Characteristics of Ancient Shipwreck Wood from Huaguang Jiao No. 1 after Desalination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Moisture and Holocellulose Content
2.3. X-ray Diffraction
2.4. Quasi-Static Nanoindentation Test
2.5. Chemical Composition Analysis
2.6. Morphological Characteristics
3. Results
3.1. Determination of the Main Component Content
3.2. X-ray Diffraction
3.3. Nanoindentation Test
3.4. Chemical Structure Analysis Using FTIR Spectroscopy
3.5. Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Wang, D.; Sun, J.; Shao, D.; Lu, Y.; Chen, Y.; Wu, S. Evolution of deepwater turbidite bedforms in the Huaguang channel–lobe transition zone revealed by 3D seismic data in the Qiongdongnan Basin, South China Sea. Geomorphology 2020, 370, 107412. [Google Scholar] [CrossRef]
- Wang, D.; Wu, S.; Qin, Z.; Spence, G.; Lü, F. Seismic characteristics of the Huaguang mass transport deposits in the Qiongdongnan Basin, South China Sea: Implications for regional tectonic activity. Mar. Geol. 2013, 346, 165–182. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, H.; Zhang, B.; Wei, G.; Li, G.; Zhou, Y. A study of the Chinese organic–inorganic hybrid sealing material used in “Huaguang No. 1” ancient wooden ship. Thermochim. Acta 2013, 551, 20–26. [Google Scholar] [CrossRef]
- Schofield, E.J.; Delaveris, C.; Sarangi, R. Alkaline earth carbonates for the treatment of problematic sulfur associated with marine archeological wood. J. Archaeol. Sci. Rep. 2015, 4, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Magdalena, A.B.; Mathilde, M.; Clémentine, J.; Pilar, J.; Céline, R.; Eleanor, J.; Edith, J. Biological oxidation of sulfur compounds in artificially degraded wood. Int. Biodeterior. Biodegrad. 2018, 141, 62–70. [Google Scholar]
- Fors, Y.; Grudd, H.; Rindby, A.; Jalilehvand, F.; Sandström, M.; Cato, I.; Bornmalm, L. Sulfur and iron accumulation in three marine-archaeological shipwrecks in the Baltic Sea: The Ghost, the Crown and the Sword. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fors, Y.; Richards, V. The Effects of the Ammonia Neutralizing Treatment on Marine Archaeological Vasa Wood. Stud. Conserv. 2010, 55, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Frank, P.; Caruso, F.; Caponetti, E. Ancient Wood of the Acqualadrone Rostrum: Materials History through Gas Chromatography/Mass Spectrometry and Sulfur X-ray Absorption Spectroscopy. Anal. Chem. 2012, 84, 4419–4428. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Zheng, Y. Analysis of the iron sulfides in the shipwrecks Huaguang Reef I of the Southern Song Dynasty. Sci. Conserv. Archaeol. 2012, 24, 84–89. [Google Scholar]
- Bao, C. Evaluation of wood degradation and analysis of sulfur and iron compounds of the Huaguangjiao I shipwreck. Sci. Conserv. Archaeol. 2021, 33, 60–70. [Google Scholar]
- Li, Q.; Cao, L.; Wang, W.; Tan, H.; Jin, T.; Wang, G.; Lin, G.; Xu, R. Analysis of the bacterial communities in the waterlogged wooden cultural relics of the Xiaobaijiao No. 1 shipwreck via high-throughput sequencing technology. Holzforschung 2018, 72, 609–619. [Google Scholar] [CrossRef]
- Bjurhager, I.; Halonen, H.; Lindfors, E.-L.; Iversen, T.; Almkvist, G.; Gamstedt, E.K.; Berglund, L.A. State of Degradation in Archeological Oak from the 17th Century Vasa Ship: Substantial Strength Loss Correlates with Reduction in (Holo)Cellulose Molecular Weight. Biomacromolecules 2012, 13, 2521–2527. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Hueckel, T.; Cavallaro, G.; Sacanna, S.; Lazzara, G. Pickering Emulsions Based on Wax and Halloysite Nanotubes: An Ecofriendly Protocol for the Treatment of Archeological Woods. ACS Appl. Mater. Interfaces 2021, 13, 1651–1661. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, M.; Liu, J.; Luo, R.; Yan, T.; Yang, T.; Jiang, X.; Dong, M.; Yin, Y. Evaluation of the Deterioration State of Archaeological Wooden Artifacts: A Nondestructive Protocol based on Direct Analysis in Real Time—Mass Spectrometry (DART-MS) Coupled to Chemometrics. Anal. Chem. 2020, 92, 9908–9915. [Google Scholar] [CrossRef]
- Majka, J.; Zborowska, M.; Fejfer, M.; Waliszewska, B.; Olek, W. Dimensional stability and hygroscopic properties of PEG treated irregularly degraded waterlogged Scots pine wood. J. Cult. Heritage 2018, 31, 133–140. [Google Scholar] [CrossRef]
