Review of the Influence of Acrylate Lotion on the Properties of Cement-Based Materials
Abstract
:1. Introduction
2. Research Status of Acrylate Lotion
3. Properties of Acrylate Lotion-Modified Cement-Based Materials
3.1. Acrylate Lotion Directly Modifies Cement-Based Materials
3.2. Acrylate Lotion and Nanomaterial Composite-Modified Cement-Based Materials
3.3. Blending and Composite Modification of Cement-Based Materials with Acrylate Lotion and Other Polymers
3.4. Acrylate Lotion and Fiber Composite-Modified Cement-Based Materials
3.5. Acrylate Lotion and Other Additives-Modified Cement-Based Materials
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Ohama, Y. Recent progress in concrete-polymer composites. Adv. Cem. Based Mater. 1997, 5, 31–40. [Google Scholar] [CrossRef]
- Tang, Y.; Li, L.; Wang, C.; Chen, M.; Zou, X.; Huang, K. Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision. Robot. Comput. Integr. Manuf. 2019, 59, 36–46. [Google Scholar] [CrossRef]
- Örmecioğlu, H.T. The Historic Concrete: Construction and Architecture. In Engineering and Technology Management; Güven Plus Group Inc.: İstanbul, Turkey, 2021; p. 210. [Google Scholar]
- Vaysburd, A.M.; Emmons, P.H. How to make today’s repairs durable for tomorrow corrosion protection in concrete repair. Constr. Build. Mater. 2000, 14, 189. [Google Scholar] [CrossRef]
- Yang, L.; Huang, Y. Microstructure and Mechanism of Polymer Cement. Integr. Ferroelectr. 2021, 215, 24–37. [Google Scholar] [CrossRef]
- Verma, M.; Dev, N.; Rahman, I.; Nigam, M.; Ahmed, M.; Mallick, J. Geopolymer concrete: A material for sustainable development in Indian construction industries. Crystals 2022, 12, 514. [Google Scholar] [CrossRef]
- Kardon, J.B. Polymer-modified concrete. J. Mater. Civ. Eng. 1997, 9, 85–92. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, J.; Zhang, Z.; Wang, C.; Long, C.; Dai, L. Effects of CCCW on properties of cement-based materials: A review. J. Build. Eng. 2022, 50, 104184. [Google Scholar]
- Kong, X.; Emmerling, S.; Pakusch, J.; Rueckel, M.; Nieberle, J. Retardation effect of styrene-acrylate copolymer latexes on cement hydration. Cem. Concr. Res. 2015, 75, 23–41. [Google Scholar] [CrossRef]
- Wang, R.; Ma, D.X.; Wang, P.M. Waterproof performance of polymer-modified mortar. Adv. Mater. Res. 2013, 687, 213–218. [Google Scholar] [CrossRef]
- Brandt, A.M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 2008, 86, 3–9. [Google Scholar] [CrossRef]
- Tan, Y.; Lu, X.; He, R.; Chen, H.; Wang, Z. Influence of superabsorbent polymers (SAPs) type and particle size on the performance of surrounding cement-based materials. Constr. Build. Mater. 2021, 270, 121442. [Google Scholar] [CrossRef]
- Flaga, K. Advances in materials applied in civil engineering. J. Mater. Process. Technol. 2000, 106, 173–183. [Google Scholar] [CrossRef]
- Monteiro PJ, M.; Kurtis, K.E. Time to failure for concrete exposed to severe sulfate attack. Cem. Concr. Res. 2003, 33, 987–993. [Google Scholar] [CrossRef]
- Preinstorfer, P.; Kollegger, J. New insights into the splitting failure of textile-reinforced concrete. Compos. Struct. 2020, 243, 112203. [Google Scholar] [CrossRef]
- Ho DW, S.; Lewis, R.K. Carbonation of concrete and its prediction. Cem. Concr. Res. 1987, 17, 489–504. [Google Scholar]
- Fuhaid AF, A.; Niaz, A. Carbonation and corrosion problems in reinforced concrete structures. Buildings 2022, 12, 586. [Google Scholar] [CrossRef]
- Xie, Z.; Yao, H.; Yuan, Q.; Zhong, F. The roles of water-soluble polymers in cement-based materials: A systematic review. J. Build. Eng. 2023, 73, 106811. [Google Scholar]
