Synthesis and Catalytic Study of NiAg Bimetallic Core–Shell Nanoparticles
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Nanomaterials
2.2.1. Synthesis of Ag Nanoparticles
2.2.2. Synthesis of AgNi Nanoparticles
2.3. Characterization of Obtained Nanomaterials
2.4. Catalytic Tests
3. Results and Discussion
3.1. Ag Nanoparticles Synthesis
3.2. AgNi Bimetallic Nanoparticles Synthesis
3.3. Characterization of Obtained Colloids
3.3.1. Indication of the Presence of Nanoparticles
3.3.2. XRD Analysis
3.3.3. Nanoparticle Size and Size Distribution
3.3.4. Morphology and Chemical Composition Study
3.3.5. XPS Analysis
3.4. Catalytic Tests
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dojčinović, B.P.; Roglić, G.M.; Obradović, B.M.; Kuraica, M.M.; Kostić, M.M.; Nešić, J.; Manojlović, D.D. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge. J. Hazard. Mater. 2011, 192, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Alinsafi, A.; Evenou, F.; Abdulkarim, E.M.; Pons, M.N.; Zahraa, O.; Benhammou, A.; Yaacoubi, A.; Nejmeddine, A. Treatment of textile industry wastewater by supported photocatalysis. Dye. Pigment. 2007, 74, 439–445. [Google Scholar] [CrossRef]
- Carneiro, P.A.; Nogueira, R.F.P.; Zanoni, M.V.B. Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dye. Pigment. 2007, 74, 127–132. [Google Scholar] [CrossRef]
- Song, S.; Ying, H.; He, Z.; Chen, J. Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis. Chemosphere 2007, 66, 1782–1788. [Google Scholar] [CrossRef]
- Axelsson, J.; Nilsson, U.; Terrazas, E.; Alvarez Aliaga, T.; Welander, U. Decolorization of the textile dyes Reactive Red 2 and Reactive Blue 4 using Bjerkandera sp. Strain BOL 13 in a continuous rotating biological contactor reactor. Enzym. Microb. Technol. 2006, 39, 32–37. [Google Scholar] [CrossRef]
- Satyen Saha and Sankalan, M. Photochemistry and Photophysics; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Ali, I. New Generation Adsorbents for Water Treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef]
- Hering Janet, G.; Ingold Karin, M. Water Resources Management: What Should Be Integrated? Science 2012, 336, 1234–1235. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Ji, K.; Deng, J.; Zang, H.; Han, J.; Arandiyan, H.; Dai, H. Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4–BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Appl. Catal. B Environ. 2015, 165, 285–295. [Google Scholar] [CrossRef]
- Okesola, B.O.; Smith, D.K. Applying low-molecular weight supramolecular gelators in an environmental setting—self-assembled gels as smart materials for pollutant removal. Chem. Soc. Rev. 2016, 45, 4226–4251. [Google Scholar] [CrossRef]
- Byrappa, K.; Subramani, A.K.; Ananda, S.; Rai, K.M.L.; Dinesh, R.; Yoshimura, M. Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull. Mater. Sci. 2006, 29, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Cuiping, B.; Xianfeng, X.; Wenqi, G.; Dexin, F.; Mo, X.; Zhongxue, G.; Nian, X. Removal of rhodamine B by ozone-based advanced oxidation process. Desalination 2011, 278, 84–90. [Google Scholar] [CrossRef]
