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Abstract: At present, the question of the relationship between the characteristic martensitic transfor-
mation temperatures (MTT) and the electronic parameters of a system has not been fully studied. In
the present work, an attempt to establish a similar relationship using the example of the concentration
of charge carriers, n, was made. The field dependences of Hall resistivity ρH and magnetization M of
the magnetocaloric Ni47−xMn41+xIn12 (x = 0, 1, 2) alloys were measured at T = 4.2 K and in magnetic
fields of up to 80 kOe. The MTT were obtained from the temperature dependences of electrical
resistivity and magnetization. It was observed that the MTT correlate strongly with both the valence
electron concentration e/a and the electronic transport characteristics, which are the coefficient of the
normal (NHE) R0 and anomalous (AHE) RS Hall effect and the concentration of charge carriers n.

Keywords: magnetocaloric effect; Heusler alloys Ni-Mn-In; Hall effect; valence electron concentration
e/a; concentration of charge carriers n

1. Introduction

Despite the fact that Heusler alloys were discovered by F. Heusler in 1903, the synthesis
and study of their physical properties are still of great interest [1]. This is largely due to
the fact that many unusual phenomena, states, and useful functional properties can be
observed in Heusler alloys: half-metallic ferromagnetism [2], the state of a spin gapless
semiconductor [3], topological semimetals [4–6], large thermoelectric effect, and unusual
thermal properties [7–9], shape memory effect [10–12], magnetocaloric effect (MCE) [13–16],
etc. Most of these phenomena arise due to the peculiarities of their crystal and electronic
structure and the magnetic state.

If the role of the parameters of the crystal structure, electronic and magnetic char-
acteristics in the formation of the states of a half-metallic ferromagnet, a spin gapless
semiconductor, and a topological semimetal has been studied in sufficient detail [5], then
the relationship between the parameters of the electronic structure and shape memory
effects and MCE has not been studied enough, since such information is practically absent
in the modern scientific literature.

Heusler alloys with a large MCE, which, as a rule, is observed near the martensitic
transformation temperatures (MTT) [17], are of particular practical interest. Despite the
huge number of publications in this area, there are still plenty of unresolved problems. For
example, it is known that there is a certain correlation between the MTT and the parameter
e/a, where e is the number of valence electrons, and a is the number of atoms in the unit
cell. As a rule, the values of MTT increase with an increase in the parameter e/a [18,19].
However, there are some cases when MTT decreases with an increase in e/a [20,21] or such
dependences are not monotonous [22,23]. This is largely because the size of the unit cell can
be different at the same value of e/a. This leads to the situation when, even at the same e/a,
the electron density N, i.e., the number of valence electrons per cell, can be different [24].

For the first time, this circumstance was noticed in [24], where nonmonotonic depen-
dences of MTT on e/a and the volume of the unit cell Vcell were observed, but “good”
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monotonic changes of MTT on the electron density N were observed. Note that in [24],
the parameters of the crystal lattice, and then Vcell, were determined from X-ray data at
room temperature; however, as a rule, alloys are in a two-phase state, i.e., they contain both
austenitic and martensitic phases [25]. In addition, the structure and physical properties
of compounds of the same composition can vary greatly depending on the method of
preparation [26–28].

Thus, the question arises of finding the electronic parameters of a system that charac-
terize this specific compound and that can be measured experimentally for it. Apparently,
such a parameter should also correlate with the MTT. In our opinion, the concentration of
current carriers n could be such a parameter.