- Islam, M.A.; Rahman, M.M.; Ahmed, M. Polymer-modified concrete: World experience and potential for Bangladesh. Indian Concr. J. 2011, 22, 55–63. [Google Scholar]
- Schröfl, C.; Erk, K.A.; Siriwatwechakul, W.; Wyrzykowski, M.; Snoeck, D. Recent progress in superabsorbent polymers for concrete. Cem. Concr. Res. 2022, 151, 106648. [Google Scholar]
- Shen, J.; Liang, J.; Lin, X.; Lin, H.; Yang, Z. Recent progress in polymer-based building materials. Int. J. Polym. Sci. 2020, 2020, 8838160. [Google Scholar] [CrossRef]
- Abdel-Fattah, H.; El-Hawary, M.M. Flexural behavior of polymer concrete. Constr. Build. Mater. 1999, 13, 253–262. [Google Scholar] [CrossRef]
- Chandra, S.; Ohama, Y. Polymers in Concrete; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Raijiwala, D.B.; Patil, H.S. Geopolymer concrete A green concrete. In Proceedings of the 2010 2nd International Conference on Chemical, Biological and Environmental Engineering, Cairo, Egypt, 2–4 November 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 202–206. [Google Scholar]
- Garg, C.; Jain, A. Green concrete: Efficient & eco-friendly construction materials. Int. J. Res. Eng. Technol. 2014, 2, 259–264. [Google Scholar]
- Wang, M.; Wang, R.; Yao, H.; Farhan, S.; Zheng, S.; Wang, Z.; Du, C.; Jiang, H. Research on the mechanism of polymer latex modified cement. Constr. Build. Mater. 2016, 111, 710–718. [Google Scholar] [CrossRef]
- Barbuta, M.; Diaconescu, R.M.; Harja, M. Using neural networks for prediction of properties of polymer concrete with fly ash. J. Mater. Civ. Eng. 2012, 24, 523–528. [Google Scholar] [CrossRef]
- Yeon, K.S.; Yeon, J.H.; Choi, Y.S.; Min, S.H. Deformation behavior of acrylic polymer concrete: Effects of methacrylic acid and curing temperature. Constr. Build. Mater. 2014, 63, 125–131. [Google Scholar] [CrossRef]
- Cardellicchio, L. On conservation issues of contemporary architecture: The technical design development and the ageing process of the Jubilee Church in Rome by Richard Meier. Front. Archit. Res. 2018, 7, 107–121. [Google Scholar] [CrossRef]
- He, Z.; Shen, A.; Guo, Y.; Lyu, Z.; Li, D.; Qin, X.; Zhao, M.; Wang, Z. Cement-based materials modified with superabsorbent polymers: A review. Constr. Build. Mater. 2019, 225, 569–590. [Google Scholar]
- Chung, D.D.L. Use of polymers for cement-based structural materials. J. Mater. Sci. 2004, 39, 2973–2978. [Google Scholar] [CrossRef]
- Li, S.; Mao, Z.; Deng, M. Preparation of Butyl Acrylate Copolymer Emulsion and Its Regulation Effect on Cement Hydration. Materials 2023, 16, 2887. [Google Scholar] [CrossRef]
- Czarnecki, L.; Łukowski, P. Polymer-cement concretes. Cem. Wapno Beton 2010, 15, 243–258. [Google Scholar]
- Akinyemi, B.A.; Omoniyi, T.E. Engineering properties of acrylic emulsion polymer modified bamboo reinforced cement bonded composites. Eng. Struct. Technol. 2017, 9, 126–132. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Zheng, S.; Farhan, S.; Yao, H.; Jiang, H. Research on the chemical mechanism in the polyacrylate latex modified cement system. Cem. Concr. Res. 2015, 76, 62–69. [Google Scholar] [CrossRef]
- Ohama, Y. Handbook of Polymer-Modified Concrete and Mortars: Properties and Process Technology; William Andrew: Norwich, NY, USA, 1995. [Google Scholar]
- Jablonski, E.; Learner, T.; Hayes, J.; Golden, M. Conservation concerns for acrylic emulsion paints. Stud. Conserv. 2003, 48 (Suppl. S1), 3–12. [Google Scholar]
- Okamoto, Y.; Hasegawa, Y.; Yoshino, F. Urethane/acrylic composite polymer emulsions. Prog. Org. Coat. 1996, 29, 175–182. [Google Scholar] [CrossRef]
