmission box was mounted on the roadside, connected
to the sensors, and powered by 220 V of AC power. The box could quickly transmit
monitoring data to the host computer via a wireless network with a delay of less than 0.1 s,
thus enabling real-time detection of pavement icing.
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After four months of operation, the sensors were consistently in good condition and
had an average maximum error of less than 0.15 mm, as shown in Figure 6. The sensors
consistently demonstrated good accuracy and reliability when subjected to vehicle loads,
temperature loads, and harsh natural environments in these days. Abnormal data were
obtained during the monitoring process due to the electromagnetic influence. The abnormal
data had a short duration and a considerable difference from the normal value. Some data
are shown in Figure 7. Only four abnormal data points out of 5500 data points were
obtained, and the probability of an abnormal data appearance was less than 1‰. Thus, the
abnormal data could be easily identified and did not affect the actual monitoring effect. In
summary, the proposed piezoelectric sensor exhibited high precision and good durability
in pavement surface status monitoring and could provide effective information collection
support for pavement icing early warnings.
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Figure 7. Examples of partial sensor monitoring data.

2.2. Method

The effects of different factors (pavement temperature, wind speed, and water depth)
on ice formation on the pavement surface were investigated from the outside. Icing time is
the time when the water is completely frozen and can be obtained through sensor sensing.
The resonant frequency of the sensor changes continuously as the water freezes. The
water is considered completely frozen when the resonant frequency no longer changes.
Laboratory tests were performed to quantify the influence of various factors on icing time.
Then, orthogonal design-based tests were conducted to determine the importance of the
factors to icing time. Notably, the experimental data here can be used as a database for
pavement icing early warning models.

The laboratory test equipment included a climatic chamber, a variable-speed fan, an ice
sensor, and an AC-13 specimen whose length, width, and height were 300, 300, and 50 mm,
respectively. The laboratory tests were performed in a climatic chamber with a length,
width, and height of 3 m, as shown in Figure 8. The climatic chamber was assembled by
the Harbin Institute of Technology Cold Region Road Research team. The environmental
conditions included temperature, wind speed, and water depth. The temperature control
accuracy of the climatic chamber was 0.1 ◦C, the wind speed was controlled by a variable-
speed fan, and the water depth was prefabricated by quantitative weighing. The AC-13
asphalt mixture specimen was prepared using matrix 70 # asphalt and basalt aggregate.
The parameters of the asphalt and aggregate met standard requirements. As shown in
Figure 9, the sensor was embedded in the center of the specimen. A base was placed under
the sensor and specimen to ensure that their surfaces were flush. The specimen and sensor
were kept in the test environment for over an hour before testing, and water was placed at
a temperature of 0 ◦C.
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Figure 9. The sensor and the specimen.

The conditions of the experimental environment were determined based on the local
climate. The climate data of Hebei Province obtained over the past three years show that
the average daily minimum temperature in winter is about−8 ◦C, the average annual wind
speed is less than 5 m/s, and the average precipitation is less than 4 mm. In consideration
of these climatic conditions, the experimental temperatures were set to −2, −4, −6, and
−8 ◦C. The wind speeds were set to 1, 2, 3, and 4 m/s, and the water depths were set to
1, 1.5, 2.5, and 3.5 mm. The equal-level orthogonal L16 (4 × 4) test design was applied to
the four factors and levels, and a null column was added between the factors to estimate
the random error. The three factors and the null column were classified as A, B, C, and D
columns, respectively. The design scheme is given in Table 1.

Table 1. Factors and level of orthogonal test.

Level Pavement
Temperature (◦C) Wind Speed (m/s) Water Depth (mm) Null

1 −2 1 1 1
2 −4 2 1.5 2
3 −6 3 2.5 3
4 −8 4 3.5 4
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3. Results and Discussion

Temperatures in Hebei Province exceed 0 ◦C during the day and are below 0 ◦C at
night. Snowfall melts during the day and freezes to ice at night due to the temperature dif-
ference between day and night. The low-temperature conditions at night and the residual
precipitation on the pavement surface are the key factors for pavement ice formation in
Hebei Province. In addition, the presence of wind can accelerate the icing process. There-
fore, pavement temperature, wind speed, and water depth were selected as experimental
variables, and their specific effects on icing time were elucidated. The experimental data
served as a basis for the nondestructive detection of pavement icing.