- Björdal, C.G. Evaluation of microbial degradation of shipwrecks in the Baltic Sea. Int. Biodeterior. Biodegradation 2012, 70, 126–140. [Google Scholar] [CrossRef]
- Jones, S.P.; Slater, N.K.; Jones, M.; Ward, K.; Smith, A.D. Investigating the processes necessary for satisfactory freeze-drying of waterlogged archaeological wood. J. Archaeol. Sci. 2009, 36, 2177–2183. [Google Scholar] [CrossRef]
- Liu, H.; Xie, J.; Zhang, J. Moisture transfer and drying stress of eucalyptus wood during supercritical CO2 (ScCO2) dewatering and ScCO2 combined oven drying. BioResources 2022, 17, 5116–5128. [Google Scholar] [CrossRef]
- Yang, L. Effect of Temperature and Pressure of Supercritical CO2 on Dewatering, Shrinkage and Stresses of Eucalyptus Wood. Appl. Sci. 2021, 11, 8730. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H. Effect of Supercritical CO2 Drying on Moisture Transfer and Wood Property of Eucalyptus urophydis. Forests 2020, 11, 1115. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Liu, H.-H.; Yang, H.; Yang, L. Drying Characteristics of Eucalyptus urophylla × E. grandis with Supercritical CO2. Materials 2020, 13, 3989. [Google Scholar] [CrossRef] [PubMed]
- Broda, M.; Curling, S.F.; Frankowski, M. The effect of the drying method on the cell wall structure and sorption properties of waterlogged archaeological wood. Wood Sci. Technol. 2021, 55, 971–989. [Google Scholar] [CrossRef]
- Harper, D.P. Effect of epoxy embedment on micromechanical properties of Brown-rot-decayed wood cell walls assessed with nanoindentation. Wood Fiber Sci. 2012, 44, 1–5. [Google Scholar]
- Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef]
- Walsh-Korb, Z.; Avérous, L. Recent developments in the conservation of materials properties of historical wood. Prog. Mater. Sci. 2019, 102, 167–221. [Google Scholar] [CrossRef]
- Antonelli, F.; Galotta, G.; Sidoti, G.; Zikeli, F.; Nisi, R.; Petriaggi, B.D.; Romagnoli, M. Cellulose and Lignin Nano-Scale Consolidants for Waterlogged Archaeological Wood. Front. Chem. 2020, 8, 32. [Google Scholar] [CrossRef]
- Cavallaro, G.; Donato, D.I.; Lazzara, G.; Milioto, S. Determining the selective impregnation of waterlogged archaeological woods with poly(ethylene) glycols mixtures by differential scanning calorimetry. J. Therm. Anal. Calorim. 2013, 111, 1449–1455. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Hu, D. High retreatability and dimensional stability of polymer grafted waterlogged archaeological wood achieved by ARGET ATRP. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, M.; Thybring, E.E. On sorption hysteresis in wood: Separating hysteresis in cell wall water and capillary water in the full moisture range. PLoS ONE 2019, 14, e0225111. [Google Scholar] [CrossRef]
- Glastrup, J.; Shashoua, Y.; Egsgaard, H.; Mortensen, M.N. Degradation of PEG in the Warship Vasa. Macromol. Symp. 2006, 238, 22–29. [Google Scholar] [CrossRef]
- Yi, Y.-h.K.; Kim, S.-c.; Park, Y.-m.; Kim, K.-s.; Kyoung-su. Experiment on conservation treatment method (PEG, sucros and lactitol) and degree of state-change with RH of waterlogged archaeological wood. Conserv. Sci. Museum. 2000, 2, 19–25. [Google Scholar]
- Han, L.; Guo, J.; Tian, X.; Jiang, X.; Yin, Y. Evaluation of PEG and sugars consolidated fragile waterlogged archaeological wood using nanoindentation and ATR-FTIR imaging. Int. Biodeterior. Biodegrad. 2022, 170, 105390. [Google Scholar] [CrossRef]
- Shen, D.; Li, N.; Fu, Y.; Macchioni, N.; Sozzi, L.; Tian, X.; Liu, J. Study on wood preservation state of Chinese ancient shipwreck Huaguangjiao I. J. Cult. Herit. 2018, 32, 53–59. [Google Scholar] [CrossRef]
- GB/T 1931 (2009); Standardization Administration of China. Method for determination of the moisture content of wood. Standardization Administration of China: Beijing, China, 2009.
- GB/T 1933 (2009); Standardization Administration of China. Method for determination of the density of wood. Standardization Administration of China: Beijing, China, 2009.
- GB/T 2677.6-1994; Standardization Administration of China. Fibrous raw material. Determination of solvent extractives. Standardization Administration of China: Beijing, China, 1994.
