Evolution of Structure and Properties of Nickel-Enriched NiTi Shape Memory Alloy Subjected to Bi-Axial Deformation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. MS Deformation
3.2. XRD Study
3.3. TEM Study
3.4. DSC Study
3.5. Functional Properties and Hardness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Zareie, S.; Issa, A.S.; Seethaler, R.J.; Zabihollah, A. (2020, October). Recent advances in the applications of shape memory alloys in civil infrastructures: A review. Elsevier Struct. 2020, 27, 1535–1550. [Google Scholar] [CrossRef]
- Jani, J.M.; Leary, M.; Subic, A. Shape memory alloys in automotive applications. Applied Mechanics and Materials. Trans. Tech. Publ. Ltd. 2014, 663, 248–253. [Google Scholar] [CrossRef]
- Morgan, N.B. Medical shape memory alloy applications—The market and its products. Mater. Sci. Eng. A 2004, 378, 16–23. [Google Scholar] [CrossRef]
- Yoneyama, T.; Miyazaki, S. Shape Memory Alloys for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2008; p. 352. [Google Scholar]
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge Univ. Press: Cambridge, UK, 1999; p. 300. [Google Scholar]
- Ryklina, E.; Polyakova, K.; Murygin, S.; Komarov, V.; Andreev, V. On stress- and strain-temperature behavior of titanium nickelide with various grain/subgrain size. Mater. Lett. 2022, 328, 133–135. [Google Scholar] [CrossRef]
- Yang, R.; Ma, W.; Wang, C.; Wang, T.M.; Wang, Q.H. Effect of hot rolling on microstructure and tribology behaviors of Ti-50.8 Ni alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 967–979. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Postnikov, I.; Korpala, G.; Kawalla, R.; Prokoshkin, S. Deformation behavior, structure and properties of an equiatomic Ti–Ni shape memory alloy compressed in a wide temperature range. Trans. Indian Inst. Met. 2021, 74, 2419–2426. [Google Scholar] [CrossRef]
- Brailovski, V.; Prokoshkin, S.D.; Khmelevskaya, I.Y.; Inaekyan, K.E.; Demers, V.; Dobatkin, S.V.; Tatyanin, E.V. Structure and properties of the Ti–50.0 at% Ni alloy after strain hardening and nanocrystallizing thermomechanical processing. Mater. Trans. 2006, 47, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM 2016, 68, 1216–1226. [Google Scholar] [CrossRef] [Green Version]
- Gunderov, D.V.; Polyakov, A.V.; Semenova, I.P.; Raab, G.I.; Churakova, A.A.; Gimaltdinova, E.I.; Valiev, R.Z. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Sci. Eng. A 2013, 562, 128–136. [Google Scholar] [CrossRef]
- Karelin, R.D.; Khmelevskaya, I.Y.; Komarov, V.S.; Andreev, V.A.; Perkas, M.M.; Yusupov, V.S.; Prokoshkin, S.D. Effect of quasi-continuous equal-channel angular pressing on structure and properties of Ti-Ni shape memory alloys. J. Mater. Eng. Perform. 2021, 30, 3096–3106. [Google Scholar] [CrossRef]
- Shuitcev, A.; Gunderov, D.V.; Sun, B.; Li, L.; Valiev, R.Z.; Tong, Y.X. Nanostructured Ti29. 7Ni50. 3Hf20 high temperature shape memory alloy processed by high-pressure torsion. J. Mater. Sci. Technol. 2020, 52, 218–225. [Google Scholar] [CrossRef]
- Khmelevskaya, I.Y.; Kawalla, R.; Prokoshkin, S.D.; Komarov, V.S. Effect of multiaxial deformation Max-strain on the structure and properties of Ti-Ni alloy. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Jakarta, Indonesia, 29–31 March 2014; Volume 63, p. 012108. [Google Scholar] [CrossRef]
