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Abstract: In this review, we focus on a small section of the literature that deals with the materials
containing pristine defective carbon nanostructures (CNs) and those incorporated into the larger
systems containing carbon atoms, heteroatoms, and inorganic components.. Briefly, we discuss only
those topics that focus on structural defects related to introducing perturbation into the surface
topology of the ideal lattice structure. The disorder in the crystal structure may vary in character, size,
and location, which significantly modifies the physical and chemical properties of CNs or their hybrid
combination. We focus mainly on the method using microwave (MW) irradiation, which is a powerful
tool for synthesizing and modifying carbon-based solid materials due to its simplicity, the possibility
of conducting the reaction in solvents and solid phases, and the presence of components of different
chemical natures. Herein, we will emphasize the advantages of synthesis using MW-assisted heating
and indicate the influence of the structure of the obtained materials on their physical and chemical
properties. It is the first review paper that comprehensively summarizes research in the context
of using MW-assisted heating to modify the structure of CNs, paying attention to its remarkable
universality and simplicity. In the final part, we emphasize the role of MW-assisted heating in creating
defects in CNs and the implications in designing their properties and applications. The presented
review is a valuable source summarizing the achievements of scientists in this area of research.

Keywords: carbon nanostructure; defect; heteroatom doping; catalysis; electrocatalysis; electrochemistry;
supercapacitor; microwave irradiation; microwave-assisted synthesis; inorganic nanoparticle

1. Introduction

The term “nanoscale” is applied to objects up to 100 nm in size. It also applies to
structures built of many atoms, forming groups called nanostructures because their size
falls within this scale. These consist mainly of carbon atoms (carbon nanostructures, CNs),
whose combination in well-organized macromolecular systems creates structures with
unique properties, and they are among the most popular in this group [1–3]. Different
morphological variations of CNs, for example, nanocones [4], nanotubes [5], diamond-like
carbon [6,7], onion-like carbon [8], nanofibers [4], graphene [9], and graphdiyne [10–12],
have become quite well known [4,8,9,13,14]. Despite almost identical chemical composi-
tions, the CNs differ significantly in their physical properties with different dimensionality
and chemical reactivity [3,15]. These greatly affect their subsequent use in many areas,
mainly in electronics [16,17], catalysis [18,19], electrocatalysis [20], energy conversion and
storage [21–23], sensors [24–28], and for biomedical [29], biological, and environmental
applications [30–33]. The electrochemical and electrocatalytic properties of carbon-based
materials are closely related to their chemical composition and structure [34–36]. CNs are
characterized by excellent conductivity and mechanical stability, large specific areas (active
surface) with micro- and mesoporosity, and high mobility of the charged carrier [37–40],
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which only strengthens their position in the abovementioned areas. CNs can be easily modi-
fied by producing numerous defective motifs, shortly called defects, with different chemical
characters that enhance the physicochemical properties of the materials. Defects in nanoma-
terials are considered ‘active sites’ of the reaction because they change the electron density
in the material, affecting the electronic and surface properties in the local region [41–43].
As for photocatalysis [44,45] and electrocatalysis [46–48], reactions occur on the contact
interface between ‘active sites’ of materials and reactive species. The defects modify the
electronic structure of the CNs, simultaneously affecting the chemisorption of the key
reaction intermediates [41]. This process enhances the reaction kinetics, consequently in-
creasing electrocatalytic efficiency [49,50]. In terms of energy-storage devices, carbon-based
materials are generally used as electrodes in electrochemical capacitors [35,51,52]. The
energy storage mechanism in supercapacitors (SCs) is based on reversible ion adsorption
on a high specific surface area (SSA) of porous carbon materials at the carbon/electrolyte
interface [53]. It was also found that defects in sp2-hybridized CNs significantly improved
ion storage performance [54]. Thus, the contact area at the interface is crucial for efficient
electrocatalytic reactions and electrochemical storage devices.

Structural defects can be of various natures and can be introduced into the “ordered”
structure during the formation of CNs or as a result of post-modification processes. Di-
rect methods for producing defective CNs (d-CNs) include chemical vapor deposition
(CVD) [55–57], thermal treatment [58,59], pyrolysis [60,61], microwave (MW) irradia-
tion [62–65], etc. Using different process parameters and substrates, it is possible to produce
pristine d-CNs or more complex systems containing, for example, heteroatomic dopants
or inorganic components [66–69]. A post-modification process is often also used, which
leads to introducing external defects into the CN’s surface. It is used as one stage of the
carbon-based materials production processes or to modify the already formed CNs. The lat-
ter case is frequently connected with chemical treatment, which uncontrollably introduces
defects in the outer layers of CNs with the simultaneous creation of functional groups on
the nanostructure’s surface due to the redox reaction of the C atoms of the outer carbon
layer [48,70–73]. CNs can be modified in more controllable manner using, for example,
plasma-induced functionalization [74,75] or MW irradiation [76,77]. In these cases, the
concentration of topological defects introducing functional groups or heteroatom dopants
can be controlled by the appropriate selection of process parameters.

All these aspects will be discussed in more detail in our review. We decided to discuss
the literature related to MW-assisted synthesis used in the creation of d-CNs due to its
simplicity, its economy, and the possibility of conducting the reaction in solvents and solid
phases in the presence of components of different chemical natures, which allows the use of
them in various combinations. It is the first literature review that deals with the use of MW-
assisted heating to modify the structure of CNs, which are aimed at introducing topological
changes that, consequently, modify their physical and chemical properties and, therefore,
decide on their further application. This review focuses on the materials containing pristine
d-CNs and those incorporated in the hybrid materials. We will emphasize the advantages
of synthesis using MW-assisted heating and the implications for the chemical and physical
properties of CNs. In the final part of the work, we present examples of the use of MW-
assisted heating to obtain materials that have promising properties and can be used in
electrochemistry and electrocatalysis.

2. Defects and Their Structural Variation

Defects can be divided into four categories based on their size and location [41,78–80]:

1. Zero-dimensional (0D) point defects (e.g., doping, vacancy, reconstruction), which can
be further divided into reconstructed or vacancy defects, non-metallic-atom-doping
induced defects, and metal defects [42,81].

2. One-dimensional (1D) line defects (e.g., dislocation).
3. Two-dimensional (2D) planar defects (e.g., grain boundary).
4. Three-dimensional (3D) volume defects (e.g., spatial lattice disorder).
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The disorder in the crystal structure is related to the ideal lattice structure [82,83]. In
2D materials, such as graphene, the types of defects are very diverse [84]. Point defects
are on a tiny scale, referring even to the defect of a single atom in the crystal. Due to the
location of this defect, we distinguish among them vacancy, dislocation, interstitial defect,
replacement, and antisite. Line defects are related to disturbances in the crystal structure
along the crystalline (for example, grain boundaries). Surface defects have a very diverse
nature. It is defined as any disturbance of the crystal structure in one direction. Here, we
can indicate, for example, twin crystals, grain boundary, hole, etc. The last group of defects,
the largest in their scale, are defects related to 3D structure.

In electrochemistry, where reactions occur on the electrode surface, the electrode
materials can be considered basal and non-basal surfaces. Carbonaceous materials, in-
cluding graphene and graphite derivatives, are used as electrode materials, with ideal
model structures for studying electrochemical processes. We can distinguish basal and
non-basal surfaces in both systems, including edge surfaces and defect surfaces [85]. The
ideal basal surfaces are considered a well-organized layer of only six-ring carbons. The
presence of pentagonal and heptagonal rings, pentagon–heptagon pairs, and occasional
quadrangular and octagonal ones in the graphene layer is defined as in-plane topological
defects (non-basal surfaces) [86].

The combination of tightly bounded pentagons and neighboring heptagons (Stone–
Wales (SW) defect) can be identified as an edge dislocation in a 2D hexagonal lattice
(Figure 1a) [87]. The SW defects are created by rotating a C–C bond, transforming the
four adjacent hexagons into two pentagons and two heptagons [88]. If the SW defect is
separated through hexagonal units into two separate pentagon–heptagon connections,
dislocation dipoles (DDn) appear in the graphene structure. The subscript n indicates the
distance between two 5–7 pairs in the hexagon units (distance l, Figure 1b–f). DDs are not
only in-plane surface defects but also cause out-of-plane ring deviation due to introducing
irregular defects into the graphene layer (height h, Figure 1c–f).
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= 2.0 Å); DD6 (l = 15 Å; h = 1.25 Å); DD8 (l = 20 Å; h = 1.22 Å); DD10 (l = 25 Å; h = 1.78 Å) Reprinted with 
the permission from MDPI, Ref. [88]. 
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Carbon materials used as electrodes in capacitors show a direct relationship between 
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Figure 1. Typical structures of graphene in two projections: (a) graphene with SW defect, (b–f) graphene
with dislocation dipole (DDn) with the different arm, the subscript n indicates the distance between two
5–7 pairs in the hexagon units. Pentagons and heptagons are colored in dark and light blue, respectively.
Geometrical parameters for dipoles, values of dipole arm (l) and buckling height (h) for graphene
with the following defects: SW (l = 0; h = 0); DD2 (l = 6 Å; h = 1.89 Å); DD4 (l = 11 Å; h = 2.0 Å); DD6
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(l = 15 Å; h = 1.25 Å); DD8 (l = 20 Å; h = 1.22 Å); DD10 (l = 25 Å; h = 1.78 Å) Reprinted with the
permission from MDPI, Ref. [88].

The differentiation of defects is also introduced, considering materials’ physical and
chemical properties. Here, we can distinguish Frenkel defects (interstitial atoms) [89], Schot-
tky defects (carbon vacancies) [89], heteroatom–doping (doping defects) [66], electronic
defects in the crystal [90], and nonstoichiometric structured defects [91], etc. No matter
how the structural defects in CNs are subdivided, they refer to some disturbance of the
structure compared to the ‘ideal structure’ of the nanomaterials. This ‘disturbance’ changes
some specific features of the nascent nanostructure, consequently modifying the physical
and chemical properties of the CNs.

3. Heteroatom Doping and Structural Defects of CNs with Relevance in
Electrocatalysis and Electrochemistry

Carbon materials act as a catalyst or materials with satisfactory electrochemical or
electrocatalytic performance. However, amorphous or disordered carbon materials exhibit
low activity, chemical, thermal and electrochemical stability, and low oxidation resis-
tance [92–94]. The combination of carbon atoms in a 2D or 3D manner increases its stability,
and at the same time, an organized macromolecular architecture defines its physical and
chemical properties.