- Parvate, S.; Mahanwar, P. Advances in self-crosslinking of acrylic emulsion: What we know and what we would like to know. J. Dispers. Sci. Technol. 2019, 40, 519–536. [Google Scholar]
- Nazeeruddin, M.K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Grätzel, M. Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115, 6382–6390. [Google Scholar] [CrossRef]
- Diamantopoulos, G.; Katsiotis, M.; Fardis, M.; Karatasios, I.; Alhassan, S.; Karagianni, M.; Hassan, J. The role of titanium dioxide on the hydration of Portland cement: A combined NMR and ultrasonic study. Molecules 2020, 25, 5364. [Google Scholar] [CrossRef] [PubMed]
- Lackhoff, M.; Prieto, X.; Nestle, N.; Dehn, F.; Niessner, R. Photocatalytic activity of semiconductor-modified cement—Influence of semiconductor type and cement ageing. Appl. Catal. B Environ. 2003, 43, 205–216. [Google Scholar]
- Panopoulos, N.; Pissas, M.; Kim, H.J.; Kim, J.G.; Yoo, S.J.; Hassan, J.; Papavassiliou, G. Polaron freezing and the quantum liquid-crystal phase in the ferromagnetic metallic La0.67Ca0.33MnO3. NPJ Quantum Mater. 2018, 3, 20. [Google Scholar]
- Kurda, R.; Salih, A.; Shakor, P.; Saleh, P.; Alyousef, R.; Ahmed, H.; Aslani, F. Mix design of concrete: Advanced particle packing model by developing and combining multiple frameworks. Constr. Build. Mater. 2022, 320, 126218. [Google Scholar]
- Izadgoshasb, H.; Kandiri, A.; Shakor, P.; Laghi, V.; Gasparini, G. Predicting compressive strength of 3D printed mortar in structural members using machine learning. Appl. Sci. 2021, 11, 10826. [Google Scholar] [CrossRef]
- Hirose, M.; Zhou, J.; Nagai, K. The structure and properties of acrylic-polyurethane hybrid emulsions. Prog. Org. Coat. 2000, 38, 27–34. [Google Scholar] [CrossRef]
- Bhutta, C.M.A.R.; Ohama, Y. Recent status of research and development of concrete-polymer composites in Japan. Concr. Res. Lett. 2010, 1, 125–130. [Google Scholar]
- Sun, S. Research on Green Building Materials in Civil Engineering Management System. IOP Conf. Ser. Earth Environ. Sci. 2021, 769, 032035. [Google Scholar] [CrossRef]
- Kwon, H.M.; Nguyen, T.N.; Le, T.A. Improvement of the strength of acrylic emulsion polymer-modified mortar in high temperature and high humidity by blast furnace slag. KSCE J. Civ. Eng. 2009, 13, 23–30. [Google Scholar] [CrossRef]
- Abd-Elnaiem, A.M.; Hussein, S.I.; Ali, N.A.; Hakamy, A.; Mebed, A.M. Ameliorating the Mechanical Parameters, Thermal Stability, and Wettability of Acrylic Polymer by Cement Filling for High-Efficiency Waterproofing. Polymers 2022, 14, 4671. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Tan, Z.; An, C. Research and application of multi-functional acrylic resin grouting material. Constr. Build. Mater. 2022, 359, 129381. [Google Scholar]
- Candamano, S.; Crea, F.; Coppola, L.; Coffetti, D. Influence of acrylic latex and pre-treated hemp fibers on cement based mortar properties. Constr. Build. Mater. 2021, 273, 121720. [Google Scholar]
- Yang, J.; Wang, J.; He, X.; Yu, X.; Su, Y.; Huang, J.; Oh, S.K. Sodium Oleate and Styrene-Acrylate Copolymer Emulsion-Modified mortar: Functional Combination of Physical Barrier and Hydrophobicity. J. Mater. Civ. Eng. 2023, 35, 04023242. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, X.; Chen, S.; Lin, H.; Li, Z.; Lin, X. Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review. Compos. Part B Eng. 2022, 243, 110104. [Google Scholar]
- Yankun, Z.; Yue, L.; Hui, W.; Weili, S. Research status of polymer permeable cement concrete. Proc. IOP Conf. Ser. Earth Environ. Sci. 2019, 371, 042045. [Google Scholar] [CrossRef]
