Facile Synthesis of Two-Dimensional Natural Vermiculite Films for High-Performance Solid-State Electrolytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ion-Exchanged Expanded Vermiculite (IEVMT) Sheets
2.3. Preparation of IEVMT Films
2.4. Characterization
3. Results and Discussion
3.1. Synthesis and Characterization of IEVMT
3.2. Electrical Properties of the IEVMT Film
3.3. The Stability of IEVMT Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mauger, A.; Julien, C.M.; Paolella, A.; Armand, M.; Zaghib, K. Building Better Batteries in the Solid State: A Review. Materials 2019, 12, 3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, J.; Phuc, T.V.; Chung, J.S.; Choi, W.M.; Hur, S.H. Nano-Dimensional Carbon Nanosphere Supported Non-Precious Metal Oxide Composite: A Cathode Material for Sea Water Reduction. Nanomaterials 2022, 12, 4348. [Google Scholar] [CrossRef] [PubMed]
- Hwa, K.-Y.; Ganguly, A.; Santhan, A.; Sharma, T.S.K. Synthesis of Water-Soluble Cadmium Selenide/Zinc Sulfide Quantum Dots on Functionalized Multiwalled Carbon Nanotubes for Efficient Covalent Synergism in Determining Environmental Hazardous Phenolic Compounds. ACS Sustain. Chem. Eng. 2022, 10, 1298–1315. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, C.; Fu, Y.; Sun, X.; Yang, Y. Interfaces in garnet-based all-solid-state lithium batteries. Adv. Energy Mater. 2020, 10, 2001318. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, L.; Zhang, W.; Li, Z.; Xie, X.; Huang, Y. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 2021, 14, 12–36. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Zhang, Y.; Zhu, J.; Lv, R.; Li, Z.; Wu, W.; Li, W.; Wang, J. MOF lamellar membrane-derived LLTO solid state electrolyte for high lithium ion conduction. J. Membr. Sci. 2022, 663, 121041. [Google Scholar] [CrossRef]
- Wang, Y.; Song, S.; Xu, C.; Hu, N.; Molenda, J.; Lu, L. Development of solid-state electrolytes for sodium-ion battery—A short review. Nano Mater. Sci. 2019, 1, 91–100. [Google Scholar] [CrossRef]
- Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 2012, 3, 856. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Yoon, K.; Park, I.; Kang, K. Progress in the development of sodium-ion solid electrolytes. Small Methods 2017, 1, 1700219. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y.S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv. Energy Mater. 2016, 1601196. [Google Scholar] [CrossRef]
- Rettenwander, D.; Redhammer, G.; Preishuber-Pflugl, F.; Cheng, L.; Miara, L.; Wagner, R.; Welzl, A.; Suard, E.; Doeff, M.M.; Wilkening, M.; et al. Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes. Chem. Mater. 2016, 28, 2384–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Schmohl, S.; Liu, Z.; Hoffmeyer, M.; Schön, N.; Hausen, F.; Tempel, H.; Kungl, H.; Wiemhöfer, H.D.; Eichel, R.A. Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 3882–3894. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Wang, S.; Chen, X.; Yang, W.; Yao, X.; Hu, X.; Han, Q.; Wang, H. Tape-Casting Li0.34La0.56TiO3 Ceramic Electrolyte Films Permit High Energy Density of Lithium-Metal Batteries. Adv. Mater. 2020, 32, e1906221. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C.; Zhao, T.; Kou, W.; Hua, Q.; Ren, W.; Wu, W. Overcoming the trade-off between ion conduction and stability using thin composite solid electrolyte for high performance all-solid-state lithium battery. Electrochim. Acta 2022, 432, 141226. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, J.Y.; Shin, D.O.; Lee, M.J.; Lee, Y.-G. 2D argyrodite LPSCl solid electrolyte for all-solid-state Li-ion battery using reduced graphene oxide template. Mater. Today Energy 2022, 23, 100913. [Google Scholar] [CrossRef]
- Lv, R.; Kou, W.; Guo, S.; Wu, W.; Zhang, Y.; Wang, Y.; Wang, J. Preparing Two-Dimensional Ordered Li0.33La0.557TiO3 Crystal in Interlayer Channel of Thin Laminar Inorganic Solid-State Electrolyte towards Ultrafast Li+ Transfer. Angew. Chem. Int. Ed. Engl. 2022, 61, e202114220. [Google Scholar] [CrossRef]
- Li, Y.; Zhai, Y.; Xu, S.; Tang, M.; Zhang, S.; Zou, Z. Using LLTO with vertically aligned and oriented structures to improve the ion conductivity of composite solid-state electrolytes. Mater. Today Commun. 2022, 33, 104243. [Google Scholar] [CrossRef]
- Wang, M.J.; Wolfenstine, J.B.; Sakamoto, J. Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate. Adv. Funct. Mater. 2020, 30, 1909140. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Y.; Zhang, X.; Wang, L.; Zhao, S.-X.; Lin, Y.-H.; Shen, Y.; Luo, J.; Li, L.; Nan, C.-W. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. J. Mater. Chem. A 2018, 6, 4649–4657. [Google Scholar] [CrossRef]