Carbon materials used as electrodes in capacitors show a direct relationship between
the electrostatic capacitance and their SSA values [95]. However, nanoscale systems do not
directly comply with the above rule. In this case, the nanoscale and quantum effects must
be frequently considered because it has a large surface–to–volume ratio. In this case, we
observe an increased role of the material’s surface in the capacitive storage process [96]. It is
essential to not only the total number of pores but also their size and arrangement of pores.
Carbon defects of various natures, such as dislocations, atomic vacancies, and stacking
faults, comprise the surface active regions (ASA) in catalytic/electrocatalytic reactions [97]
or SSA in electrochemistry. The whole is a structural feature of graphitic CNs [98]. Several
experimental and theoretical studies have shown that the experimental conditions during
the creation of defects influence the CNs’ ASA and SSA [55,98].

Microstructural variations of CNs are also strongly connected with their conductiv-
ity and field emission. High–performance field emission (FE) requires low turn–on and
threshold fields, good electrical and mechanical stability, and dense and uniform emission
sites [99]. The carbon nanotubes (CNTs) with excellent conductivity meet the abovemen-
tioned criteria. In Figure 2b,d, on the transmission electron microscopic (TEM) images,
the influence of the MW-assisted H2 plasma process on the structural changes of the CNs
is presented. The thinned and open-ended caps of the CNTs can yield larger FE. Raman
spectroscopy enabled a qualitative assessment of the created CNs by comparing the in-
tensity of the starting material’s D– and G–bands (ID/IG) and those subjected to plasma
treatment. Increasing the ID/IG ratio with MW irradiation time indicates the formation of
defects in the structure of CNTs. The created sp3-hybridized defects (defected graphite) on
the CNT’s walls may act as new emission sites [100–102]. Plasma treatment also reduces
the number of graphene layers and cup openings in CNTs (Figure 2b–d) [99]. Open–ended
CNTs can facilitate electron tunneling and significantly improve the physical parameters of
d-CNTs. The most significant is the high emission current density of 10.36 mA/cm2. In
summary, MW irradiation and H2 plasma processing increase electron transferring traces
and enhance CNT’s FE performance.

The studies confirmed that defects in graphitized carbons at the nanoscale significantly
enhance the electrochemical behavior in aqueous electrolytes. For example, the use of
‘small’ spherical nanostructures (Figure 3a), called carbon nano–onions (CNOs) in energy
storage devices, has enabled high power and high energy [103]. Comparing the CNO
parameters to conventional carbon black and graphite nanoparticles in these devices allows
for better gravimetric and volumetric parameters [1,103]. For example, CNOs obtained
from nanodiamond (ND) particles at 1800 ◦C showed a high SSA, determined using the
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Brunauer–Emmett–Teller theory (SBET), of about 680 m2/g [104], lower than that of many
carbon materials [105–107]. Despite this, the external surface is fully available for the
adsorption of ions from the solution, which allows for achieving optimal parameters of
devices accumulating an electric charge [108,109].
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Figure 2. Low–resolution TEM images of (a) capped CNTs and (b) thinned and open-ended CNTs.
HR–TEM images of (c) as–grown CNTs with 60 layers and (d) MW–assisted H2 plasma–processed
CNT with ~40 layers and defected outer shells. Reprinted with the permission from Elsevier, Ref. [99].

An important parameter known to influence electrocatalytic and electrochemical
properties is surface chemistry [110–113]. So far, two main strategies have been used for the
surface modifications. The first strategy involves the post–synthetic treatment of already
formed CNs using various oxidizing or reducing agents [114–117]. The second is based on
the transformation of the structure by introducing heteroatoms during the formation of
CNs, which is called doping [118,119]. For example, doping CNOs with boron (B–CNOs)
causes a decrease in the electrical conductivity value due to breaking the outer layer of
CNOs [69]. ND-derived CNOs in thermal treatment are spherical structures, mainly with
sp2–hybridized carbon atoms (Figure 3a). A small addition of pentagons has been identified
in systems, like in single–layered fullerenes, which provide structure closure and surface
curvature. These topological variations are sp3–hybridized and are called defects in sp2–
hybridized CNs. In Figure 3, some defects are marked with white arrows for visibility.
The results obtained by our group showed that the direct doping of CNO with B and N
causes the graphitization of the structure and polygonization (Figure 3b). CNOs are in a
compressed state, and the spacing between the CNO layers ranges from 0.32 nm to 0.27 nm
compared with undoped CNOs (0.34 nm) [34]. The observed structural changes in CNs
result in improved electrochemical and electrocatalytic properties of CNs due to numerous
defects affecting the increase in porosity and, consequently, the specific surface [34,120].

In many cases, the methods of obtaining CNs at very high temperatures make it
impossible to use organic reagents; therefore, to optimize the physical properties of CNs,
it is necessary to use post-synthetic treatment. One of the simplest and most frequently
used methods leading to numerous structure defects is the chemical oxidation of CNs
using various oxidizing reagents [72,121–124]. There are several methods in the literature
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where oxidation with a mixture of acids predominates, e.g., HNO3 or a combination of
HNO3 and H2SO4 [72,121], KMnO4 [122], HCl [123], H2O2 [124], or ozone [73]. Chemical
treatment leads to the structural degradation of CNs, introducing numerous defects of
various sizes, even those that lead to a complete break in the continuity of subsequent
layers. In Figure 3d–f, high–resolution TEM images show CNOs subjected to chemical
treatment using different oxidative agents. MW irradiation (300 W) was used to obtain CN
surfaces with various defects for several minutes. The oxidation of CN surfaces may also
be achieved by multiple methods, such as wet chemical oxidation [72], constant potential
electrolysis [125], sonochemical or plasma treatment [123,126], etc. In parallel, C atoms
are oxidized, forming functional groups containing oxygen, such as aldehydes, ketones,
epoxides, esters, alcohols, and carboxylic acids [70,73]. Many works postulate that the
presence of oxygen in CNs inhibits the electrocatalytic activity of nanostructures [127,128].
In contrast, oxygen–containing functionalities enhanced the electrochemical properties of
CNs [70,129,130]. Additionally, numerous structure defects in the form of holes increase
SSA, positively affecting carbon materials’ electrochemical properties.
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Figure 3. High–resolution TEM images of CNOs obtained from annealing of NDs at 1650 ◦C in
He atmosphere (a) non–modified CNOs, (b) B–doped CNOs, (c) N–doped CNOs obtained from
aminated–NDs, (d–f) and modified using MW heating in the presence of different oxidative agents
(unpublished results of our group). White arrows indicate different types of structural defects. The
orange line highlights the polygonal nature of the CN.

The chemical functionalization of the CN surface also includes a doping that modulates
the CN structure [120,131–133], creating defects and, at the same time, increasing the
catalytic and electrocatalytic activity [48,117,120,134]. Introducing non–metal dopants into
the carbon layer may lead to charge polarization between the heteroatom–doped and
the adjacent C atoms due to their different electronegativity [49,135]. Among them, the
following stands out (Figure 4) [135]:

i. N and O acting as electron acceptors or donors for the adjacent C [81,134,136,137];
ii. B, F, S, and P acting as electron donors for the adjacent C [138–140].
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In each case, the normal and cross–sectional views of the doped material are provided for easier
visualization. The representation does not include the actual number of chemical bonds between the
elements. Reprinted with the permission from Elsevier, Ref. [135].

Some examples of heteroatom doping are presented in Table 1. The heteroatom
incorporation could trigger electron transfer to enhance the electrical conductivity of CNs.
On the other hand, the electrical conductivity is determined by the carrier concentration,
specific band structure near the Fermi level, and charge distribution. As mentioned earlier,
incorporating heteroatoms into the CN creates defects in the structure by changing the local
charge and consequently affects the electrical conductivity of the entire nanostructure [55].
The decisive parameters are the charge concentration and distribution (the nature and
amount of doped heteroatoms) and the specific structure of the band near the Fermi
level [113]. In CNs, localized states appear in the electronic band structure, transforming
the passive graphitic network into CNs enriched with reactive sites that interact more
strongly with molecules from the external environment [141].

Doping is a critical process that significantly affects the conductive properties of carbon
materials, creating electron holes (p–type doping) in the graphene layer or places with an
excess negative charge (n–type doping) [118]. Because of the π–conjugation, sp2–hybridized
CNs can be electron donors or acceptors when coupled with other elements with different
electronegativity. Breaking the integrity of the π–conjugation leads to the release of carbon
π electrons [37,138,140,142,143]. In N–doped CNs, coupling the C atoms with the lone
pair of electrons of the N atoms occurs; as a result, the C atoms adjacent to the N become
active [37,144]. Based on measurements made using X–ray photoelectron spectroscopy
(XPS), three main groups of N dopants were distinguished (Figure 4):

1. Pyridinic–like N is an atom that combines with two C atoms, enriching the aromatic
ring with one p electron (p–type).

2. Pyrrolic–like N is an atom that bonds to two C atoms, sharing two p electrons with
the π system (n–type).

3. Graphitic–like N (quaternary) in the graphene layer (in the six–membered ring) is
substituted for one C atom (n–type).

We can determine the electronic properties of CNs using, for example, XPS or Near–
Edge X–ray Absorption Fine Structure (NEXAFS) C–edge methods (Figure 5) [66]. XPS
measurements should be performed for a skinny graphene film, which allows for the
determination of changes in the energy states of the CN after its doping with heteroatoms
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(Figure 5a). The spectrum of the undoped graphene layer is analogous to that recorded for
sp2–hybridized carbons [145]. The dominant peak in the spectrum of undoped graphene
corresponds to the occupied σ states, and the π states of graphene form the peak at
approximately 3.0 eV. The inset in Figure 5a compares spectra, ranging from −2.5 eV to
2.5 eV, normalized to the maximum intensity. In the range of positive values, undoped
graphene and P–doped graphene have a similar density of occupied states, while doping
with N atoms does not cause a significant increase in the electron density value in the
valence band [146]. Unoccupied carbon states in graphene layers were investigated using
the NEXAFS C–edge method (Figure 5b). The spectra of undoped graphene and N– or P–
doped graphene illustrate electron transitions from the C 1s levels to the partially occupied
and empty π and σ states [147]. These transitions use the π* resonance at 285.4 eV and
the σ* resonance at 291.7 and 292.8 eV [147]. In the graphene spectrum, an apparent
splitting of the σ* resonance into σ1* and σ2* is visible, indicating the high crystallinity
of graphene layers [148]. A band smoothing in the σ* range is observed for N–doped
graphene, indicating numerous defects in the N–doped CNs [149]. The inset in Figure 5b
compares the low–energy region of the K–edge C spectra, where the density of unoccupied
states increases in the series undoped graphene > P–doped graphene > N–doped graphene.
It means that N-doped graphene has the most vacancies and edge defects. Therefore, the
low conductivity of graphene layers doped with heteroatoms results from the scattering of
charge carriers by heteroatoms and topological defects at the domain boundaries [150].
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spectra near the Fermi level. Reprinted with the permission from MDPI, Ref. [66].