3.1. The Effect of Wind Speed on Pavement Icing

The presence of wind may accelerate energy dissipation and thus shorten the icing
time. To analyze the effect of wind speed on icing time, icing time was tested at wind
speeds of 1, 2, 3, and 4 m/s while maintaining a constant pavement temperature and water
depth. Figure 10 depicts the relationship between icing time and wind speed. The color in
the figure represents the icing time. As shown in the legend, the closer the color is to red,
the longer the time is; the closer the color is to blue, the shorter the time is.
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Under a certain pavement temperature and water depth, icing time increased with the
decrease in wind speed. The shortening rate of icing time changed from 17% to 30% as the
wind speed increased from 1 m/s to 4 m/s. This result proves that wind speed positively
influenced icing time, but the degree of influence was small. The temperature of the water
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was close to that of the wind, and the internal energy of water could not easily exchange
heat with the wind, causing a minor influence of wind speed on the icing time.

3.2. The Effect of Water Depth on Pavement Icing

In this section, it is assumed that the depths of the pavement surface structures are
equal at all locations, and the amount of water on the pavement surface is quantified using
the “water depth” (the value is equal to the water volume divided by the pavement area).
To analyze the effect of water depth on the icing time, the experiment was conducted at
water depths of 1, 1.5, 2.5, and 3.5 mm while keeping the temperature and wind speed
constant. The results are presented in Figure 11.
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temperature = −4 ◦C; (c) pavement temperature = −6 ◦C; (d) pavement temperature = −8 ◦C.

When the pavement temperature and the wind speed remained unchanged, the icing
time increased with the increase in the water depth. The shortening rate of the icing time
changed from 25% to 47% as the water depth reduced from 3.5 mm to 1 mm. This result
indicates that water depth negatively influenced icing time. Given the same contact area
between water and other substances, the more water on the pavement surface, the slower
the energy exchange between water and other substances, and the longer the icing time.

3.3. The Effect of Pavement Temperature on Pavement Icing

The pavement is in direct contact with water, and the pavement temperature will have
some effect on the icing rate. To analyze the effect of pavement temperature on icing time,
the experiment was conducted at pavement temperatures of −2, −4, −6, and −8 ◦C while
keeping the water depth and wind speed constant. The results are presented in Figure 12.
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For a given wind speed and water depth, the icing time increased with the decrease
in the pavement temperature. The shortening rate of icing time varied from 32% to 50%
and the pavement temperature decreased from –2 ◦C to –8 ◦C. The result indicates that
the pavement temperature positively influenced the icing time. The effect of the pavement
temperature on icing time is greater than the wind speed and water depth, which is
identical to the conclusion of the orthogonal test above. The pavement temperature was
lower than that of water, which made it convenient for water to release heat and freeze.
Lower pavement temperatures can accelerate the energy exchange between water and
pavement, resulting in faster condensation nucleation and crystallization of water.

In general, the essence of pavement surface icing is that water loses heat, resulting in a
decrease in water molecular kinetic energy, condensation, nucleation, and crystallization.
According to the above test results, the icing time increases with the increase in pavement
temperature, the slowing of wind speed,* and the thickening of water depth. The maximum
icing time is more than 25 min under the conditions of−2 ◦C pavement temperature, 1 m/s
wind speed, and 3.5 mm water depth. And the minimum icing time is less than 8 min when
the temperature is −8 ◦C, the wind speed is 4 m/s, and the water depth is 3.5 mm.

3.4. Significance Analysis of Variables

An equal-level orthogonal L16 (4 × 4) test was performed to compare the significance
of the effects of pavement temperature, wind speed, and water depth on pavement icing.
The variables were statistically ranked in terms of the degree of influence they had on icing
time. The design and results of the experiment are presented in Table 2.
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Table 2. Factors and level of orthogonal test.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 K1 K2 K3 K4 Range

Pavement
temperature (◦C) −2 −6 −4 −2 −6 −6 −4 −2 −8 −8 −4 −2 −8 −6 −8 −4 73 62 50 44 29

Wind speed (m/s) 4 2 1 2 4 3 3 1 4 3 2 3 1 1 2 4 64 61 55 49 15
Water depth (mm) 2.5 2.5 3.5 3.5 3.5 1 2.5 1 1 3.5 1 1.5 2.5 1.5 1.5 1.5 46 51 61 71 25

Null 3 1 3 4 2 3 4 1 4 1 2 2 2 4 3 1 55 56 58 60 5
Icing time (min) 17 14 21 24 13 10 16 16 7 13 13 16 14 13 10 12 - - - - -

An orthogonal test usually uses ranges to distinguish primary and secondary factors.
As indicated by the range analysis in Table 2, the ranges of the pavement temperature,
wind speed, water depth, and the null column reached 29, 15, 25, and 5. The pavement
temperature was the main factor that affected the icing time of pavements, followed by
water depth and wind speed. In addition, Table 2 shows that the three factors with the
highest levels were K1, K1, and K4, and A1B1C4 was the longest test condition of icing
time. Subsequently, to analyze the significance of factors, the variance of the test results
was calculated to conduct an F-test, as shown in Table 3.