- Kim, K.-H.; Ihm, S.-K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. J. Hazard. Mater. 2011, 186, 16–34. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Kamle, M.; Shukla, S.; Mahato, D.K.; Chandra, P.; Hwang, S.K.; Kumar, P.; Huh, Y.S.; Han, Y.-K. Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 2018, 26, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, N.; Arman, A.; Sadeghi, M.; Luna, C.; Mirzaei, S.; Zelati, A.; Shakoury, R. Optical transitions and photocatalytic activity of NiSe films prepared by the chemical solution deposition method. Eur. Phys. J. Plus 2022, 137, 661. [Google Scholar] [CrossRef]
- Țălu, Ș.; Yadav, R.P.; Mittal, A.K.; Achour, A.; Luna, C.; Mardani, M.; Solaymani, S.; Arman, A.; Hafezi, F.; Ahmadpourian, A.; et al. Application of Mie theory and fractal models to determine the optical and surface roughness of Ag–Cu thin films. Opt. Quantum Electron. 2017, 49, 256. [Google Scholar] [CrossRef]
- Chen, D.; Han, C.; Sun, Q.; Ding, J.; Huang, Q.; Li, T.-T.; Hu, Y.; Qian, J.; Huang, S. Bimetallic AgNi nanoparticles anchored onto MOF-derived nitrogen-doped carbon nanostrips for efficient hydrogen evolution. Green Energy Environ. 2021; in press. [Google Scholar] [CrossRef]
- Ghodselahi, T.; Arman, A. Magnetoresistance of Cu–Ni nanoparticles in hydrogenated amorphous carbon thin films. J. Mater. Sci. Mater. Electron. 2015, 26, 4193–4197. [Google Scholar] [CrossRef]
- Dauthal, P.; Mukhopadhyay, M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind. Eng. Chem. Res. 2016, 55, 9557–9577. [Google Scholar] [CrossRef]
- Yao, T.; Cui, T.; Wang, H.; Xu, L.; Cui, F.; Wu, J. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye. Nanoscale 2014, 6, 7666–7674. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y. A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett. 2010, 10, 30–35. [Google Scholar] [CrossRef]
- Zeng, T.; Zhang, X.-L.; Niu, H.-Y.; Ma, Y.-R.; Li, W.-H.; Cai, Y.-Q. In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Appl. Catal. B Environ. 2013, 134–135, 26–33. [Google Scholar] [CrossRef]
- Zhang, L.-W.; Fu, H.-B.; Zhu, Y.-F. Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon. Adv. Funct. Mater. 2008, 18, 2180–2189. [Google Scholar] [CrossRef]
- Wojnicki, M.; Tokarski, T.; Hessel, V.; Fitzner, K.; Luty-Błocho, M. 2H and 4H silver colloidal suspension synthesis, as a new potential drug carrier. Chem. Eng. J. 2020, 358, 122922. [Google Scholar] [CrossRef]
- Wojnicki, M.; Tokarski, T.; Hessel, V.; Fitzner, K.; Luty-Błocho, M. Continuous, monodisperse silver nanoparticles synthesis using microdroplets as a reactor. J. Flow Chem. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wojnicki, M.; Mania, I.; Marzec, M.; Gajewska, M.; Mech, K. Influence of experimental conditions on deposition of silver nanoparticles onto surface of graphene oxide. Arch. Metall. Mater. 2015, 60, 2631–2635. [Google Scholar] [CrossRef]
- Wojnicki, M.; Zabieglińska, K.; Luty-Błocho, M. Influence of experimental condition on silver nanoparticle synthesis process in aqueous solutions. Ores Non-Ferr. Met. 2015, 60, 103–109. [Google Scholar]
- Wojtaszek, K.; Skibińska, K.; Cebula, F.; Tokarski, T.; Escribà-Gelonch, M.; Hessel, V.; Wojnicki, M. Synthesis and Catalytic Studies of Nanoalloy Particles Based on Bismuth, Silver, and Rhenium. Metals 2022, 12, 1819. [Google Scholar] [CrossRef]
- Xiao, Q.; Yao, Z.; Liu, J.; Hai, R.; Oderji, H.Y.; Ding, H. Synthesis and characterization of Ag–Ni bimetallic nanoparticles by laser-induced plasma. Thin Solid Film. 2011, 519, 7116–7119. [Google Scholar] [CrossRef]