Additionally, heteroatom doping, which creates the pyridinic– and pyrrolic–like N
atoms, frequently incorporates holes (topological defects) in the graphene layer (Figure 4),
which may affect the optimization of the electrochemical properties of the nanostructure
by facilitating electrolyte penetration and ion transport. It should also be noted that
introducing the N atom into the graphene sheets causes a shift in the conduction band,
allowing additional electrons to be adopted. A comparison of the electronic structures of
N–doped graphene indicates that graphene with pyridinic–like N systems has the strongest
electron deficiency for electron-accepting [81]. Therefore, the pyridinic–like defects are
suitable as anode for Li batteries. It has also been shown that quaternary–like defects are
suited for Li–ion batteries and offer a lower diffusion and desorption barrier than undoped
graphene [139].

The pyridinic-like defects exhibit the nature of Lewis bases, which make them oxygen
reduction reaction (ORR) active sites that catalyze O2 dissociation reactions (Figure 6 and
Table 1) [151]. Additional topological defects can enhance the catalytic activity of pyridinic–
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like defects. It was demonstrated that monovacancy–coupled pyridinic N sites tuned
the electronic properties of C-N bonds. Using the density functional theory (DFT), an
energy difference was demonstrated between pyridinic N sites and monovacancy–coupled
pyridinic N sites, 398.4 eV and 397.7 eV, respectively. This is related to the different charge
distribution within the defects, −0.253 e (pyridinic N sites) and −0.225 e (monovacancy–
coupled pyridinic N sites). It, in turn, causes stronger adsorption of oxygen–containing
intermediates on the N–doped hierarchical porous carbon (N–HPC) surface and affects the
ORR kinetics (Figure 6a–d). The kinetic current density (ik) for ORR is 19.11 mA/cm2 at 0.8 V
in an alkaline solution (0.1 M KOH), which is higher than for Pt/C (18.06 mA/cm2) in the
same experimental conditions. The N–HPC materials in alkaline solution exhibit an intrinsic
turnover frequency of 7.26 times higher than typical pyridinic N atoms, and this is one
of the highest values appearing in the literature for metal–free N–doped carbon catalysts.
Zn–air batteries using N–HPC as the electrode material have a higher power density
of approximately 40% compared with commercial Pt/C catalysts. Increased efficiency
in electrocatalysis is also enhanced by the high SBET of 3151.2 m2/g resulting from the
enormous micro–mesoporosity of N–HPC.
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Figure 6. (a) Charge ORR free energy diagrams of (a) conventional pyridinic N site and (b) N–HPC
site, optimized adsorption configuration of ORR intermediated (∗OOH and ∗OH) on (c) conventional
pyridinic N and (d) N–HPC site (brown, silver, red, and incarnadine balls represent the C, N, O, H
atoms, respectively). Reprinted with the permission from American Chemical Society, Ref. [151].

The carbon π electrons in B–doped CNs are activated by conjugating with the vacant
2pz orbital of B, activating the B atoms towards electrocatalysis [36]. The B–doped CNOs
exhibited higher tolerances for methanol, higher activities, higher stabilities, and lower
costs than commercially used Pt/C. They can be a promising candidate for cost–effective
ORR [152–154]. The authors observed the synergistic effect of two kinds of heteroatom-
doping (B– and N–co–doped and P– and N–co–doped CNs), where the electron transfer
and reaction energy in ORR and oxygen evolution reaction (OER) were strongly affected
by the presence of two types of heteroatoms.
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Table 1. Some examples of CNs doped by heteroatoms and their short characteristic.

Heteroatom
Doping Substrates Methods Carbon

Nanostructures
Concentration of
Doping Elements

Nature of the
Bonding

Environment
Significant Properties Applications Ref.

Nitrogen Collagen Thermal treatment
Acid treatment N–OLC 7.5 at. % N Pyridinic N

Pyrrolic N
Excellent operation

stability
ORR catalysis

Fuel cells [114]

Acetonitrile Pyrolysis N–CNO 4.0 at. % N
Pyridinic N
Pyrrolic N

Graphitic N
Long–term stability ORR catalysis

Nitride sensor [155]

Graphene
Acetonitrile CVD N–Graphene 4.0 at. % N Pyrrolic N

SW defects
High concentrations of

defects Supercapacitor [55]

Graphene
Melamine Thermal treatment N–Graphene 3.7 at. % N

Pyridinic N
Pyrrolic N

Graphitic N

High current and power
density

ORR, OER, HER
catalysis [156]

Melamine
L–cysteine

Polymerization
Pyrolysis

N–Graphene
nanoribbons

20 at. % N (800 ◦C)
5.9 at. % N
(1000 ◦C)

Pyridinic N
Graphitic N

Bifunctional
electrocatalytic activity

Excellent cycling
stability

ORR and OER
catalysis

Zn–air batteries
[81]

GO
oxidant Post-modification N,O–GON 3.4 at. % N Pyrrolic N

Pyridinic N

High corrosion
resistance

High selectivity H2O2

ORR catalysis [137]

CNT
Ionic liquid

Carbonization
Post–modification

CNT/porous
carbon

(Core–sheath)

4.6 at. % N
1.1 at. % S
5.4 at. % O

Pyridinic N
Pyrrolic N

Graphitic N

Durability and tolerance
towards methanol ORR catalysis [157]

Aminated–ND
particles Thermal treatment N–CNO 1.0 at. % N

Pyridinic N
Pyrrolic N

Graphitic N

Homogenous
distributions of defects

and active N sites

Electrocatalysis
Catalytic activity

towards H2O2

[48,134]

SiO2, DCD, APTES,
ZIF–8,

Zn(NO3)·6H2O

Inorganic synthesis
Thermal treatment

Etching SiO2

N–HPC 1.2 at. % N
Monovacancy

coupled pyridinic N
Graphitic N

Hierarchical porosity
SBET = 3151.1 m2/g

ORR catalysis
Zn-air batteries [151]
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Table 1. Cont.

Heteroatom
Doping Substrates Methods Carbon

Nanostructures
Concentration of
Doping Elements

Nature of the
Bonding

Environment
Significant Properties Applications Ref.

Boron ND particles
Amorphous boron Thermal treatment B–CNO 0.76–3.21 at. % B

Substitutional B (B-C)
Planar BC3

nanodomain

High crystallinity
Excellent long–term

charge/discharge
stability

Catalysis
Electrochemical

capacitors
[34,120]

ND particles
Boric acid Thermal treatment B–CNO

CNO 0.82–3.31 wt. % B
Boron atom cluster

B4C
Substitutional B (B-C)

σ = 1.62 1/Ωcm
σ = 0.80 1/Ωcm ORR catalysis [69]

GO, Boric acid
Ultrasonic treatment

Hydrothermal
reaction

B–rGO 16.2 at. % B Substitutional B (B-C)
BCO2; BC2O

The lowest onset
potential for B–doped
graphene (0.83 V vs.

RHE)

ORR catalysis [158]

Multi-
heteroatoms CNT, IL, silica Post-modification

Thermal treatment N,S,F–CNT Total N,S,F
8.8 wt. %

Pyridinic N
Pyrrolic N

Graphitic N

High durability
Superior tolerance
towards poisons

ORR catalysis
Alkaline fuel cells [157]

Solid graphite rod
N2 atmosphere

Amorphous boron

Arc-discharge
evaporation

CNT
N,B–CNT

-
0.5 at. % N
0.5 at. % B

1 at. % B and
1 at. % N

-
Graphitic N

N on edges and in
topological defects
Point substitutional

defects C–B and C–N

σ(T)/σ(Tr) = 163 S/cm
σ(T)/σ(Tr) = 184 S/cm

Charge carriers:
3 × 1018 cm−3

σ(T)/σ(Tr) = 314 S/cm
σ(T)/σ(Tr) = 493 S/cm

Charge carriers:
1 × 1021 cm−3

Conductors
Magnetoconductors [159]

Melamine
Phosphoric acid Thermal treatment g–P–C3N4

2.69–5.0 at. % N
0.40–3.34 at. % P

C defect coupled with
N doping

High graphitization
Edge defects ORR catalysis [160]

ND
Boric acid Thermal treatment N–B–CNO 8.0 at. % B

7.4 at. % N

Substitutional B (B–C)
BC3; BCO2; BC2O

Pyridinic N
Pyrrolic N

Graphitic N; B–N

High degree of defects ORR catalysis [161]

Abbreviations in alphabetical order. APTES: (3–aminopropyl)triethoxysilan; CNC: carbon nanocages; CNO: carbon nano–onion; CNT: carbon nanotube; CVD: chemical vapour
deposition; DCD: dicyandiamide, g-C3N4: graphitic carbon nitride; GO: graphene oxide; GQD: graphene quantum dot; GON: graphene oxide nanoribbons; HER: hydrogen evolution
reaction; N-HPC: nitrogen–doped hierarchical porous carbon; IL: ionic liquid; ND: nanodiamond; OER: oxygen evolution reaction; OLC: onion-like carbon; ORR: oxygen reduction
reaction; rGO: reduced graphene oxide; ZIF-8: zeolitic imidazolate framework compound. σ: electrical conductivity; σ(T)/σ(Tr): conductivity normalized to room temperature; SBET:
specific surface area determined using BET theory.
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Only such atomic configurations of the B and N–pyridinic active sites were preferred,
with a small distance between the two atoms. The DFT calculations showed that the
chemical coupling of the B and N–pyridinic active sites occurred then, increasing ORR
activity. In acidic electrolytes, CNs co–doped with N and S are very promising [36]. The
N–C–S–defect–based motifs in carbon materials decreased the energy barriers for ORR in
acidic solutions, making the material better than the Pt/C commercial electrocatalyst.

All these factors may consequently lead to an enhancement of the catalytic efficiency due
to the increasing of active sites in CNs [81,162–164]. The latter results from the doping process
using various substrates and methods. We can distinguish thermal treatment at the gaseous
atmosphere and reduced pressure [114,136,157], pyrolysis [136], CVD [55], MW–assisted
synthesis [165], arc–discharge evaporation [159], etc., (Table 1). Some of these methods are used
as one–step processes; others must be supported by multi-step strategies that optimize the
reaction conditions. The catalytic activity of CNs is also affected by their morphology, mainly
the type of surface determined by their porosity [49]. The size of the pores (micro–, meso– and
macropores), their number, and their arrangement affect the efficiency of the catalytic reaction:

i. micropores allow more active sites into the electrolyte;
ii. mesopores can facilitate the mass transport in the catalyst layer;
iii. macropores ensure the catalyst’s long–term stability [49].