Table 3. The variance analysis of orthogonal test.

Factor Degree of Freedom MS F p

Pavement
temperature 3 41.562 33.814 0.008

Wind speed 3 11.062 9 0.052
Water depth 3 30.729 25 0.013

Error 3 1.229 - -

According to Table 3, the F values of pavement temperature, wind speed, and water
depth were 33.814, 9, and 25, respectively. All F values were greater than the F critical value
(F (3,3,0.9) = 5.36), indicating that the three factors significantly influenced icing time. In
addition, the smaller the p value was, the more significant the result was. The p values of
three factors were small, indicating that these factors significantly influenced icing time.

Overall, the pavement temperature, wind speed, and water depth had significant
effects on icing time, with the effects of pavement temperature and wind speed being
positive and the effects of water depth being negative. Pavement temperature had the
greatest effect on icing time (up to 50%), followed by water depth; the effect of wind
speed was the smallest (as small as 17%). However, the effects of the three factors on icing
time were nonlinear, and the coupling between them was difficult to explain by a unified
empirical formula.

4. Early Warning Model

The future of road engineering is nondestructive road facility identification and warn-
ing, which is made possible by quick statistical analysis and potent machine learning
techniques [29–31]. Accurate road icing warnings based on meteorological data are re-
quired to achieve nondestructive detection of road ice. Given that the factors contributing
to pavement icing are interrelated and complex, pavement icing early warning should
comprehensively consider the nonlinear relationship of multiple variables. An artificial
neural network (ANN) is an adaptive multilayer network that is particularly suitable for
solving this problem due to its complex internal mechanisms, which have been proven by
mathematical theory.

The single hidden-layer backpropagation (BP) training algorithm of ANN was selected
to predict the pavement icing time in this study, as shown in Figure 13.
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S-shaped neurons were used in the hidden layer, and linear neurons were used in
the output layer. The transfer function is a (0,1) S-shaped function, which is shown in
Equation (4).

f (x) =
1

1 + e−x (4)

The operation of the network includes a series of steps: network initialization, import-
ing sample data, the output calculation of the network, the partial derivatives calculation of
the error function, adaptation of the connection weight, and the calculation of the sample
error. The final sample error formula is shown in Equation (5). The process is terminated if
the error satisfies the predetermined accuracy standards or has been trained a maximum
number of times; otherwise, network training is repeated.

E =
1

2m∑m
k=1 ∑q

s=1(ts(k)− yos(k))
2 (5)

where m denotes the number of samples; t(k) is the desired output; yo(k) is the output
of network.

The results in Section 4 show that pavement temperature, water depth, and wind
speed had strong correlations with icing time. Thus, the three meteorological parameters
were adopted as input parameters, and icing time was employed as an output parameter.
In addition, the number of hidden units and the learning rate, which have a significant
effect on calculation speed and result accuracy, served as vital parameters of the BP neural
network. The prediction accuracy of the model with different numbers of hidden units and
learning rates was determined to reduce the prediction error. The database consisted of
64 groups of test data from the previous laboratory experiment, as shown in Table 4. The
experimental temperatures were set to −2, −4, −6, and −8 ◦C. The wind speeds were set
to 1, 2, 3, and 4 m/s, and the water depths were set to 1, 1.5, 2.5, and 3.5 mm. Icing times
were recorded for 64 combinations of the above conditions. The experimental data were
randomly arranged to ensure the randomness of the model input data. Fifty-one groups
(80%) of randomly selected laboratory test data were used to train the prediction model,
and the remaining test data (20% of randomly selected laboratory test data) served as a
testing set to test the prediction accuracy of the model.
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Table 4. Data basis of the artificial neural network.

No.
Pavement

Temperature
(◦C)

Wind
Speed
(m/s)

Water
Depth
(mm)

Icing Time
(min) No.