Heusler alloys based on Ni-Mn-In were selected as the objects of this study, because
martensitic transformations are observed in them near room temperature (see, for exam-
ple, [14]), i.e., the austenitic and martensitic phases coexist. Heusler alloys based on the
Ni-Mn-In system have a unique feature: they can simultaneously realize both direct and
reverse MCE at room temperature [29]. Moreover, they are very sensitive to element sub-
stitution and stoichiometric variations. For example, in [30], for the Ni50Mn35In15 alloy, a
giant value of the isothermal entropy change ∆S = 35.8 J/(kg·K) (H = 50 kOe) was found,
but in [31], it was shown that in the alloys based on Ni50Mn35In15−xSix (1 ≤ x ≤ 5), the
largest ∆S value (this is the largest value of the inverse MCE of all the alloys ever studied)
was found in the Ni50Mn35In12Si3 alloy, for which ∆S = 124 J/(kg·K) at the temperature
T = 239 K (H = 50 kOe). The Hall effect in Ni-Mn-In-based alloys was studied for the first
time in 2009 [32]. In [33], the main type of charge carrier was determined (electrons) for the
Ni-Mn-In-Si alloys. Despite the fact that the Hall effect in Ni-Mn-In-based alloys [33–35] has
been investigated in the modern literature, there is practically no data on the relationship
between MTT and electronic characteristics, in particular, the concentration of current
carriers n, with the exception of the report [36]. The Heusler alloys with compositions
Ni47−xMn41+xIn12 (x = 0, 1, 2) were particularly chosen, since the magnetostructural phase
transition as well as MCE were observed in these alloys [37].

Thus, the aim of this work is to study the Hall effect and evaluate the concentration
of charge carriers n, looking for the relationship between the MTT and parameter n in the
Ni47−xMn41+xIn12 (x = 0, 1, 2) Heusler alloys.

2. Materials and Methods

The polycrystalline alloys were melted in an arc furnace in an inert argon atmosphere.
Then, the alloys were annealed according to the following regime: exposure at 1100 K
for 24 h, followed by cooling with a furnace. The samples for research were cut from
the obtained ingots using electric spark cutting. The elemental analysis was carried out
on a Quanta-200 Pegasus (FEI Company, Eindhoven, the Netherlands) scanning electron
microscope equipped with EDAX (Energy Dispersive X-ray Analyser) spectrometer and
EBSD (Electron Backscattered Diffraction) system. XRD analysis was performed at room
temperature at the Center of Collective Use, M.N. Mikheev Institute of Metal Physics, UB
RAS. X-ray diffraction phase analysis was carried out at room temperature; the range of
angles varied from 30◦ to 100◦ (Figure 1).

As a result of X-ray diffraction studies, it was found that all alloys are in a two-phase
state, i.e., the austenite and martensite phases are simultaneously present in the structure
of the alloys (Table 1).

The magnetization was measured in magnetic fields of up to 70 kOe at 4.2 K and
in the temperature range from 50 to 330 K. The electrical resistivity and the Hall effect
were measured using the standard four-probe method at direct current in the tempera-
ture range from 75 to 375 K and at 4.2 K in magnetic fields of up to 80 kOe, respectively.
All samples for measuring the Hall effect were in the form of plates with dimensions
0.5 mm × 1.5 mm × 4.5 mm; thus, the ratio of dimensions 1:3:9 is fulfilled (demagnetiza-
tion factor F = 1).
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Figure 1. XRD patterns for Ni45Mn43In12, Ni46Mn42In12, and Ni47Mn41In12 alloys at room temperature. 
Here, A and M are austenite and martensite, respectively. On the right panel, the XRD pattern of 
Ni46Mn42In12 alloy is represented. The splitting of (220) austenite reflection onto the (220) and (202, 
022) martensite reflections is shown by the dotted line. 
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has a predominant morphology in the form of a packet-pyramidal hierarchy of finely 

Figure 1. XRD patterns for Ni45Mn43In12, Ni46Mn42In12, and Ni47Mn41In12 alloys at room tempera-
ture. Here, A and M are austenite and martensite, respectively. On the right panel, the XRD pattern
of Ni46Mn42In12 alloy is represented. The splitting of (220) austenite reflection onto the (220) and
(202, 022) martensite reflections is shown by the dotted line.

Table 1. Phase composition of the Ni47−xMn41+xIn12 (x = 0; 1; 2) alloys. The austenite and martensite
phases are marked by A and M, respectively.