Zheng Hu and coworkers presented an example of carbon nanocage preparation and
the influence of d–CNs on electrocatalytic activity in 2015 [37]. Carbon nanocages were
synthesized by the hard-templating method from benzene as the precursor. Next, the
pyrolysis results in forming carbon nanocages with a cuboidal hollow structure 10–20 nm in
size. This size corresponds to the thickness of the coating from four to seven graphitic layers
(Figure 7a). Increasing the temperature from 700 to 900 ◦C led to an increase in the nanocages’
average size and wall thickness. Temperature also affects the distribution of pores and the
number of defects in the structure. Micropores (∼0.6 nm) and mesopores (5–50 nm) coexist
in the materials. However, an increase in temperature causes the pore distribution to shift
toward the mesopores (Figure 7b) while reducing the SSA from 1713 m2/g (700 ◦C) to
614 m2/g (900 ◦C). As the temperature increases, the crystallinity of the material increases,
i.e., the number of defects in the material decreases (Figure 7c). The highest concentration
of the defects was detected for the material pyrolyzed at 700 ◦C. The observed defects in
the carbon nanocages are topological disclinations (Figure 7d), in which zigzag edge and
pentagon defects are responsible for the electrocatalytic activity of these CNs.
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ratio of the D peak to the G peak. (d) Schematic structural characters of the carbon nanocages. I, II,
and III in panels (a,d) represent three typical defective locations, i.e., the corner, the broken fringe,
and the hole, respectively. Reprinted with the permission from American Chemical Society, Ref. [37].

4. MW–Assisted Synthesis for the Preparation and Modification of Materials
Containing d-CNs
4.1. Definition of MW–Assisted Synthesis

MW irradiation is an influential heating parameter for carbon-based solid materials
because they usually absorb electromagnetic radiation well [166,167]. This high–frequency
electromagnetic radiation with a wavelength between 0.001 and 1 m (frequencies between
300 and 0.3 GHz) can achieve a temperature of over 1000 ◦C within a few minutes. Heating
of the material is possible due to the interaction of electromagnetic radiation of appropriate
energy with charged particles (Figure 8) [168,169]. When polar molecules interact with
MW radiation, this causes them to rotate and move, and this, in turn, causes friction.
Consequently, the generated energy is dissipated as heat (dipolar polarization). In the case
of solid phase materials that are dielectrics, charged particles such as π electrons in carbon
materials induce a current flow in the material. In this case, the energy is also dissipated
as heat, related to the Maxwell–Wagner effect (interfacial polarization). For the optimal
interaction of MW with solid materials, its penetration depth must also be considered [168].
However, it has to be noted that penetration depth becomes a critical factor in micron–scale
materials. For the materials in the nanoscale, this problem should not occur.
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Significant advantages of using MW heating [167]:

i. contactless heating;
ii. a direct transfer of energy to the reactants;
iii. independence from heat convection;
iv. rapid heating rates, easy control of irradiation parameters;
v. selectivity of heating;
vi. the possibility of conducting the reaction locally and volumetrically.
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The MW–based methods may be divided into two groups:

1. Top-down methods, which include the transformation of solid materials into carbon
nanomaterials.

2. Bottom-up methods, which include the preparation of carbon nanomaterials from
liquid or gaseous carbonaceous precursors.

It is possible to use the energy of the MW irradiation to create new carbon materials
and as a method for the purification, functionalization, or annealing of CNs [169]. It is often
a method supporting other processes and procedures. Depending on the specific structural
properties of the CNs, MW irradiation interacts specifically with the material due to the
particular absorption properties of the CNs [171]. The temperature reached in a given
process will depend on many parameters. Depending on the type of CNs, their purity (for
example, metallic dopants), the defects’ structure, creates functional groups on the surface
(for example, containing oxygen), and during the interaction of the carbon material with
MW irradiation, local heating may occur. Conversely, when the carbonaceous material is a
poor absorber of MW irradiation, it is necessary to add substances to make the MW heating
process more efficient [168,172]. In this case, substances such as polymers, conducting
materials or ionic materials, metallic nanoparticles, etc., should be applied [173–175].

4.2. MW-Assisted Synthesis for the Preparation and Modification of d–CNs: Implications on
Properties and Applications

MW-assisted synthesis is a powerful heating method for preparing or modifying
carbon-based solid materials [176]. Currently, this method is most often used to de-
sign and modify graphene (G), carbon nanotubes (CNTs), carbon quantum dots (CQDs),
and graphitic nitride carbon (g–C3N4). By MW–assisted heating with the different car-
bon sources (graphite [177,178], metallocenes [171,178], carbon nanoparticles [179], poly-
mers [180,181], etc.) in the presence of a catalyst and in the gas phase, different CNs were
synthesized (Table 2).

Non–modified CNs have somewhat limited charge accumulation properties [182–184].
To optimize the electrochemical properties of carbon materials, they are combined with
redox capacitive materials, which are involved in faradaic reactions. Combining the
mechanical and electrochemical stability of CNs and their high SSA resulting from micro-
mesoporosity produces hybrid materials with excellent electrochemical properties. Exam-
ples of the hybrid materials synthesized using MW irradiation are listed in Table 2, and their
specific parameters determine subsequent applications. The optimized electrochemical
properties of the mixed materials are mainly due to the possibility of creating mesoporous
inorganic structures with different structural characteristics (amorphous and crystalline
materials) combined with highly conductive CNs. Depending on the experimental con-
ditions of the MW synthesis, it is possible to create materials with a different degree of
structure organization with a higher degree of crystallinity, leading to obtaining compos-
ites with better electrochemical properties. For example, an rGO/Fe3O4 composite was
obtained in which the Fe3O4 inorganic phase was in the form of nanoparticles or octahedral
nanocrystals (Table 2) [185]. In this case, the organization of Fe3O4 into octahedral crystals
on the rGO surface increased the C value from 1050 to 1625 mA h/g at a current density (j)
of 100 mA/g.
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Table 2. Some examples of using MW–assisted synthesis for the preparation and modification of pristine d–CNs and hybrid materials containing d–CNs.

Defective CNs Materials Containing
d–CNs Methods Experimental Conditions Applications Significant Properties Refs.

Pristine d-CNs d–G (hydrogel) MW–assisted hydrothermal
synthesis P = 800 W; t = 5 min Supercapacitors Cs = 340 F/g (j = 0.5 A/g) [186]

N,S–GO MW–assisted synthesis P = 800 W; t = 5 min

Supercapacitors
Universal: aqueous,
non–aqueous, ionic

electrolytes

Cs = 460 F/g (j = 1 A/g)
Cs = 810 F/g (j = 3 A/g) [118]

S–rGO MW–assisted synthesis T = 140 ◦C; t = 30 min Supercapacitors Cs = 238 F/g [187]
rGO

N,B–rGO
Chemical synthesis

MW–assisted synthesis
P = 700 W;

t = 40 s EMI shielding devices σ = 21.4 S/m
σ = 124.4 S/m [170]

rGO (porous) MW–assisted synthesis P = 700 W; T = 180 ◦C;
t = 6 min Supercapacitors Cs = 568 F/g (j = 1 A/g) [188]

rGO IL–assisted
MW synthesis P = 700 W; t = 15 s Supercapacitors Cs = 135 F/g; Em = 58 Wh/kg;

Pm = 246 kW/kg [189]

d–CNT MW hydrogen plasma
processing

P = 200 W
t = 30 and 60 min Vacuum electron sources jemission = 10.36 mA/cm2 [106]

GO/g–C3N4
Ultrasonic–MW–assisted

synthesis P = 700 W; t = 5 min Photocatalytic
H2 evolution

Photocatalytic H2-production rate
224.6 µm/h; GO electron collector

and transporter
[190]

GO/g–C3N4
MW–assisted synthesis

Chemical treatment P = 700 W; t = 5 min Supercapacitors SBET = 353 m2/g; Cs = 113 F/g
SBET = 686 m2/g; Cs = 169 F/g

[191]

N–PGF MW–assisted synthesis P = 800 W; t = 4 s Supercapacitors Cs = 272.6 F/g; E = 2.3 mW h/cm;
P = 0.42 W/cm [192]

Hybrid materials
containing d-CNs

CNT/Fe2O3
CVD; MW hydrothermal

synthesis T = 160 ◦C; t = 6 h Lithium–Ion Battery
Electrodes C = 900 mAh/g [193]

CNT/NiMn2O4
MW–assisted hydrothermal

synthesis
P = 800 W; T = 160 ◦C;

t = 1 h Supercapacitors Cs = 916 F/g (j = 1 A/g)
Em = 36.5 Wh/kg; Pm = 800 W/kg [194]

MWCNT/CoMoO4
MW–assisted solid-state

synthesis
P = 480–720 W;

t = 8 min Supercapacitors Cs = 170 F/g (j = 0.1 A/g) [195]

NiS@CNT/NiO MW–assisted solid-state
synthesis P = 1000 W; t = 60 s Supercapacitors Cs = 810 F/g (j = 1 A/g) [196]
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Table 2. Cont.

Defective CNs Materials Containing
d–CNs Methods Experimental Conditions Applications Significant Properties Refs.