- Al Menhosh, A.A. An Experimental Study of High-Performance Concrete Using Metakaolin Additive and Polymer Admixture. Ph.D. Thesis, University of Salford, Salford, UK, 2018. [Google Scholar]
- Almusallam, A.A.; Khan, F.M.; Dulaijan, S.U.; Al-Amoudi, O.S.B. Effectiveness of surface coatings in improving concrete durability. Cem. Concr. Compos. 2003, 25, 473–481. [Google Scholar] [CrossRef]
- Pan, X.; Shi, Z.; Shi, C.; Ling, T.; Li, N. A review on surface treatment for concrete—Part 2: Performance. Constr. Build. Mater. 2017, 133, 81–90. [Google Scholar]
- Tian, Y.; Gao, P.; Wang, R.; Wang, L.; Zhong, J.; Li, J. Study on the influence of organic polymers on the physical and mechanical properties of cement-based materials. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 072028. [Google Scholar] [CrossRef]
- Jiang, C.; Huang, S.; Gao, P.; Chen, D. Experimental study on the bond and durability properties of mortar incorporating polyacrylic ester and silica fume. Adv. Cem. Res. 2018, 30, 56–65. [Google Scholar] [CrossRef]
- Ormsby, R.; McNally, T.; Mitchell, C.; Dunne, N. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: Effects on mechanical and thermal properties. J. Mech. Behav. Biomed. Mater. 2010, 3, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Qi, T.; Zhou, W.; Hui, D.; Xiao, C.; Qi, J.; Zheng, Z.; Zhao, Z. A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnol. Rev. 2020, 9, 303–322. [Google Scholar]
- Sobolev, K.; Flores, I.; Hermosillo, R.; Torres-Martínez, L. Nanomaterials and nanotechnology for high-performance cement composites. Proc. ACI Sess. Nanotechnol. Concr. Recent Dev. Future Perspect. 2006, 7, 93–120. [Google Scholar]
- Xu, Z.; Ji, Y.; Zhang, J.; Zhang, Z.; Xue, Q.; Gao, F. Mechanism of nano-SiO2 internal generation for modification of cement-based materials. J. Build. Eng. 2023, 76, 107247. [Google Scholar]
- Kim, M.O. Influence of polymer types on the mechanical properties of polymer-modified mortars. Appl. Sci. 2020, 10, 1061. [Google Scholar] [CrossRef]
- Li, L.; Wang, R.; Lu, Q. Influence of polymer latex on the setting time, mechanical properties and durability of calcium sulfoaluminate mortar. Constr. Build. Mater. 2018, 169, 911–922. [Google Scholar]
- Fan, J.; Li, G.; Deng, S.; Wang, Z. Mechanical properties and microstructure of polyvinyl alcohol (PVA) modified mortar. Appl. Sci. 2019, 9, 2178. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, B.; Sun, Q.; Tang, X.; Xie, Y. Mechanical properties of EVA-modified cement for underground gas storage. J. Nat. Gas Sci. Eng. 2015, 27, 1846–1851. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Yu, H.; Kong, X.; Wang, X.; Gu, Z. Study of cement mortars modified by emulsifier-free latexes. Cem. Concr. Compos. 2005, 27, 920–925. [Google Scholar]
- Zhang, X.; Du, M.; Fang, H.; Shi, M.; Zhang, C.; Wang, F. Polymer-modified mortars: Their enhanced properties, applications, prospects, and challenges. Constr. Build. Mater. 2021, 299, 124290. [Google Scholar]
- Nguyen, H.A.; Chang, T.P.; Chen, C.T.; Wun, J.-L.; Shih, J.-Y. Polypropylene fiber reinforced concrete improved by using silica fume and acrylic emulsion polymer. Mater. Constr. 2022, 72, e269. [Google Scholar]
- Liu, J.; Lv, C. Research progress on durability of cellulose fiber-reinforced cement-based composites. Int. J. Polym. Sci. 2021, 2021, 1014531. [Google Scholar]
- Hazimmah, D.S.; Muthusamy, K. Characterization of steel Fiber Reinforced acrylic emulsion polymer modified concrete (SFRPMC) through X-Ray diffraction (XRD) Analysis. Appl. Mech. Mater. 2016, 833, 87–93. [Google Scholar] [CrossRef]