- Meng, Y.; Wang, S.; Cai, Z.; Young, T.M.; Du, G.; Li, Y. A novel sample preparation method to avoid influence of embedding medium during nano-indentation. Appl. Phys. A 2013, 110, 361–369. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Popescu, C.; Vasile, C.; Popescu, M.; Singurel, G.; Popa, V.I.; Munteanu, B.S. Analytical methods for lignin characterization. II. Spectroscopic studies. Cellul. Chem. Technol. 2006, 40, 597–622. [Google Scholar]
- Zhang, L.; Deng, X.; Lei, X.; Xiang, W.; Peng, C.; Lei, P.; Yan, W. Determining stem biomass of Pinus massoniana L. through variations in basic density. For. Int. J. For. Res. 2012, 85, 601–609. [Google Scholar] [CrossRef]
- Gao, J.; Li, J.; Qiu, J.; Guo, M. Degradation assessment of waterlogged wood at Haimenkou site. Frat. Ed Integrità Strutt. 2014, 8, 495–501. [Google Scholar]
- Broda, M.; Hill, C.A.S. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X.; Tu, X.; Ma, W.; Huang, H.; Varodi, A.M. Characteristics of Ancient Ship Wood from Taicang of the Yuan Dynasty. Materials 2022, 16, 104. [Google Scholar] [CrossRef]
- Pizzo, B.; Pecoraro, E.; Alves, A.; Macchioni, N.; Rodrigues, J.C. Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Talanta 2015, 131, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Kiliç, N.; Kiliç, A.G. An attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic study of waterlogged woods treated with melamine formaldehyde. Vib. Spectrosc. 2019, 105, 102985. [Google Scholar] [CrossRef]
- Cesar, T.; Danevčič, T.; Kavkler, K.; Stopar, D. Melamine polymerization in organic solutions and waterlogged archaeological wood studied by FTIR spectroscopy. J. Cult. Herit. 2017, 23, 106–110. [Google Scholar] [CrossRef]
- Gelbrich, J.; Mai, C.; Militz, H. Evaluation of bacterial wood degradation by Fourier Transform Infrared (FTIR) measurements. J. Cult. Herit. 2012, 13, S135–S138. [Google Scholar] [CrossRef]
- Donato, D.I.; Lazzara, G.; Milioto, S. Thermogravimetric analysis- A tool to evaluate the ability of mixtures in consolidating waterlogged archaeological woods. J. Therm. Anal. Calorim. 2010, 101, 1085–1091. [Google Scholar] [CrossRef]
- Jakes, J.E.; Hunt, C.G.; Yelle, D.J.; Lorenz, L.; Hirth, K.; Gleber, S.-C.; Vogt, S.; Grigsby, W.; Frihart, C.R. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol–Formaldehyde in Wood Cell Walls. ACS Appl. Mater. Interfaces 2015, 7, 6584–6589. [Google Scholar] [CrossRef] [PubMed]
- Konnerth, J.; Gierlinger, N.; Keckes, J.; Gindl, W. Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle. J. Mater. Sci. 2009, 44, 4399–4406. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, X.; Liu, L.; Yu, Y.; Zheng, W.; Song, P. Probing Chemical Changes in Holocellulose and Lignin of Timbers in Ancient Buildings. Polymers 2019, 11, 809. [Google Scholar] [CrossRef]
Wood Samples | Maximum Moisture (%) | Basic Density (g/cm3) |
---|---|---|
1# | 532.38 (45.28) 1 | 0.176 (0.006) 1 |
2# | 721.19 (57.67) 1 | 0.155 (0.005) 1 |
3# | 1149.38 (78.02) 1 | 0.143(0.006) 1 |
Sound wood | - | 0.449–0.510 [40] |
Wood Samples | Alcohol–Benzene Extract (%) | 1% NaOH Extract (%) | Acid Accumulator Insoluble Lignin (%) | Holocellulose (%) |
---|---|---|---|---|
1# | 2.16 | 12.75 | 59.86 | 40.67 |
2# | 2.08 | 13.44 | 60.77 | 39.26 |
3# | 1.97 | 14.26 | 63.89 | 36.84 |
Wood Samples | Elastic Modulus (GPa) | Hardness (GPa) |
---|---|---|
1# | 4.31 (0.22) 1 | 0.28 (0.03) 1 |
2# | 2.60 (0.171 | 0.14 (0.01) 1 |
3# | 1.28 (0.13) 1 | 0.10 (0.01)1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhu, L.; Tu, X.; Zhang, C.; Huang, H.; Varodi, A.M. Characteristics of Ancient Shipwreck Wood from Huaguang Jiao No. 1 after Desalination. Materials 2023, 16, 510. https://doi.org/10.3390/ma16020510
Liu X, Zhu L, Tu X, Zhang C, Huang H, Varodi AM. Characteristics of Ancient Shipwreck Wood from Huaguang Jiao No. 1 after Desalination. Materials. 2023; 16(2):510. https://doi.org/10.3390/ma16020510
Chicago/Turabian StyleLiu, Xinyou, Lulu Zhu, Xinwei Tu, Changjun Zhang, Houyi Huang, and Anca Maria Varodi. 2023. "Characteristics of Ancient Shipwreck Wood from Huaguang Jiao No. 1 after Desalination" Materials 16, no. 2: 510. https://doi.org/10.3390/ma16020510
APA StyleLiu, X., Zhu, L., Tu, X., Zhang, C., Huang, H., & Varodi, A. M. (2023). Characteristics of Ancient Shipwreck Wood from Huaguang Jiao No. 1 after Desalination. Materials, 16(2), 510. https://doi.org/10.3390/ma16020510