Hybrid materials
containing d-CNs

rGO/NiS MW–assisted hydrothermal
synthesis P = 700 W; t = 4 min

Supercapacitors
Solid–state

Supercapacitors

Cs = 1746 F/g (j = 1 A/g)
Cs = 14.20 F/g;

Em = 7.1 Wh/kg; Pm = 1836 W/kg
[197]

rGO/Fe3O4 NPs
rGO/Fe3O4 ONCs

Chemical exfoliation
MW–assisted synthesis

P = 700 W;
t = 1.25–1.75 min

Lithium–Ion Battery
Electrodes

C = 1050 mA h/g (j = 100 mA/g)
C = 1625 mA h/g (j = 100 mA/g) [185]

rGO/CNT/NiNP
Thermal exfoliation

MW–assisted synthesis P = 700 W; t = 5 min Lithium–Ion Battery
Electrodes

C = 648.2 mA h/g (j = 100 mA/g)
C = 282.4 mA h/g (j = 100 mA/g) [198]

rGO/NiO/Co3O4 MW–assisted synthesis P = 700 W; t = 45 s Supercapacitors Cs = 910 F/g (v = 20 mV/s)
SBET = 99.5 m2/g [199]

rGO/CoAl–LDH MW–assisted reflux synthesis P = 1000 W; T = 100 ◦C;
t = 2 h Supercapacitors Cs = 772 F/g (j = 1 A/g)

Em = 22.7 Wh/kg; Pm = 230 kW/kg [200]

rGO/NiAl–LDH MW–assisted reflux synthesis P = 1000 W; T = 100 ◦C;
t = 2 h Supercapacitors Cs = 1630 F/g (j = 1 A/g)

SBET = 121.2 m2/g [201]

rGO/NiMoO4
MW–solvothermal synthesis

Thermal annealing
P = 200 W; T = 115 ◦C;

t = 25 min Supercapacitors

Cs = 1274 F/g (j = 1 A/g)
SBET = 50.8 m2/g

Cs = 800 F/g (j = 1 A/g)
SBET = 30.9 m2/g

[202]

N–G/NiS MW–assisted synthesis P = 336 W; t = 18 min Supercapacitors Cs = 1468 F/g (j = 1 A/g)
Em = 66.6 Wh/kg; Pm = 405.8 W/kg [203]

rGO/MnCo2O4
Exfoliation

MW–assisted synthesis P = 900 W; t = 45–70 s Supercapacitors Cs = 562 F/g (v = 20 mV/s) [204]

G/α–MoO3 MW–assisted synthesis P = 700 W; t = 7 min Supercapacitors Cs = 483 F/g (j = 1 A/g) [205]

rGO/CoSe2
MW–assisted synthesis

Thermal annealing P = 700 W; t = 7 min Supercapacitors
LED

Cs = 761 F/g (j = 1 A/g)
Em = 43.1 Wh/kg [206]

G/Co9S8
MW–assisted hydrothermal

synthesis
P = 700 W; T = 160 ◦C;

t = 30 min; p = 8 × 106 Pa Supercapacitors Cs = 1150 F/g (v = 5 mV/s) [67]

rGO/MnN MW–assisted synthesis P = 900 W; t = 1 min Sodium ion batteries
Supercapacitors

C = 16 mAh/g
Cs = 639.2 F/g (v = 10 mV/s) [207]
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Table 2. Cont.

Defective CNs Materials Containing
d–CNs Methods Experimental Conditions Applications Significant Properties Refs.

Hybrid materials
containing d-CNs

rGO/MnO2
Conventional synthesis
MW–assisted synthesis

P = 700 W; t = 2 min;
21 cycles Supercapacitors Cs = 140 F/g (j = 1 A/g) [208]

rGO/Pd MW–assisted synthesis P = 810 W; t = 90–125 s Electrocatalysis
(Ethanol Oxidation) Catalytic activity 10.2 mA/cm2 (Pd) [209]

S–rGO/NiFeS2 MW–assisted synthesis P = 800 W; t = 3 min Supercapacitors Cs = 1073 F/g (j = 1 A/g)
Em = 45.7 Wh/kg; Pm = 222 W/kg [210]

3D Pd–E–PG MW–assisted synthesis P = 700 ÷ 900 W;
t = 30 ÷ 60 s

H2 storage
CO oxidation

H2 5.4 wt. %
100% CO conversion < 300 ◦C [211]

NiF–G/SimonK MW–hydrothermal synthesis P = 700 W; t = 1 h;
p = 100 bar Supercapacitors Cs = 836 F/g (j = 1 A/g) [212]

G/NiCoS MW–assisted synthesis P = 600 W; t = 20 min Supercapacitors Cs = 1186 F/g (j = 1 A/g)
Em = 46.4 Wh/kg [213]

G/CNT/Pd IL–assisted MW
synthesis P = 700 W; t = 10 min Energy storage systems Cs = 1615 F/g (v = 10 mV/s) [214]

CMK-3/CNT Hard–templating method
MW–assisted synthesis P = 700 W; t = 30 s Supercapacitors Cs = 315 F/g (j = 1 A/g) [68]

Abbreviations in alphabetical order. CMK–3: ordered mesoporous carbon; CNT: carbon nanotubes; CQD: carbon quantum dot; d–CNT: defective carbon nanotube; DSSC: dye–sensitized
solar cells; EMI: electromagnetic interference; G: graphene; GO: graphene oxide; rGO: reduced graphene oxide; g–C3N4: graphitic carbon nitride; LDH: layered double hydroxide; LED:
light emitting diode; MnN: manganese nitride; MWCNT: multi–walled carbon nanotube; NP: nanoparticle; N-PGF: nitrogen–doped porous graphene framework: NCS: nickel cobalt
sulfides; NiF: nickel foam; ONC: octahedral nanocrystal; ox-CNT: oxidized carbon nanotubes; o–PDA–co–PANI: copolymer of ortho–phenylenediamine and aniline; 3D Pd–E–PG:
Pd–embedded three dimensional porous graphene; SimonK: Simonkolleite (Zn5(OH)8Cl2·H2O). Physical quantities: σ: electrical conductivity [S/m]; Em: specific energy density
[Wh/kg]; j: current density [A/g]; p: pressure; Pm: specific power density [W/kg]; P: power [W]; T: temperature [◦C]; t: time; SBET: specific surface area determined by N2 adsorption
method using BET theory.
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Although for most hybrid systems, the SSA values determined usually have low values
below 100 m2/g, the synthesized materials show superior capacitive performance (Table 2).
Firstly, the addition of CNs to the inorganic phase decreases the degree of aggregation
of the inorganic material. The total capacity of the electrode is related to two charging
mechanisms: electric double–layer charging (EDLC) and pseudocapacitance [130,215]. The
first process is related to the presence of carbonaceous material in the structure, and, to put
it simply, the capacitance of the EDLC depends on the SSA [216]. The second mechanism is
based on the redox reaction of the inorganic material, mainly transitional metal oxides and
multiplex systems with stoichiometric and nonstoichiometric compositions [215]. Since
the percentage of inorganic components in the composite is usually several times higher
than CNs, this mechanism is dominant in hybrid electrodes [217]. As a result, in composite
electrodes, in which there is good contact between the organic and inorganic phases, and
their homogeneous dispersion is ensured, the communication between electrolyte ions and
active electrochemical materials is facilitated, and the ion diffusion path is shortened. It is
essential to point out that the presence of CNs in the composite decreases the material’s
resistance and increases its cycling stability as well as energy density (E) and power density
(P) compared with pristine inorganic materials [217]. Table 2 summarizes examples of d–
CNs and hybrid systems obtained using MW irradiation, indicating the materials’ reaction
parameters and critical properties.

Figure 9 presents two examples of MW irradiation’s use for synthesizing different
compositions of carbon-based materials. Panel (I) shows the preparation of N–doped
carbon quantum dot (N–CQD)/MWCNT material using the conventional method and
MW–assisted synthesis [218]. The first stage of the process was based on the most popular
method of MWCNT oxidation using concentrated nitric acid. As a result of this reaction,
oxygen–containing functional groups were introduced on the MWCNT surface. In the
further stage of the reaction, these sites (structural defects) are active for further functional-
ization. Further, in the presence of urea and citric acids and under heating, N–CQDs are
formed on the surface of MWCNTs (Figure 9I). The authors of this work also carried out,
for comparison, the stage of N–CQD production under conventional reaction conditions.
The data summarized in Table 2 indicate that using MW irradiation to synthesize N–CQDs
shortens the reaction time and energy consumption and increases the efficiency of the
reaction. Figure 9II shows the possibility of the multifunctional use of MW irradiation, de-
pending on the power and duration of its use (see also Table 2). Kumar and colleagues used
the MW irradiation process to obtain nanohole–structured and Pd–embedded 3D porous
graphene (3D Pd–E–PG) [211]. The process was multi–stage. The first stage was graphene’s
exfoliation and the addition of ethanol and Pd acetate to the reaction mixture. Then, under
the influence of MW irradiation with a power of 700 W, within 30 s, Pd nanoparticles
were created. Next, MW irradiation with a power of 700 W for 60 s was applied again,
which caused the formation of a 3D structure consisting mainly of the agglomeration of
Pd nanoparticles. In the last stage of the process, a higher power MW irradiation (900 W,
60 s) was used, which caused the perforation of the graphene layer (creation of defects).
Holes of a size analogous to Pd nanoparticles enabled the distribution of nanoparticles in
the entire volume of the carbon material, creating a compact and interconnected structure
of 3D Pd–E–PG. The course of each stage was confirmed using scanning electron micro-
scopic (SEM) imaging (Figure 9II(a–d)). Figure 9II(a) shows the graphene layers, which,
resulting from MW irradiation, form a brush–like and wrinkled structure. In the next stage,
the Pd nanoparticles are evenly distributed on the graphene layers (Figure 9II(b)). As a
result of the MW irradiation of a specific time and power, the graphene layers are covered
with a large amount of Pd nanoparticles. Further irradiation leads to the formation of
nanoholes (10–100 nm) (Figure 9II(c,d)), in which metallic nanoparticles are placed, cre-
ating a 3D structure of Pd-E-PG, with the simultaneous formation of increasingly larger
metallic agglomerates.
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Graphene is a 2D atomic crystal with extreme mechanical strength and high 
electronic and thermal conductivities [219]. Due to these outstanding properties, it has 
been one of the most frequently used CNs in scientific research in recent years [220]. In 
the case of this carbon structure, MW irradiation is not used to prepare it in bottom–up 
processes. However, due to its simplicity, MW irradiation modifies a graphite precursor. 
Exfoliation is therefore possible, yielding graphene oxide (GO) [221]; the reduction of GO 
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heteroatoms [118,187,189], or a combination of two kinds of CNs in one material [190,192]. 

Figure 9. Panel (I): Schematic illustration of the synthesis of MWCNT/N–CQD, where mild oxida-
tion generates active sites for the growth of N-CQDs. The inset table compares the conventional
synthesis with the MW–assisted process. Reprinted with the permission from Elsevier, Ref. [218].
Panel (II): Synthesis route of nanohole-structured and Pd–embedded 3D porous graphene (3D Pd–
E–PG) and corresponding SEM images. Schematic illustration of the MW fabrication process of
the 3D Pd–E–PG. (a) SEM image of MW–exfoliated graphene oxide. (b) SEM image of the uniform
decoration of Pd nanoparticles on graphene layers after low–power MW irradiation. (c) SEM image
of the aggregation of Pd nanoparticles after successive high–power MW irradiation. (d) SEM im-
age of nanohole generation and the perforated graphene structures after multistep MW irradiation.
Reprinted with the permission from American Chemical Society, Ref. [211].