- Rahaman, A.; Kar, K.K. Carbon nanomaterials grown on E-glass fibers and their application in composite. Compos. Sci. Technol. 2014, 101, 1–10. [Google Scholar]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-performance fiber-reinforced concrete: A review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar]
- Gao, D.; Huang, Y.; Yuan, J.; Gu, Z. Probability distribution of bond efficiency of steel fiber in tensile zone of reinforced concrete beams. J. Build. Eng. 2021, 43, 102550. [Google Scholar]
- Majumdar, A.J. Glass fibre reinforced cement and gypsum products. Proc. R. Soc. Lond. A Math. Phys. Sci. 1970, 319, 69–78. [Google Scholar]
- Ghugal, Y.M.; Deshmukh, S.B. Performance of alkali-resistant glass fiber reinforced concrete. J. Reinf. Plast. Compos. 2006, 25, 617–630. [Google Scholar] [CrossRef]
- Zhu, C.; Zhou, N.; Guo, Y.; Li, M.; Cheng, Q. Effect of doped glass fibers on tensile and shear strengths and microstructure of the modified shotcrete material: An experimental study and a simplified 2d model. Minerals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Song, J.H.; Lee, E.T.; Eun, H.C. Shear strength of reinforced concrete columns retrofitted by glass fiber reinforced polyurea. Civ. Eng. J. 2020, 6, 1852–1863. [Google Scholar] [CrossRef]
- Małek, M.; Jackowski, M.; Łasica, W.; Kadela, M.; Wachowski, M. Mechanical and material properties of mortar reinforced with glass fiber: An experimental study. Materials 2021, 14, 698. [Google Scholar] [CrossRef]
- Madhkhan, M.; Katirai, R. Effect of pozzolanic materials on mechanical properties and aging of glass fiber reinforced concrete. Constr. Build. Mater. 2019, 225, 146–158. [Google Scholar] [CrossRef]
- Karahan, O.; Atiş, C.D. The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 2011, 32, 1044–1049. [Google Scholar]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Shende, A.M.; Pande, A.M.; Pathan, M.G. Experimental study on steel fiber reinforced concrete for M-40 grade. Int. Ref. J. Eng. Sci. 2012, 1, 43–48. [Google Scholar]
- Sappakittipakorn, M.; Sukontasukkul, P.; Higashiyama, H.; Chindaprasirt, P. Properties of hooked end steel fiber reinforced acrylic modified concrete. Constr. Build. Mater. 2018, 186, 1247–1255. [Google Scholar]
- Li, Z.; Shen, A.; Chen, Z.; Chen, Z.; Guo, Y. Research progress on properties of basalt fiber-reinforced cement concrete. Mater. Today Commun. 2022, 33, 104824. [Google Scholar]
- Pacheco-Torgal, F.; Jalali, S. Cementitious building materials reinforced with vegetable fibres: A review. Constr. Build. Mater. 2011, 25, 575–581. [Google Scholar]
- Iqbal, S.; Ali, I.; Room, S.; Ali Khan, S.; Ali, A. Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Mater. Struct. 2019, 52, 56. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, W.; Liu, C.; Zou, W.; Pan, L. The tensile strength and damage characteristic of two types of concrete and their interface. Materials 2019, 13, 16. [Google Scholar] [CrossRef]
- Simões, T.; Octávio, C.; Valença, J.; Costa, H.; Dias-da-Costa, D.; Júlio, E. Influence of concrete strength and steel fibre geometry on the fibre/mortar interface. Compos. Part B Eng. 2017, 122, 156–164. [Google Scholar] [CrossRef]
- Borhan, T.M. Properties of glass concrete reinforced with short basalt fibre. Mater. Des. 2012, 42, 265–271. [Google Scholar] [CrossRef]
- Lian, J.; Yang, Y.; Yang, M.; Zhao, Y. Experimental research on the mechanical behavior of chopped basalt fiber reinforced concrete. Ind. Constr. 2007, 137, 10–881. [Google Scholar]