- Abimbola Akinsiku, A.; Oluseyi Ajanaku, K.; Olugbenga Dare, E. Green Synthesis of Pseudo-Cubic Ag/Ni Bimetallic Nanoparticles using Senna occidentalis Leaf Extract. J. Phys. Conf. Ser. 2019, 1299, 012133. [Google Scholar] [CrossRef]
- Kamli, M.R.; Alzahrani, E.A.; Albukhari, S.M.; Ahmad, A.; Sabir, J.S.M.; Malik, M.A. Combination Effect of Novel Bimetallic Ag-Ni Nanoparticles with Fluconazole against Candida albicans. J. Fungi 2022, 8, 733. [Google Scholar] [CrossRef] [PubMed]
- Sachi; Singh, A.P.; Thirumal, M. Fabrication of AgNi Nano-alloy-Decorated ZnO Nanocomposites as an Efficient and Novel Hybrid Catalyst to Degrade Noxious Organic Pollutants. ACS Omega 2021, 6, 34771–34782. [Google Scholar]
- Wang, Q.-X.; Yuan, M.-T.; Shen, H.-Y.; Zhang, H.-Y.; Chen, X.; Xu, Y.; Duan, X.-X.; Liu, K.-L.; Gao, T.; Ning, Y.-G.; et al. Fabrication of polyaniline-supported bimetal AgNi nanoparticles and the enhanced performance towards formate oxidation. J. Solid State Electrochem. 2021, 25, 1197–1205. [Google Scholar] [CrossRef]
- Brož, P.; Hejduková, M.; Vykoukal, V.; Zelenka, F.; Sopoušek, J.; Buršík, J.; Zobač, O. Study of surface effects and catalytic properties of selected Ni-based bimetallic nanoparticles by Knudsen effusion mass spectrometry. Calphad 2019, 64, 334–341. [Google Scholar] [CrossRef]
- Vykoukal, V.; Bursik, J.; Roupcova, P.; Cullen, D.A.; Pinkas, J. Solvothermal hot injection synthesis of core-shell AgNi nanoparticles. J. Alloy. Compd. 2019, 770, 377–385. [Google Scholar] [CrossRef]
- Akinsiku, A.A.; Dare, E.O.; Ajanaku, K.O.; Ajani, O.O.; Olugbuyiro, J.A.O.; Siyanbola, T.O.; Ejilude, O.; Emetere, M.E. Modeling and Synthesis of Ag and Ag/Ni Allied Bimetallic Nanoparticles by Green Method: Optical and Biological Properties. Int. J. Biomater. 2018, 2018, 9658080. [Google Scholar] [CrossRef] [Green Version]
- Riaz, T.; Mughal, P.; Shahzadi, T.; Shahid, S.; Abbasi, M.A. Green synthesis of silver nickel bimetallic nanoparticles using plant extract of Salvadora persica and evaluation of their various biological activities. Mater. Res. Express 2019, 6, 11. [Google Scholar] [CrossRef]
- Garfinkel, D.A.; Pakeltis, G.; Tang, N.; Ivanov, I.N.; Fowlkes, J.D.; Gilbert, D.A.; Rack, P.D. Optical and Magnetic Properties of Ag–Ni Bimetallic Nanoparticles Assembled via Pulsed Laser-Induced Dewetting. ACS Omega 2020, 5, 19285–19292. [Google Scholar] [CrossRef]
- Roy, A.; Srinivas, V.; Ram, S.; De Toro, J.A.; Mizutani, U. Structure and magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by borohydride reduction method. Phys. Rev. B 2005, 71, 184443. [Google Scholar] [CrossRef]
- Sharma, A.K.; Desnavi, S.; Dixit, C.; Varshney, U.; Sharma, A. Extraction of Nickel Nanoparticles from Electroplating Waste and Their Application in Production of Bio-diesel from Biowaste. Int. J. Chem. Eng. Appl. 2015, 6, 156. [Google Scholar] [CrossRef]
- Ushikubo, F.Y.; Furukawa, T.; Nakagawa, R.; Enari, M.; Makino, Y.; Kawagoe, Y.; Shiina, T.; Oshita, S. Evidence of the existence and the stability of nano-bubbles in water. Colloids Surf. A Physicochem. Eng. Asp. 2010, 361, 31–37. [Google Scholar] [CrossRef]