Generally, the synthesis or modification of carbon–based materials using MW irradi-
ation follows the presented paths. In some cases, running the reaction in multiple steps
is necessary, mainly to increase the yield of the reaction. Despite this, the procedures are
much more straightforward, thanks to the short reaction times under MW–assisted heating.
In addition, in the case of these methods, the purification process is much simpler.

Graphene is a 2D atomic crystal with extreme mechanical strength and high electronic
and thermal conductivities [219]. Due to these outstanding properties, it has been one of
the most frequently used CNs in scientific research in recent years [220]. In the case of
this carbon structure, MW irradiation is not used to prepare it in bottom–up processes.
However, due to its simplicity, MW irradiation modifies a graphite precursor. Exfoliation is
therefore possible, yielding graphene oxide (GO) [221]; the reduction of GO [186], resulting
in reduced GO (rGO) [188]; the doping of graphene layers with heteroatoms [118,187,189],
or a combination of two kinds of CNs in one material [190,192].

MW irradiation is often used to functionalize graphene layers [222]. The controlled
creation of defects in graphene-based materials is a promising strategy to tailor the elec-
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trical, electrochemical, and electrocatalytic properties. For example, a hydrogel was ob-
tained from oxidized graphene during MW–assisted synthesis in hydrothermal conditions
(Figure 10a) [186]. This one–step process resulted in a 3D carbon structure resembling
crinkled paper. Such a 3D graphene structure can accelerate the transport and diffusion
of ions, and functional groups reduce the aggregation of graphene layers. The obtained
material exhibits a high specific capacitance (CS) of 340 F/g at j of 0.5 A/g and excellent
stability with approximately 97.3% retention of the initial CS after 20,000 cycles (at 10 A/g)
(Table 2). These parameters indicate that d-G (hydrogel) may be a promising electrode
material for high–performance SCs.
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electrochemical performance. A 5–fold increase in the number of sulfur atoms in the 
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MW–assisted synthesis was also used to prepare B– and N–doped; and B,N–doped 
rGO (Figure 10h–j) [170]. The synthesized material possesses electromagnetic interference 
(EMI) shielding properties and high electrical conductivity. B,N–doped rGO shows high 
electrical conductivity compared with other materials: rGO, N–doped rGO, and B–doped 
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(∼99.99% attenuation) for B,N–doped rGO was measured compared with undoped rGO 
(−28 dB). The electrical conductivity increases from 21.4 (rGO) to 124.4 S/m (B,N–doped 
rGO) due to the nanojunction inside the material. The electrical conductivity depends on 

Figure 10. SEM image of (a) functionalized graphene [186]. (b) Photograph of gelatin–GO aero-
gel [221] and (c) SEM image of gelatin–GO aerogels [221]. SEM images of (d) 1:1.5 nickel–cobalt
sulfides [118], (e) porous rGO (GO:ZnO = 1:4) [188], (f) rGO/ZnO (GO:ZnO = 1:4 (without HCl)) com-
posites [188], (g) S–rGO–0.25 [187]. Reprinted with the permission from Elsevier, Refs. [186–188,221].
(h–j) TEM images of (h) reduced graphene oxide (MRG), (i) B–doped MRG (B–MRG), and (j) high–
resolution TEM image of B– and N–doped MRG (B–N–MRG). Reprinted with the permission from
American Chemical Society, Ref. [170].

Analogous conditions were also used to obtain GO-based gelatin aerogels (Figure 10b,e) [221].
The binary aerogel was studied under acidic and alkaline conditions. Increasing the gelatin
content in aerogel raises the modulus of elasticity to 6–fold and the swelling ratio up to
1.4–fold. The properties of the aerogel obtained using MW irradiation were compared with
this synthesized using conventional heating. Similar physicochemical properties of both
aerogels were identified; however, the swelling ratio value was 1.5 times higher for the
aerogel synthesized using MW irradiation.

The following example shows the possibility of using the MW–assisted method to pro-
duce porous reduced graphene oxide (rGO) (Figure 10e,f) [188]. Conducting the synthesis
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under MW irradiation conditions causes a shorter period and lower temperature, employ-
ing hydrochloric acid as an etching agent. In addition to lowering energy consumption,
preparing the material under these conditions leads to obtaining material that avoids the
restacking of subsequent rGO layers and numerous pores and promotes material transport
efficiency. It is a critical phenomenon because reduced GO is characterized by a strong stack-
ing effect of individual graphene layers, significantly limiting the potential of using this
material in devices that accumulate electric charge. The combined macro/mesopore effect
in porous rGO provides accessible ion transport pathways for the base electrolyte compared
with conventionally prepared rGO. The electrochemical studies show that the synthesized
rGO’s calculated CS was 568.5 F/g at 1 A/g with a remarkable capacity retention after
longer charge/discharge cycles (Table 2).

An exciting example of using MW irradiation to modify GO is the method presented
by Kwang S. Suh et al. [189]. The proposed facile and scalable method leads to the pro-
duction of rGO by ionic liquid (IL)–assisted MW chemistry. ILs were used as sources of
dipoles and the doping element rGO. The resulting material is characterized by the open
porous architecture of rGO filled with IL moieties, resulting in easy ion transportation and
consequently exhibiting a high CS of 135 F/g. Additionally, a device operated at a voltage
of 3.5 V revealed a high E∼58 Wh/kg and P amounting to 246 kW/kg.

MW radiation can easily be adapted to modify the graphene structure so that the
carbon atoms in the graphene layer are replaced with other heteroatoms, such as N, S, P,
or B [118,119,187] (please see Table 2). Deepak K. Pattanayak and coworkers presented an
interesting example in 2020 (Figure 10d) [118]. Using a one–pot MW–assisted synthesis
resulted in the doping of graphene with a high amount of N and S atoms (N,S–GO). The
CN’s heteroatom content, at 14.9% of N and 4.3% of S, leads to very high CS values of
310 F/g in two electrodes symmetric configuration (1 M H2SO4 electrolyte). N,S–GO was
also used in non–aqueous organic and IL electrolytes, where N,S–GO shows CS of 226 F/g
and 150 F/g with an energy density of 32 Wh/kg, respectively. The explanation of the
heteroatom–doped graphene layer and the effect on the change of physical properties are
described in detail in Section 3. Here, we will limit ourselves to discussing only some
literature examples of preparing this doped structure.

Doping heteroatoms are an effective way to modify the physical properties of rGO.
The modification of rGO using MW–assisted synthesis was applied to prepare S–doped
rGO with different concentrations of S (Figure 10g) [187]. The synthesis was performed
in mild experimental conditions at 140 ◦C for 30 min, which led to the wrinkling and
folding of graphene sheets. The material with the highest content of S shows excellent
electrochemical performance. A 5–fold increase in the number of sulfur atoms in the
graphene sheets leads to a rise in the value from 61.7 to 237.6 F/g. The synthesized material
has a promising potential for SC applications with simultaneous high electrochemical
stability and capacitance retention of 106% after 10,000 cycles.

MW–assisted synthesis was also used to prepare B– and N–doped; and B,N–doped
rGO (Figure 10h–j) [170]. The synthesized material possesses electromagnetic interference
(EMI) shielding properties and high electrical conductivity. B,N–doped rGO shows high
electrical conductivity compared with other materials: rGO, N–doped rGO, and B–doped
rGO, which results in better EMI shielding ability. A high EMI shielding of −42 dB (∼99.99%
attenuation) for B,N–doped rGO was measured compared with undoped rGO (−28 dB). The
electrical conductivity increases from 21.4 (rGO) to 124.4 S/m (B,N–doped rGO) due to the
nanojunction inside the material. The electrical conductivity depends on the temperature.
In a low-temperature range (T < 50 K), the mechanism of the electrical conductivity is based
on 2D–variable range hopping and the Efros–Shklovskii–VRH conduction model.

ND powders with different average particle sizes (10 nm to 1 µm) are sensitive to
MWs between 2.49 and 9.43 GHz [223]. Increased permittivity with decreasing particle size,
polarization, and MW loss has already been observed. The oxygenation and hydrogena-
tion of the NDs (sp2–hybridization was raised in the sample) led to dielectric polarization,
and the loss increased [172]. Various methods have been applied to increase the heating
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rate further and induce demanding reaction conditions. For example, specific substances,
coating (MW–transparent substrates) or triggers have been added to tune the reaction condi-
tions [167,169,172]. Using NDs in the environment of conducting polymers (ND–polyaniline)
in MW–assisted synthesis significantly enhanced the MW absorption due to additional and
intense polarization originating from the HN–CO groups acting as asymmetric centers [173].
These studies showed that ND particles might be applied as MW absorbers.

In some cases, such synthesis may require the addition of easily polarizing substances
to tune the reaction conditions and to increase temperature. MW–assisted synthesis was
also applied for the preparation of onion-like structures in the heavy crude oil and carbon
catalyst (activated carbon and NiO–MoO3/γ–Al2O3; 1:1 w/w) and tomatoes/carrots as
a source of carbon and 30% NaOH [224,225]. The obtained CNs were non–homogenous
with structural imperfections and an empty core; their structure did not resemble ND–
derived CNOs.

The MW–assisted method was also successfully used to prepare and modify other
CNs. An IL–assisted splitting method using MW irradiation as an external energy source
produced graphene nanoribbons from MWCNT or SWCNT [226]. The process was based on
two strategies: oxidation with strong acids and reduction with hydrazine. The MW–assisted
method leads to splitting and expanding tubular graphite nanofibers, which consequently
results in the preparation of graphene nanoribbons in the hundred nanometers. The
MW–assisted synthesis was employed to prepare CNTs from acetylene and hydrogen as
precursor gases [227]. The obtained CNTs were used as a sorbent to remove crystal violet.
The sorption capacity was 81% upon contact with the analyte for 25 min at pH 7.0 using a
sorbent concentration of 10 mg/L.

Using MW irradiation, it was possible to modify the tube walls in such a way as to
remove the capped parts of the CNTs (Figure 2 and Table 2) [106]. The morphology of the
CNTs was controlled by adjusting the MW powers. MW irradiation led to the opening of
the nanotubes and the removal of fragments of the outer layers of CNTs. Moreover, it led to
the formation of sp3–hybridized defects in the nanostructure. Such a modified structure of
CNTs may facilitate the tunneling of electrons through the barriers and increase emission
at new active sites.

MW–assisted synthesis was applied to grow N–CQDs on the surface of MWCNTs [218].
In conventional methods, N–CQDs are incorporated into the MWCNT surface by multistep
processes, including the synthesis of the N–CQDs, their complex purification, surface
activation, and crosslinking with the MWCNT surface. The method is simplified using
MW irradiation by direct MW–assisted growth of N–CQDs on the MWCNT surface. Addi-
tionally, this surface modification method of MWCNTs effectively modulated their surface
reactivity and internal band structure, which has a significant impact when studying elec-
trocatalytic and photovoltaic processes. Based on the hybrid N–CQDs/MWCNT material,
the dye–sensitized solar cells showed 50% higher photovoltaic efficiency than MWCNTs.