Alloy
Content of Phases, at.%

Cubic (A) Tetragonal (M)

Ni45Mn43In12 34.1 65.9
Ni46Mn42In12 36.9 63.1
Ni47Mn41In12 39.5 60.5

3. Results and Discussion

Using electron microscopy, it was established (Figure 2) that in all alloys, martensite
has a predominant morphology in the form of a packet-pyramidal hierarchy of finely
twinned coherent crystals. Two morphological types of martensite crystals are distin-
guished: pairwise twinned lamellar martensite within the package (A) and truss-shaped
pairwise twinned martensite with wedge-shaped conjugations of adjacent crystals (B). The
formation of a hierarchy of twinned martensite crystals is due to their coherent adaptation
and the minimization of elastic energy during thermoelastic martensitic transformation.

Elemental analysis of the composition of the investigated alloys was carried out along
the edges and in the center of the sample; in each case, three measurements were made
(Table 2). The examination of the elemental analysis showed that the real composition of all
alloys corresponded to the specified with good accuracy.
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Figure 2. Electron microscopy images of the martensite structures in the alloys at room tempera-
ture: (a) Ni45Mn43In12, (b) Ni46Mn42In12, (c) Ni47Mn41In12. The letters A and B denote different
morphological types of martensitic crystals.

Table 2. Chemical analysis results of the Ni47−xMn41+xIn12 (x = 0; 1; 2) alloys.

Alloy Content of Each Element, at.%
Ni Mn In

Ni45Mn43In12 45.21 42.75 12.04
Ni46Mn42In12 46.11 41.71 12.18
Ni47Mn41In12 46.58 41.17 12.25

Figure 3 shows the temperature dependences of electroresistivity ρ(T). It can be seen
that at low temperatures, the resistivity value for all alloys is ~(170–260) µΩ cm. With in-
creasing temperature, the resistivity drops sharply, decreasing to values of ~(95–120) µΩ cm.
In this case, temperature hysteresis is observed in ρ(T) dependences, which may indicate
the implementation of a first-order phase transition in the alloys studied [37]. This be-
havior of resistivity can be explained by the fact that at low temperatures, there is a large
amount of martensite. Electron scattering on martensite leads to a large contribution to
resistivity [38–40]. With temperature, the amount of the martensite phase decreases, and
consequently, the resistivity decreases [38–40].

Figure 4 shows the temperature dependences of magnetization for the alloys. These
dependences were measured in the magnetic field H = 1 kOe upon cooling and heating (in
the figure shown by arrows). It is obvious that for all investigated alloys, the form of these
dependences is typical. Obviously, the M(T) curves exhibit minima and maxima, along
with the hysteresis in the region of phase transformation temperatures (AS, AF, MS, MF).
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Figure 4. Temperature dependences of magnetization M(T) in the magnetic field H = 1 kOe:
(a) Ni45Mn43In12, (b) Ni46Mn42In12, (c) Ni47Mn41In12.

On heating, the transition of paramagnetic martensite to ferromagnetic austenite
occurs, which is accompanied by a jump in magnetization.
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The MTT were determined from the M(T) and ρ(T) dependences using the method
of tangents [41]; the values obtained are shown in Table 3. The calculation of the valence
electron concentration e/a for the unit cell was carried out according to Equation (1) [42]:

e/a = (CA × ZA) + (CB × ZB) + (CD × ZD), (1)

where CA, CB, and CD are concentrations of elements A, B, and D, and ZA, ZB, and ZD
are the number of external (valence) electrons for the elements A, B, and D. For nickel,
manganese, and indium atoms, the number of valence electrons is 10 (3d84s2), 7 (3d64s1),
and 3 (5s25p1), respectively. The values of e/a are 7.87, 7.9, and 7.93 for Ni45Mn43In12,
Ni46Mn42In12, and Ni47Mn41In12 alloys, respectively.