- Kumar, M.; Deka, S. Multiply Twinned AgNi Alloy Nanoparticles as Highly Active Catalyst for Multiple Reduction and Degradation Reactions. ACS Appl. Mater. Interfaces 2014, 6, 16071–16081. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.A.; Osorio, P.; Sienkiewicz, A.; Pulgarin, C.; Centeno, A.; Giraldo, S.A. Photocatalytic production of 1O2 and *OH mediated by silver oxidation during the photoinactivation of Escherichia coli with TiO2. J. Hazard. Mater. 2012, 211–212, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Fuggle, J.C.; Källne, E.; Watson, L.M.; Fabian, D.J. Electronic structure of aluminum and aluminum-noble-metal alloys studied by soft-x-ray and x-ray photoelectron spectroscopies. Phys. Rev. B 1977, 16, 750–761. [Google Scholar] [CrossRef]
- Kotta, A.; Kim, E.-B.; Ameen, S.; Shin, H.-S.; Seo, H.K. Communication—Ultra-Small NiO Nanoparticles Grown by Low-Temperature Process for Electrochemical Application. J. Electrochem. Soc. 2020, 167, 167517. [Google Scholar] [CrossRef]
- Altawell, N. 8–Machine olfaction device nanostructure coating. In Introduction to Machine Olfaction Devices; Altawell, N., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 139–157. [Google Scholar]
- Hamedi, S.; Shojaosadati, S.A.; Mohammadi, A. Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. J. Photochem. Photobiol. B Biol. 2017, 167, 36–44. [Google Scholar] [CrossRef]
- Naraginti, S.; Li, Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. J. Photochem. Photobiol. B Biol. 2017, 170, 225–234. [Google Scholar] [CrossRef]
- Amjad, U.-E.-S.; Sherin, L.; Zafar, M.F.; Mustafa, M. Comparative Study on the Catalytic Degradation of Methyl Orange by Silver Nanoparticles Synthesized by Solution Combustion and Green Synthesis Method. Arab. J. Sci. Eng. 2019, 44, 9851–9857. [Google Scholar] [CrossRef]
- Westsson, E.; Picken, S.; Koper, G. The effect of lattice strain on catalytic activity. Chem. Commun. 2019, 55, 1338–1341. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Maark, T.A.; Khorshidi, A.; Sethuraman, V.A.; Peterson, A.A.; Guduru, P.R. The Influence of Elastic Strain on Catalytic Activity in the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2016, 55, 6175–6181. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.; Devan, M.V. Photocatalytic activity of Ag/Ni bi-metallic nanoparticles on textile dye removal. Green Process. Synth. 2019, 8, 895–900. [Google Scholar] [CrossRef]
Sample | % at. | |||||
---|---|---|---|---|---|---|
C | O | Na | Si | Ni | Ag | |
Ni | 43.9 | 40.5 | 10.9 | 4.0 | 0.9 | - |
Ag | 31.2 | 45.2 | 16.7 | 6.1 | - | 0.8 |
NiAg | 48.0 | 33.6 | 4.9 | 6.5 | 4.3 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtaszek, K.; Cebula, F.; Rutkowski, B.; Wytrwal, M.; Csapó, E.; Wojnicki, M. Synthesis and Catalytic Study of NiAg Bimetallic Core–Shell Nanoparticles. Materials 2023, 16, 659. https://doi.org/10.3390/ma16020659
Wojtaszek K, Cebula F, Rutkowski B, Wytrwal M, Csapó E, Wojnicki M. Synthesis and Catalytic Study of NiAg Bimetallic Core–Shell Nanoparticles. Materials. 2023; 16(2):659. https://doi.org/10.3390/ma16020659
Chicago/Turabian StyleWojtaszek, Konrad, Filip Cebula, Bogdan Rutkowski, Magdalena Wytrwal, Edit Csapó, and Marek Wojnicki. 2023. "Synthesis and Catalytic Study of NiAg Bimetallic Core–Shell Nanoparticles" Materials 16, no. 2: 659. https://doi.org/10.3390/ma16020659
APA StyleWojtaszek, K., Cebula, F., Rutkowski, B., Wytrwal, M., Csapó, E., & Wojnicki, M. (2023). Synthesis and Catalytic Study of NiAg Bimetallic Core–Shell Nanoparticles. Materials, 16(2), 659. https://doi.org/10.3390/ma16020659