MW irradiation was applied to synthesizing composite containing GO and graphitic
carbon nitride (g–C3N4), and the material’s photocatalytic activity was tested [190]. A 12-
fold increase in the photocatalytic efficiency of GO/g–C3N4 under visible light irradiation
(224.6 µmol/h) in the production of H2 compared with g-C3N4 was observed (Table 2).
This effect is due to the ability of GO to accept and transport electrons from the excited
g–C3N4, which significantly influenced the phenomenon of charge separation. The studies
show the promising potential of this nanocomposite for electron collectors in photocatalytic
H2 production.

Gengchao Wang et al. presented an example of MW irradiation, where N–doped
porous graphene frameworks were synthesized [192]. It is another example of creating a
composite of graphene and CQDs (Table 2). An N–doped porous graphene framework is
synthesized quickly during several processes running simultaneously. A readily dispersible
graphene was an effective receptor for MW absorption and initiated GO reduction. Next, as
an MW absorbing receptor, the reduced part of GO reduces the chain and allows N–doped
porous graphene framework formation. The synthesized material has an outstanding
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electrochemical performance and a volumetric absorption capacity that can be used in
catalysis, energy storage, and environmental protection (Table 2). The electrodes made of
GO/g–C3N4 delivered a volumetric E of 12.3 mWh/cm3 at P of 0.42 W/cm3. The N–doped
porous graphene frameworks exhibited an extremely high volumetric absorption capacity
of 100–243 g/cm3 for different oils and organic solvents.

These studies showed that CNs might be applied as MW absorbers in MW–assisted
synthesis. In some cases, such synthesis may require the addition of easily polarizing
substances to tune the reaction conditions and to increase the temperature to achieve
the activation energy of a chemical reaction. Optimizing these parameters allows for the
synthesis or modification of the CNs quickly.

4.3. MW-Assisted Synthesis for the Preparation of Hybrid Materials Containing d–CNs:
Implications on Properties and Applications

MW irradiation is also a precious energy source for the preparation of multicomponent
systems, often when conventional synthesis is highly complicated due to its multi–stage
nature and the product purification being time–consuming. In addition, it is possible to
conduct the synthesis in different experimental conditions, such as in the presence of a
solvent or the solid phase, in ILs or using materials of various origins, including inorganic
and organic. Combining materials into larger supramolecular systems or composites is
simple by using MW irradiation due to a short time and low energy consumption.

An ultrafast MW process allows the synthesis of a carbon composite with the ordered
mesoporous carbon as the core and CNT as the shell [68]. A 10–30 s MW irradiation
catalyzes in situ CNTs growth within the nanochannel of ordered mesoporous carbon
(Table 2). The whisker morphology of the obtained composite looks like a rambutan. Such
interconnection between CNTs and mesoporous carbon particles effectively bridges 3D con-
ducting networks, promoting the ion adsorption and diffusion of the supporting electrolyte.
A composite consisting of a copolymer and CNTs was also prepared [228]. The oxidized
CNTs were incorporated into the polymer matrix consisting of poly(o–phenylenediamine–
co–aniline) using MW irradiation (for 45 min at intervals of 5 min) to accelerate the poly-
merization. The oxidation of CNTs was also supported by MW irradiation for 30 min at
160 ◦C. Combining these synthetic procedures led to the preparation of a composite with a
needle–like structure of the copolymer. The system of the copolymer and nanocomposite
enables the effective accumulation of electric charge. They exhibited a high CS of 147.14 F/g
at 0.50 A/g with a capacitance retention of 82%.

MW irradiation is more often used to combine materials of different chemical na-
tures, mainly for the synthesis of composites containing CNs and metallic nanoparti-
cles [197,204,205,211,213,229,230], nanopellets [212], or core–shell structures [194–196].
Metallic nanoparticles can, of course, consist only of pristine metallic nanoparticles [211,214];
they can form metallic connections of various elements [194,195], metal hydroxide [231],
metal oxides [185,232], nitride [207], or sulfides [197,210], in various combination, etc.

Since then, the worldwide studies of electrocatalytic processes have been dominated
by precious–metal–based–materials: Pt–, Pd–, Mo–, Fe–, and Co–based catalysts for ORR
and HER [233–235]. Au- and Ag–based catalysts for electrocatalytic CO2 reduction reaction
(CO2RR) [236,237], and Ru– and Ir–based catalysts for OER [238,239]. Generally, metal–
based catalysts are characterized by low selectivity, poor durability, and susceptibility
to gas poisoning. Due to the cost and the scarcity of some metals, their practical and
large–scale use still needs to be improved. Pt nanoparticles have long been regarded as
the best catalyst for ORR. However, due to the notable disadvantages listed above, the
commercialization of these technologies needs to be improved. Therefore, it is necessary to
search for alternative earth–abundant materials. CNs demonstrate excellent electrocatalytic
activity with high stability [37,81,240]. A new generation of electrocatalysts is developed, in
which defective surface of materials promotes multiple–proton–coupled electron transfer
and mass transportation [41]. In this context, combining materials of different chemical
nature can optimize the properties of the designed materials.
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The idea of using MW irradiation in composite preparation containing metallic
nanoparticles and CNTs is schematically presented in Figure 11 [214]. In the first stage,
CNs with metallic precursors and substances that are good MW absorbers are placed
simultaneously in an MW reactor (Figure 11a). Graphene platelets in ILs and Pd acetate
were mixed in this case. The impregnation and partial exfoliation of graphene happened
due to MW irradiation and weak Van der Waal’s and π–π interaction. The IL reduced the
diameter of dissolved Pd cations. As a result, they created Pd nanoparticles, which were
distributed on graphene sheets. At the same time, structural defects are formed in the
graphene layer due to MW irradiation or the catalytic activity of the IL. These defects act as
nucleation sites for core–shell structures of the Pd nanoparticles with imidazolium shells.
During further MW irradiation, the outer organic layer decomposes, resulting in it being
formed carbonaceous gasses. These are carbon sources for CNT growth. Carbon diffuses
on the Pd nanoparticle’s surface and comprises multi–walled core–shell nanoparticles.
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Figure 11. Schematic representation of one–pot MW synthesis of 3D carbon hybrid nanostructures
showing vertically grown CNTs on graphene sheets: (a) scheme and (b) mechanism. (c–h) SEM images
of 3D CNs showing CNTs vertically attached to graphene sheets: (c) Pd nanoparticles initially anchored
on graphene, (d) vertically standing CNTs grown on graphene by Pd nanoparticles, (e) CNT forest
extensively grown on graphene surfaces after lengthy MW irradiation, (f) direct bonding between
CNTs and graphene, (g) mass production of 3D G–CNT–Pd nanostructures, and (h) terrace structures
of hybrid material. Reprinted with the permission from American Chemical Society, Ref. [214].
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It has to be noted that direct bonding between CNTs and graphene was detected due
to the defect–based growth mechanism (Figure 11b). Under these conditions, a dense
brush of CNTs with Pd nanoparticles placed perpendicularly to the graphene surface
was performed (Figure 11d). By manipulating the amount of graphene used for Pd and
MW irradiation power and time, the composition of the resulting hybrid material was
quantitatively controlled (Figure 11e). In many cases, it is simplified, mainly when we
want to get two–component composites with a random 3D organization. This type of
functionalization was presented in works in which the carbonaceous component was
graphene [211] and N–doped GO [230]. This process is illustrated in detail in Figure 3
and discussed in Section 4.2 [211]. The results show the 3D Pd–E–PG nanostructure
has a ∼5.4 wt. % H2 storage capacity under 7.5 MPa and CO oxidation catalytic activity
at 190 ◦C. The synthesized N–GO/Pd material was also used as a catalyst for ethanol
electrooxidation with a j of 10 mA/cm2 [230]. Analogous N–rGO/Pd material was used in
direct-ethanol fuel cells [209]. The electrocatalytic activity of N–rGO/Pd was accessed by
cyclic voltammetry (CV) in the presence of ethanol. The N–rGO/Pd catalyst exhibits better
electrocatalytic performance than rGO/Pd, with an electroactive surface area of 6.3 m2/g
and ∼3.7 m2/g, respectively.

In addition to composites containing pure metallic nanoparticles and bimetallic
nanoparticles, other compounds containing a metallic component are often synthesized
(Table 2). Most commonly, this may include metal oxides [185,204,205,229,231,232], ni-
tride [207], or sulfides [197,210], in various combinations, etc. MW–assisted synthesis is an
effective method for the facile and fast preparation of hybrid materials. It is usually the
last stage of the synthesis, often preceded by obtaining CNs or their initial modification.
A good example is an article on preparing a composite containing MWCNTs and Fe3O4
(Table 2) [229]. The pristine MWCNTs and N–doped MWCNTs were formed using the
CVD method. Next, the Fe3O4 nanoparticles (5–15 nm) were synthesized directly on the
MWCNT surface in an MW-assisted process. The homogeneous distribution of nanoparti-
cles on the surface of CNs, the formation of defects on the surface of MWCNTs during MW
irradiation, and the doping of CNs with N improve the saturation magnetization of the
resulting composites.

An MW irradiation was also used as an energy source to support the preparation
of NiO [231], MnCo2O4 [204], and α-MoO3 [205,208] (Table 2). Nanoparticles of metallic
oxides were directly grown on graphene sheets using the in situ MW irradiation method. A
periodic repetition of MW irradiation through several cycles significantly increases the effi-
ciency of the synthesis reaction, leading to large-scale processes [208]. The multi–step prepa-
ration of sulfides [197,203,212,213] may also be simplified by using MW–hydrothermal
preparation of nanoparticles. In this case, it is not necessary to use chemical surfactants,
and the preparation time is significantly reduced from several days to a few minutes. The
homogenous distribution of CNs in solution was preceded by the partial exfoliation of
graphene, which was carried out by MW irradiation. This approach ensured a homoge-
neous distribution of nanoparticles in the bulk of the composite. The nanoparticles were
covered with graphene sheets or intercalated inside the materials. It, in turn, provides a
conductive scaffold constructed from graphene sheets, increasing the material’s specific sur-
face area and chemical stability. Hybrid composites’ porous and interconnected structures
promote charge transport by encapsulating agglomerated metallic nanoparticles.