- Li, W.; Xu, J. Strengthening and toughening in basalt fiber-reinforced concrete. J. Silic. 2008, 36, 476–481. [Google Scholar]
- Wang, H.L.; Zhong, Y.H. Research status and proposals of basalt fiber reinforced concrete. Adv. Mater. Res. 2014, 834, 730–737. [Google Scholar]
- Ez-zaki, H.; Riva, L.; Bellotto, M.; Valentini, L.; Garbin, E.; Punta, C.; Artioli, G. Influence of cellulose nanofibrils on the rheology, microstructure and strength of alkali activated ground granulated blast-furnace slag: A comparison with ordinary Portland cement. Mater. Struct. 2021, 54, 23. [Google Scholar]
- Mohamed MA, S.; Ghorbel, E.; Wardeh, G. Valorization of micro-cellulose fibers in self-compacting concrete. Constr. Build. Mater. 2010, 24, 2473–2480. [Google Scholar]
- Xu, H.; Shao, Z.; Wang, Z.; Cai, L.; Li, Z.; Jin, H.; Chen, T. Experimental study on mechanical properties of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber. Constr. Build. Mater. 2020, 261, 120610. [Google Scholar]
- Bompadre, F.; Donnini, J. Surface modification of glass textile for the reinforcement of a cement-based composite: A review. Appl. Sci. 2021, 11, 2028. [Google Scholar]
- Balea, A.; Fuente, E.; Monte, M.C.; Blanco, A.; Negro, C. Recycled fibers for sustainable hybrid fiber cement based material: A review. Materials 2021, 14, 2408. [Google Scholar]
- Tonet, K.G.; Gorninski, J.P. Polymer concrete with recycled PET: The influence of the addition of industrial waste on flammability. Constr. Build. Mater. 2013, 40, 378–389. [Google Scholar]
- Sarde, B.; Patil, Y.D. Recent research status on polymer composite used in concrete-an overview. Mater. Today Proc. 2019, 18, 3780–3790. [Google Scholar] [CrossRef]
- Chen, X.; Geng, Y.; Li, S.; Hou, D.; Meng, S.; Gao, Y.; Zhang, P.; Ai, H. Preparation of modified silane composite emulsion and its effect on surface properties of cement-based materials. Coatings 2021, 11, 272. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, J.; Liu, Z.; Zou, Z. Effects of Slag and Fly Ash on the Durability of Acrylic Emulsion Polymer–Modified Mortar. J. Mater. Civ. Eng. 2020, 32, 04020155. [Google Scholar] [CrossRef]
- Lokuge, W.; Aravinthan, T. Effect of fly ash on the behaviour of polymer concrete with different types of resin. Mater. Des. 2013, 51, 175–181. [Google Scholar] [CrossRef]
- Teara, A.; Ing, D.S. Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder. Phys. Chem. Earth Parts A/B/C 2020, 120, 102942. [Google Scholar] [CrossRef]
3.0% | 3.5% | 4.0% | 4.5% | |
---|---|---|---|---|
Compressive strength/MPa | +28.46% | |||
Bending strength/MPa | +50.08% | |||
Splitting tensile strength/MPa | +48.68% | |||
Adhesion strength/MPa | +35.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, F.; Wang, H.; Ma, X.; He, T.; Lin, Y. Review of the Influence of Acrylate Lotion on the Properties of Cement-Based Materials. Materials 2023, 16, 6597. https://doi.org/10.3390/ma16196597
Su F, Wang H, Ma X, He T, Lin Y. Review of the Influence of Acrylate Lotion on the Properties of Cement-Based Materials. Materials. 2023; 16(19):6597. https://doi.org/10.3390/ma16196597
Chicago/Turabian StyleSu, Fuyun, Haiyan Wang, Xiaodong Ma, Tingshu He, and Yike Lin. 2023. "Review of the Influence of Acrylate Lotion on the Properties of Cement-Based Materials" Materials 16, no. 19: 6597. https://doi.org/10.3390/ma16196597
APA StyleSu, F., Wang, H., Ma, X., He, T., & Lin, Y. (2023). Review of the Influence of Acrylate Lotion on the Properties of Cement-Based Materials. Materials, 16(19), 6597. https://doi.org/10.3390/ma16196597