Table 3. Phase transition temperatures for the Ni47−xMn41+xIn12 (x = 0; 1; 2) alloys. The temperatures
at the beginning and end of austenitic (As, Af) and martensitic (Ms, Mf) transformation, respectively.

Alloy As, K Af, K Ms, K Mf, K

According to the temperature dependences of electrical resistivity ρ(T)
Ni45Mn43In12 175 275 265 148
Ni46Mn42In12 260 317 308 250
Ni47Mn41In12 305 323 315 298

According to the temperature dependences of magnetization M(T)
Ni45Mn43In12 170 265 258 148
Ni46Mn42In12 263 310 307 252
Ni47Mn41In12 308 318 317 302

It is obvious that with a decrease in the nickel content, a decrease in the valence
electron concentration e/a occurs, and in addition, a shift of the martensitic transformation
to the region of low temperatures is observed. Similar behavior was observed in the
Ni2+xMn1−xGa [43,44] and Ni0.5Mn0.5−xSnx (x = 0.05; 0.10; 0.13; 0.15) alloys [45]. A decrease
in MTT leads to an expansion of the existence region of the austenite phase since the
austenite magnetization is greater than the martensite one. The same situation is observed
for alloys of the Ni-Mn-Sb system, in contrast to the Ni-Mn-Ga system, in which the
saturation magnetization of the martensitic phase is higher than that of the austenitic
phase [46].

Due to the fact that the investigated alloys Ni47−xMn41+xIn12 (x = 0; 1; 2) are in a
ferromagnetic state at low temperatures, at T = 4.2 K, both normal and anomalous Hall
effects will be observed in them. The separation of the normal and anomalous components
of the Hall effect was carried out using ρH(H) (Figure 5) and M(H) (Figure 6) dependences.
It is obvious that the above-mentioned dependences have two well-distinguishable regions
of magnetic fields: the region of technical magnetization (H < 20 kOe) and the region of the
paraprocess (at higher fields). All investigated alloys at H > 20 kOe approach saturation. In
this region of magnetic fields, the process of technical magnetization practically ends, and
the alloys pass into a single-domain state.

The coefficients of normal R0 and anomalous RS Hall effect were determined using
Equation (2) from the field dependences of ρH(H) and M(H) in the region of the paraprocess:

ρH
H

= R0 +
4πR∗

S M
H

, (2)

where R∗
S = Rs + (1 − F)× R0, and F is a demagnetization factor, which equals 1 for the

samples studied; hence, R∗
S ≈ RS in our case. The first term in Equation (2) describes the

normal Hall effect (NHE), which is caused by the action of the Lorentz force on the charge
carriers and is proportional to the applied magnetic field. The second term in Equation (2)
is determined by the so-called anomalous Hall effect (AHE), related to the influence of
spin-orbit interaction (SOI).
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The concentration of current carriers n was determined using Equation (3):

R0 =
1

nec
, (3)

where c is the light velocity and e is the charge of the electron.
Figures 5 and 6 show that Equation (2) is valid for all investigated alloys in high

magnetic fields (H > 20 kOe). The NHE R0 and AHE RS coefficients were obtained using
ρH(H) (Figure 5) and M(H) (Figure 6) dependences, and Equation (2). The results obtained
are presented in Table 4 and Figure 7.

Table 4. The valence electron concentration e/a, normal R0, and anomalous RS Hall effect coefficients
and concentration of charge carriers n for the Ni47−xMn41+xIn12 (x = 0; 1; 2) alloys.

Alloy e/a R0, 10−5 cm3/C RS, 10−2 cm3/C n, 1023 1/cm3

Ni45Mn43In12 7.87 −2.01 1.66 3.11
Ni46Mn42In12 7.9 −1.69 2.19 3.69
Ni47Mn41In12 7.93 −1.48 3.73 4.22
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The dependences of the NHE and AHE coefficients on the valence electron concen-
tration e/a for the Ni47−xMn41+xIn12 (x = 0; 1; 2) alloys are shown in Figure 8. Obviously,
the NHE coefficient is negative; therefore, electrons are the main type of charge carriers.
In contrast, the AHE coefficient is positive; its absolute value exceeds the values for NHE
by 3 orders of magnitude. Both NHE and AHE decrease with the growth of e/a ratio. The
results obtained are in qualitative agreement with the results for the Ni-Mn-Sb system
alloys [36].