Using MW irradiation, it is also possible to obtain core-shell structures quickly [194–196].
In this case, the CNTs are surrounded by an inorganic phase, as shown in Figure 12a–d [194].
Briefly, in the first step, the oxidation of the MWCNTs was performed to increase their
dispersibility and to introduce the nucleation sites for the inorganic nanoparticle creation.
Next, a mixture of inorganic salt and an oxidizing agent was subjected to MW irradiation at
elevated temperatures. Consequently, the walls of the MWCNTs were uniformly covered
with an inorganic crystalline phase of various forms of crystallites. Depending on the
irradiation power, temperature, or reaction time, the degree of coverage of MWCNTs
varied. It is also possible to obtain a core–shell structure in the inorganic phase alone
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(Figure 12f–i). Then, two phases with different crystal structures are distinguished [195].
CoMoO4 nanopellets have a core-shell form with a well–crystallized bulk. The shell of
CoMoO4 crystallite is amorphous. In both cases, the oxidized CNTs were utilized as MW
absorbers and heterogeneous nucleation sites for inorganic nanocrystal formation. The
MWCNT/CoMoO4 composite used as an electrode in the capacitors shows a CS of 170 F/g
and a high cycling stability of 93.2% after 1000 cycles (Table 2) [195].
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Figure 12. Schematic representation of the core-shell structures prepared by MW-assisted synthesis.
(a,b) The low– and high–resolution FESEM images of CNT/NiMn2O4 composite (c,d) TEM images
of CNT/NiMn2O4 composite; inset shows the selected area electron diffraction pattern. (e) Schematic
representation of the formation of core–shell structures of the CNT/NiMn2O4 composite. Reprinted
with the permission of Elsevier from Ref. [194]. (f,g) SEM and (h) TEM images of MWCNT/CoMoO4.
(i) TEM image of individual CoMoO4 crystallite (core–shell structure). Reprinted with the permission
from RSC, Ref. [195]. (j) Schematic illustration of the formation of NiS@CNT/NiO nanocomposites.
SEM image of NiS@CNT/NiO. Reprinted with the permission from Elsevier, Ref. [196].

The CNT/NiMn2O4 composite synthesized by an MW–assisted hydrothermal process
exhibited excellent electrochemical performance [194]. The electrochemical studies per-
formed for these materials are shown in Figure 13. The CNT/NiMn2O4 electrode exhibits
a high CS of up to 915.6 F/g at 1 A/g and an excellent cycling stability of 93.0% after
5000 cycles at 5 A/g. These properties are affected by the weaker crystallinity of NiMn2O4
and more defects and vacancies in CNTs. The CV curves exhibit similar electrochemical
characteristics in the potential window from 1.3 to 1.6 V (Figure 13c). Increasing the voltage
to 1.7 V and the OER and HER cause a jump in the charge current. It should be noted that
the shape of the charge–discharge curves shows good linearity and symmetry in the poten-
tial range of 1.3–1.6 V (1.5 A/g), indicating the reversibility of the processes (Figure 13d).
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An asymmetric SC device with a positive electrode composed from CNT/NiMn2O4 shows
the maximum energy density of 36.5 Wh/kg at P of 800 W/kg and cycling stability of 82.8%
after 10,000 cycles at 5 A/g (Figure 13i). These parameters are higher than for other SC
devices based on NiMn.
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Figure 13. (a) Schematic diagram of CNT/NiMn2O4 asymmetric supercapacitor device. (b) Com-
parative CV curves of AC CNT/NiMn2O4 electrodes in a three-electrode system, 50 mV/s. (c) CVs
of the device were measured at different potential windows, 50 mV/s. (d) The charge/discharge
curves of the device were measured at different potential windows at 1.5 A/g. (e) CVs at the different
scan rates from 0 to 1.6 V. (f) The charge/discharge curves measured at different current densities.
(g) Electrochemical impedance spectra of the device. (h) Cyclic performance of the device at 5 A/g
for 10,000 cycles. (i) The Regone plots of the CNT/NiMn2O4 and comparison with literature data.
Reprinted with the permission from Elsevier, Ref. [194].

A multi-component nanocomposite consisting of CNTs, NiO, and NiS (NiS@CNT/NiO)
was prepared quickly (60 s) using a one–step MW–assisted method (please see Table 2,
Figure 12j) [196]. The different mass ratios of used substrates and MW conditions per-
formed in the reaction were tested for their influence on the electrochemical properties of
the created material. The composites containing both inorganic components, NiS, and NiO,
showed optimal electrochemical performance. The NiS@CNT/NiO electrodes showed
a CS of 809.7 F/g at 1 A/g and a cycling stability of approximately 100% retention after
20,000 cycles at 5 A/g. In the following example, MW–assisted hydrothermal synthe-
sis was used to prepare the composite containing NiS and rGO (rGO/NiS) [197]. The
MW–assisted synthesis eliminates chemical surfactants and reduces the preparation time
from several days to only 6 h [197]. The electrodes fabricated from rGO/NiS exhibit an
ultrahigh CS of 1745.7 F/g at 1 A/g and a high–capacity retention after 3000 cycles with
high reproducibility.
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The symmetric solid–state SC shows a CS of 14.20 F/g, an E of 7.1 Wh/kg and a P of
1836 W/kg (Table 2). The SC device based on N–rGO/NiS exhibits similar electrochemical
performance with a CS of 1467.8 F/g at 1 A/g [203]. An asymmetric configuration of the
capacitor, where N–rGO//N–rGO/NiS and graphite sheet as the current collector was
used, characterizes the following parameters: a cyclic stability of 86.6% after 5000 cycles
and an E of 66.6 Wh/kg and a P of 405.83 W/kg. Due to these parameters, the hybrid
materials show potential for energy-storage applications.

The 3D S–rGO/NiFeS2 composite was synthesized using a one–step MW alcohother-
mal method, in which mercaptoacetic acid is used as a sulfur source for the doping of
graphene and as a precursor of nickel–iron sulfide (Table 2) [210]. The composite shows
a very porous structure and a large SSA, and thanks to chemical bonds with sulfur, it
increases the binding of the nickel–iron precursor to the carbon material. These phenomena
ensure the CS value of 1073.2 F/g at 1 A/g in 6.0 M KOH electrolyte. The asymmetric SC
device, operating in the range of 1.6 V, delivers. The hybrid materials containing CN and
Ni components show potential for energy–storage applications.

Simonkolleite (Zn5(OH)8Cl2·H2O) nanoplatelets were deposited on nickel foam–
supported graphene (NiF–G/SimonK) using an MW–assisted hydrothermal method
(Table 2) [212]. In this condition, the porous NiF–G/SimonK composite was obtained,
in which the structural and morphological characteristic significantly affects the electro-
chemical performance. The NiF–G/SimonK composite, used as electrodes, exhibits a
CS of 836 F/g at a j of 1 A/g and a cycling stability with capacitance retention of 92%
after 5000 charge/discharge cycles. An MW–assisted synthesis was used to prepare a
honeycomb–like graphene/NiCoS (G/NiCoS) composite [213]. The defect–rich structures
of G/NiCoS ensure excellent electrochemical properties of this composite. The device with
the electrodes made of G/NiCoS exhibits a high CS of 1186 F/g at 1 A/g and a capacity of
89.2% after 10,000 cycles, and an E of 46.4 Wh/kg. Due to their high energy and power den-
sity and excellent cycling stability, the multi–component hybrid materials show potential
for energy–storage applications and electrocatalysis.

5. Concluding Remarks

The electrochemical properties of carbon–based electrode materials are closely re-
lated to their chemical composition, structure, and defects. They are ideal for catalysis,
electrocatalysis, and electrochemistry due to their excellent conductivity and mechanical
stability, sizeable specific area with micro– and mesoporosity, easy production, and high
charged carrier mobility. They are also good candidates for electrocatalysis due to the
easy formation of the defects in their networks that affect decreasing the reaction kinetic
barriers while simultaneously increasing the efficiency and selectivity of the chemical
transformation involved. From a chemical point of view, the essence of catalysis is breaking
and re–forming chemical bonds under the influence of an external force. The ability to
create carbon–carbon or carbon–heteroatom bonds in a simple way allows the use of this
property, for example, in the production of fuels (H2 and O2).

Since all these parameters are easily achievable during the creation or modification of
CNs, including during the irradiation of MW substrates, it is becoming increasingly used in
this area. It was determined that not only the simplicity, reaction time, and the possibility
of conducting it both in solution and the solid phase led to this, but above all the possibility
of combining substrates of different chemical natures. Despite the many advantages of
carbon-based materials, in some cases, it is necessary to combine them, for example, with
an inorganic component, to achieve optimal final parameters. Also, in this respect, MW
irradiation is an excellent source of energy that activates the chemical reaction between the
organic and inorganic phases. The obtained materials have a homogeneous form because,
as mentioned earlier, MW-assisted synthesis can be carried out in the solid phase, where the
problem of solubility of organic and inorganic compounds in a given solvent is eliminated.
Finally, the possibility of various combinations of synthesis parameters and substrates
makes MW-assisted synthesis a universal method.
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The review indicated that it is possible to create multi–component materials thanks
to MW–assisted synthesis. Not only is it easy and quick to combine inorganic and car-
bonaceous materials, but often, the resulting materials exhibit unique structures and mor-
phologies that need to be more attainable using conventional methods. Their physical and
chemical properties make using them in many scientific fields possible. Here, we focused
mainly on the electrochemical and electrocatalytic properties of the obtained materials
because, in these areas, new solutions are constantly being sought to produce materials with
optimal parameters. Because current scientific research indicates that in electrochemical
and electrocatalytic processes of carbon–based materials, not only the surface morphology
has a significant impact on the effectiveness of these reactions but also the heterogeneity of
the structure; therefore, MW–assisted synthesis is considered one of the most promising
methods in this area. Unfortunately, many of the solutions presented in this review still
need to meet the parameters desired on an industrial scale.

When we think about industrial applications, we think about more than just the macro
scale, which is often difficult to achieve, e.g., due to the kinetics of chemical reactions
in large volumes. In this regard, we also need to take other factors into account. These
certainly include the ease of producing materials, i.e., the simplicity of the technological
process, the removal of intermediate products from the reaction mixture, limitations in
using organic solvents, and low energy inputs in the entire technological process. All
these parameters shape the product’s final price, i.e., in our case, a material with specific
electrochemical and electrocatalytic properties. MW–assisted synthesis meets all the above
assumptions and enables simple and cheap chemical reactions to achieve the intended
synthesis goal. The examples of creating hybrid materials using MW irradiation presented
here have great potential, and this trend should be developed in the future. However, the
literature data presented are still within the scope of basic research, indicating that the
transition from the micro- to macroscale is still a milestone.
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