Pavement
Temperature

(◦C)

Wind
Speed
(m/s)

Water
Depth
(mm)

Icing Time
(min)

1 −6 4 1 9 33 −6 2 1.5 12
2 −4 2 3.5 19 34 −2 4 1 13
3 −6 3 3.5 14 35 −2 4 1.5 15
4 −6 1 1 11 36 −4 4 3.5 16
5 −6 3 1 10 37 −8 2 2.5 13
6 −8 4 3.5 12 38 −8 4 2.5 11
7 −8 3 1 8 39 −2 1 2.5 23
8 −2 3 2.5 19 40 −6 3 2.5 13
9 −6 1 1.5 13 41 −4 4 1 10

10 −2 4 3.5 20 42 −4 2 2.5 16
11 −8 1 3.5 17 43 −6 4 2.5 11
12 −2 2 1 16 44 −6 1 3.5 18
13 −6 3 1.5 11 45 −2 1 1.5 18
14 −8 1 2.5 14 46 −4 4 2.5 15
15 −8 4 1.5 8 47 −6 2 2.5 14
16 −8 2 1.5 10 48 −8 2 1 8
17 −4 1 2.5 19 49 −8 3 3.5 13
18 −8 3 1.5 9 50 −2 3 1.5 16
19 −6 2 3.5 16 51 −2 1 3.5 25
20 −8 1 1 10 52 −4 3 2.5 16
21 −4 3 1 11 53 −4 4 1.5 12
22 −2 1 1 16 54 −6 1 2.5 15
23 −8 4 1 7 55 −4 3 3.5 18
24 −8 2 3.5 15 56 −8 1 1.5 11
25 −4 1 3.5 21 57 −6 4 3.5 13
26 −4 1 1 14 58 −2 3 3.5 20
27 −2 2 1.5 17 59 −2 4 2.5 17
28 −2 2 3.5 24 60 −4 2 1.5 14

4.1. Number of Hidden Units

A hidden unit is a fundamental computing unit in a neural network’s hidden layer
that receives and processes data and corrects the weight coefficients. The hidden layer of a
neural network contains several hidden units, and the number of hidden units can be used
to determine the goodness of fit of the neural network. A model with a small number of
hidden units cannot easily acquire sufficient information from the learning set, which may
cause model underfitting. Meanwhile, a training network with too many hidden units may
cause model overfitting and insufficient generalization ability. In this study, the numbers
of hidden units were 3, 5, 7, and 9 when the BP neural network prediction model was
implemented on the training set. The prediction accuracy of the model was analyzed based
on the testing set. The results are shown in Figure 14 and Table 5.
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Table 5. Model prediction under different number of neurons.

Number of
Hidden

Units

Average
Error (min)

Maximum
Error (min) Accuracy (%)

Root Mean
Square Error

(min)

Pearson
Correlation
Coefficient

3 0.81 1.69 90.6 0.96 0.961
5 0.67 1.50 91.7 0.79 0.970
7 1.18 2.00 88.9 1.33 0.953
9 1.30 3.31 81.6 1.59 0.913

According to Figure 14 and Table 5, accuracy initially increased, then decreased with
the increase in the number of hidden units. When the number of hidden units was 5, the
average, maximum, and root mean square errors of the model were 0.67, 1.50, and 0.79 min,
respectively, which are the minimum values for different models. This result indicates that
the predicted value of the current model is the closest to the real value. The Pearson test
showed that the model’s goodness of fit was the highest. Thus, the optimal number of
hidden units for the single-layer neural network model was determined to be 5. The neural
network with five hidden units can predict pavement icing time efficiently.

4.2. Learning Rate

BP neural network models are typically trained with the gradient descent method, and
the learning rate is related to the distance that determines how far the weights move in the
gradient direction. The learning rate determines whether and when the objective function
converges. Low learning rates decrease the convergence speed of the model. However, if
the learning rate is too high, network shock or even non-convergence may occur. The BP
neural network prediction model with learning rates of 0.5, 0.6, 0.7, and 0.8 was trained in
this work. Then, the prediction accuracy of the model was analyzed based on the testing
set. The results are shown in Figure 15 and Table 6.
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Figure 15. Deviation of predicted values of models with different learning rates.

Table 6. Model prediction under different learning rates.