Accurate determination of the concentration of charge carriers in Heusler alloys is a
rather challenging task, since this requires the data on the Fermi surface topology of the
investigated alloy, as well as the data on the mobility of charge carriers belonging to certain
sheets of the Fermi surface. This is due to the fact that the Fermi surface of Heusler alloys
has a complex topology and contains sheets of both electron and hole types. However,
in [47,48], it was shown that even in complex compounds, using a one-band model for
estimating the concentration of charge carriers makes it possible to qualitatively track
the changes in the electronic characteristics. Taking the above into account, the one-band
model [49] was also used in this paper.
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The dependence between MTT and the concentration of charge carriers is shown in
Figure 9. It is obvious that the values of MTT decrease monotonically with an increase in
the concentration of charge carriers n. Considering that a similar dependence was observed
for the Ni-Mn-Sb system alloys [36], it can be assumed that such dependence can also be
observed in other alloys with a magnetocaloric effect.
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It is known that the magnetic shape memory effect (MSME) and the large MCE in
Heusler alloys are strongly associated with the magnetostructural transformations and
manifest themselves the most near the phase transformation temperatures, in particular,
near MTT. The crystal structure and magnetic and electronic subsystems in Heusler com-
pounds are strongly interconnected and dependent on each other. Even quite small changes
of about 1–2 at.% in the Ni/Mn ratio in our Ni47−xMn41+xIn12 alloys (x = 0, 1, 2) lead to
huge changes in MTT values (Table 3), electrical resistivity (Figure 3), and magnetization
values (Figure 4). What is the reason for such drastic changes? One possible explanation
could be a change in the density of electronic states (DOS) at the Fermi level EF, and/or a
shift of EF with a change in the Ni/Mn ratio. It is obvious that a change in DOS at EF will
lead to a change in the electronic kinetic coefficients and parameters, particularly in the
concentration of current carriers n. To verify this assumption, it is desirable to carry out
calculations of the electronic band structure for the alloys studied in this paper.

In the present paper, the Hall effect was studied at the temperature T = 4.2 K, while
the MTT values were in the region of higher temperatures. To accurately determine the
parameters of the electronic subsystem and establish their relationship with MTT, it is
necessary to study the Hall effect and other electronic transport properties at temperatures
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comparable to MTT. However, in the present paper, as in [36], a relationship between MTT
and the concentration of charge carriers n was established.

It is important to note Ref. [50], where Ni55−xCoxFe18Ga27 (x = 6, 10, 12, 15, 20)
single-crystalline fibers with a Heusler structure L21 were studied. The unusual non-
hysteretic superelasticity of NiCoFeGa single crystals was observed. It was suggested that
the supercritical elasticity originates from a continuous phase transition [50]. It should be
noted that in our Ni-Mn-In alloys, the concentration of charge carriers n and MTT increase
with an increase in e/a. Taking into account Ref. [50], it is quite interesting to follow
the change of e/a to maximum possible values from the point of existence of first-order
martensitic transformation.

4. Conclusions

Thus, it was found that the values of the coefficient of the NHE R0 are negative for all
investigated alloys; therefore, electrons are the main charge carriers. In addition, the R0
values increase with an increase in the nickel content in the alloy, i.e., as the valence electron
concentration e/a increases. The coefficients of the AHE RS turned out to be positive, and
their values increased with increasing e/a as well. It was found that as the values of e/a
increase, the concentration of charge carriers n as well as the MTT increase. Thus, as a result
of this work, for the alloys studied, a relationship between the concentration of charge
carriers n and MTT was found; that is, MTT increases with the growth of n.
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