- Khmelevskaya, I.; Komarov, V.; Kawalla, R.; Prokoshkin, S.; Korpala, G. Effect of biaxial isothermal quasi-continuous deformation on structure and shape memory properties of Ti-Ni alloys. J. Mater. Eng. Perform. 2017, 26, 4011–4019. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Prokoshkin, S.; Zaripova, M.; Isaenkova, M.; Kawalla, R. Effect of biaxial cyclic severe deformation on structure and properties of Ti-Ni alloys. J. Alloy. Compd. 2019, 797, 842–848. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Kawalla, R.; Korpala, G.; Prahl, U.; Yusupov, V.; Prokoshkin, S. Deformation Behavior, Structure, and Properties of an Aging Ti-Ni Shape Memory Alloy after Compression Deformation in a Wide Temperature Range. JOM 2021, 73, 620–629. [Google Scholar] [CrossRef]
- Cao, S.; Nishida, M.; Schryvers, D. Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni–Ti. Acta Mater. 2011, 59, 1780–1789. [Google Scholar] [CrossRef]
- Komarov, V.; Karelin, R.; Khmelevskaya, I.; Yusupov, V.; Gunderov, D. Effect of Post-Deformation Annealing on Structure and Properties of Nickel-Enriched Ti-Ni Shape Memory Alloy Deformed in Various Initially Deformation-Induced Structure States. Crystals 2022, 12, 506. [Google Scholar] [CrossRef]
- Poletika, T.M.; Girsova, S.L.; Lotkov, A.I.; Kudryachov, A.N.; Girsova, N.V. Structure and Multistage Martensite Transformation in Nanocrystalline Ti-50.9 Ni Alloy. Metals 2021, 11, 1262. [Google Scholar] [CrossRef]
- Prokoshkin, S.D.; Brailovski, V.; Inaekyan, K.E.; Demers, V.; Khmelevskaya, I.Y.; Dobatkin, S.V.; Tatyanin, E.V. Structure and properties of severely cold-rolled and annealed Ti–Ni shape memory alloys. Mater. Sci. Eng. A 2008, 481, 114–118. [Google Scholar] [CrossRef]
Treatment | Mf, °C | Mp,°C | Ms, °C | TR,°C | As, °C | Ap,°C | Af, °C |
---|---|---|---|---|---|---|---|
Reference | −32 | −17 | −4 | - | −20 | −13 | 1 |
T = 350 °C, e = 6.6 | <−100 | −70 | −40 | 45 | −26 | −10 | 42 |
T = 350 °C, e = 9.5 | <−100 | −68 | −32 | 45 | −22 | −8 | 35 |
T = 330 °C, e = 9.5 | <−100 | −70 | −35 | 49 | −23 | −8 | 41 |
Treatment | ||
---|---|---|
Reference | 242 ± 4 | 4.0 ± 0.3 |
T = 350 °C, e = 6.6 | 325 ± 7 | 10.9 ± 0.3 |
T = 350 °C, e = 9.5 | 341 ± 7 | 11.7 ± 0.3 |
T = 330 °C, e = 9.5 | 362 ± 6 | 12.0 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komarov, V.; Karelin, R.; Khmelevskaya, I.; Cherkasov, V.; Yusupov, V.; Korpala, G.; Kawalla, R.; Prahl, U.; Prokoshkin, S. Evolution of Structure and Properties of Nickel-Enriched NiTi Shape Memory Alloy Subjected to Bi-Axial Deformation. Materials 2023, 16, 511. https://doi.org/10.3390/ma16020511
Komarov V, Karelin R, Khmelevskaya I, Cherkasov V, Yusupov V, Korpala G, Kawalla R, Prahl U, Prokoshkin S. Evolution of Structure and Properties of Nickel-Enriched NiTi Shape Memory Alloy Subjected to Bi-Axial Deformation. Materials. 2023; 16(2):511. https://doi.org/10.3390/ma16020511
Chicago/Turabian StyleKomarov, Victor, Roman Karelin, Irina Khmelevskaya, Vladimir Cherkasov, Vladimir Yusupov, Grzegorz Korpala, Rudolf Kawalla, Ulrich Prahl, and Sergey Prokoshkin. 2023. "Evolution of Structure and Properties of Nickel-Enriched NiTi Shape Memory Alloy Subjected to Bi-Axial Deformation" Materials 16, no. 2: 511. https://doi.org/10.3390/ma16020511
APA StyleKomarov, V., Karelin, R., Khmelevskaya, I., Cherkasov, V., Yusupov, V., Korpala, G., Kawalla, R., Prahl, U., & Prokoshkin, S. (2023). Evolution of Structure and Properties of Nickel-Enriched NiTi Shape Memory Alloy Subjected to Bi-Axial Deformation. Materials, 16(2), 511. https://doi.org/10.3390/ma16020511