Learning
Rate

Average
Error (min)

Maximum
Error (min) Accuracy (%)

Root Mean
Square Error

(min)

Pearson
Correlation
Coefficient

0.5 1.19 2.64 85.3 1.36 0.921
0.6 0.96 1.73 90.4 1.08 0.943
0.7 0.67 1.50 91.7 0.79 0.970
0.8 0.67 1.64 90.9 0.83 0.963

Figure 15 and Table 6 show that with the increase in the learning rate, accuracy initially
increased then decreased, and this pattern was consistent with the change law of the
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number of hidden units. When the learning rate was 0.7, the average, maximum, and root
mean square errors of the model were the smallest, and the Pearson correlation coefficient
was the largest. The optimal learning rate of the neural network model was determined
to be 0.7. Therefore, the neural network with five hidden units and a learning rate of
0.7 predicts the pavement icing time the best, and it may be valuable for pavement icing
warning work.

4.3. The Validation of The Model

The accuracy and validity of the model were assessed using the validation dataset.
The three meteorological conditions, namely, temperature, wind speed, and water depth,
were inputted into the BP neural network model to obtain the predicted icing time. The
prediction results of the model are shown in Figure 16 and Table 7.
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Figure 16. Comparison between the actual icing time and the icing time predicted by B.P. neural
network model.

Table 7. Prediction results of the B.P. neural network model.

Average Error
(min)

Maximum Error
(min) Accuracy (%)

Root Mean
Square Error

(min)

Pearson
Correlation
Coefficient

0.71 1.68 90.7 0.83 0.986

As indicated in Figure 16 and Table 7, the predicted values of the icing time obtained
from the BP neural network model had small errors, with the mean, maximum, and root
mean square errors being 0.71, 1.83, and 0.83 min, respectively. The Pearson correlation
coefficient between the predicted and measured values was 0.986, indicating a good corre-
lation between the two. In addition, the model’s prediction accuracy reached 90.7, which
indicates an accurate prediction of the pavement icing time.

To sum up, the single-layer BP neural network model that uses pavement temperature,
water depth, and wind speed as the input parameters successfully predicted the pavement
icing time. The model with a learning rate of 0.7 and five hidden units had the best
prediction effect on pavement icing, and its accuracy reached 91.7%. The model can be
used for pavement pre-icing warning and can help prevent traffic accidents. Given that the
BP neural network model is an adaptive learning network, the parameters of this model
are applicable to areas at the same latitude and longitude as Hebei Province.

5. Conclusions

In this study, an icing nondestructive detection and early warning system for asphalt
pavements was established. First, the principle and characteristics of the sensors were
introduced, and the performance of the sensors was investigated. Second, the icing time
under various operating situations was studied, and a highly accurate, self-adaptive early
warning model for pavement icing was developed. The main research results are as follows:
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• The piezoelectric sensors were designed to quantitatively indicate the substance (i.e.,
air, water, or ice) covering the sensors’ surfaces in accordance with the function of
substance thickness and resonance frequency. lgf showed a linear relationship with ice
and water thickness; it decreased with the increase in water thickness and increased
with the increase in ice thickness. The piezoelectric sensors exhibited the advantages
of low cost, strong anti-interference ability, high measurement accuracy, and long
survival time and are thus suitable for pavement surface condition monitoring.

• In the experiments, the effects of pavement temperature, wind speed, and water
depth on pavement icing time were studied. The results showed that icing time
increased with the increase in pavement temperature, the slowing of wind speed,
and the thickening of water depth. Pavement temperature was the critical factor in
determining icing time, and it could reduce icing time by 50% under normal winter
conditions in Hebei Province. With the action of the three factors, the longest time for
pavement icing exceeded 25 min, and the shortest time was only 8 min.

• On the basis of the influence law of wind speed, water depth, and pavement tempera-
ture, a warning for pavement icing was provided by the BP neural network model. The
BP neural network model with a learning rate of 0.7 and five hidden units exhibited
optimal prediction performance in pavement icing early warning, and its prediction
accuracy was as high as 91.7%.

In this study, the early warning system was adopted to warn of ice caused by freeze–
thaw of precipitation and black ice attributed to air humidity in central and southern China,
without considering the water type (contamination) and the snowfall in northern areas. The
influence of other contaminations, such as sand and lubricating oil, on the detection effects
was also not taken into account. In addition, the usefulness of the early warning system
needs to be further improved, and more powerful statistical and machine learning methods
should be used. The focus of the follow-up studies will be centered on the above aspects,
depending on the climatic conditions in cold regions. Thus, the general applicability of the
pavement icing early warning system can be improved to better support the safe operation
of expressway traffic.
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