- Kawahara, K.; Ishikawa, R.; Nakayama, K.; Higashi, T.; Kimura, T.; Ikuhara, Y.H.; Shibata, N.; Ikuhara, Y. Fast Li-ion conduction at grain boundaries in (La,Li)NbO3 polycrystals. J. Power Sources 2019, 441, 227187. [Google Scholar] [CrossRef]
- Jiang, Z.; Xie, H.; Wang, S.; Song, X.; Yao, X.; Wang, H. Perovskite Membranes with Vertically Aligned Microchannels for All-Solid-State Lithium Batteries. Adv. Energy Mater. 2018, 8, 1801433. [Google Scholar] [CrossRef]
- Pearse, A.J.; Schmitt, T.E.; Fuller, E.J.; El-Gabaly, F.; Lin, C.-F.; Gerasopoulos, K.; Kozen, A.C.; Talin, A.A.; Rubloff, G.; Gregorczyk, K.E. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte. Chem. Mater. 2017, 29, 3740–3753. [Google Scholar] [CrossRef] [Green Version]
- Kuwata, N.; Kawamura, J.; Toribami, K.; Hattori, T.; Sata, N. Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition. Electrochem. Commun. 2004, 6, 417–421. [Google Scholar] [CrossRef]
- Ji, X.; Ge, L.; Liu, C.; Tang, Z.; Xiao, Y.; Chen, W.; Lei, Z.; Gao, W.; Blake, S.; De, D.; et al. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 2021, 12, 1124. [Google Scholar] [CrossRef]
- Zhou, A.; Liu, Y.; Li, S.; Wang, X.; Ying, G.; Xia, Q.; Zhang, P. From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. J. Adv. Ceram. 2021, 10, 1194–1242. [Google Scholar] [CrossRef]
- Verduci, R.; Agresti, A.; Romano, V.; D’Angelo, G. Interface Engineering for Perovskite Solar Cells Based on 2D-Materials: A Physics Point of View. Materials 2021, 14, 5843. [Google Scholar] [CrossRef]
- Choi, S.H.; Yun, S.J.; Won, Y.S.; Oh, C.S.; Kim, S.M.; Kim, K.K.; Lee, Y.H. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 2022, 13, 1484. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, L.; Liu, M.; Qi, Z.; Wang, W.; Zhu, J.; Chen, S.; Yu, K.; Su, Y.; Ding, B.; et al. Viscous Solvent-Assisted Planetary Ball Milling for the Scalable Production of Large Ultrathin Two-Dimensional Materials. ACS Nano 2022, 16, 10179–10187. [Google Scholar] [CrossRef]
- Krishnamoorti, R.; Vaia, R.A.; Giannelis, E.P. Structure and Dynamics of Polymer-Layered Silicate Nanocomposites. Chem. Mater. 1996, 8, 1728–1734. [Google Scholar] [CrossRef]
- Aviles, M.A.; Justo, A.; Sanchez-Soto, P.J.; Perez-Rodriguez, J.L. Synthesis of nitrogen ceramics from a new vermiculite-polyacrylonitrile intercalation compound by carbothermal reduction. J. Mater. Chem. 1993, 3, 223–224. [Google Scholar] [CrossRef]
- Wan, Y.; Fan, Y.; Dan, J.; Hong, C.; Yang, S.; Yu, F. A review of recent advances in two-dimensional natural clay vermiculite-based nanomaterials. Mater. Res. Express 2019, 6, 102002. [Google Scholar] [CrossRef]
- Cuadros, J.; Mavris, C.; Michalski, J.R. Possible widespread occurrence of vermiculite on Mars. Appl. Clay Sci. 2022, 228, 106643. [Google Scholar] [CrossRef]
- Suvorov, S.A.; Skurikhin, V.V. Vermiculite-A promissing material for high-termperature heat insulators. Refract. Ind. Ceram. 2003, 44, 186–193. [Google Scholar] [CrossRef]
- You, H.; Zhang, K.; Zhang, X.; Ding, H.; Shen, Y.; Feng, Y.; Hou, J.; Tian, W. Fabrication of transparent ultrathin films with ordered solid luminescence by LBL assembly of CdTe quantum dots with exfoliated vermiculite. Appl. Clay Sci. 2022, 230, 106710. [Google Scholar] [CrossRef]
- Janica, I.; Del Buffa, S.; Mikolajczak, A.; Eredia, M.; Pakulski, D.; Ciesielski, A.; Samori, P. Thermal insulation with 2D materials: Liquid phase exfoliated vermiculite functional nanosheets. Nanoscale 2018, 10, 23182–23190. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Meng, Y.; Li, R.; Xu, Y.; Rajulu, A. Preparation and Properties of Poly(vinyl alcohol)—Vermiculite Nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 749–755. [Google Scholar] [CrossRef]
- Olejnik, S.; White, J.W. Thin layers of water in vermiculites and montmorillonites-modification of water diffusion. Nat. Phys. Sci. 1972, 236, 15–16. [Google Scholar] [CrossRef]
- Liao, W.; Liu, C. Structural design of composite polymer electrolytes for solid-state lithium metal batteries. ChemNanoMat 2021, 7, 1177–1187. [Google Scholar] [CrossRef]
- Yao, L.; Ou, G.; Nishijima, H.; Pan, W. Enhanced conductivity of (110)-textured ScSZ films tuned by an amorphous alumina interlayer. Phys. Chem. Chem. Phys. 2015, 17, 23034–23040. [Google Scholar] [CrossRef]
- Huo, X.; Wu, L.; Liao, L.; Xia, Z.; Wang, L. The effect of interlayer cations on the expansion of vermiculite. Powder Technol. 2012, 224, 241–246. [Google Scholar] [CrossRef]
- Walker, G.F.; Garrett, W.G. Chemical exfoliation of vermiculite and the production of colloidal dispersions. Science 1967, 156, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.J.; Raidongia, K.; Koltonow, A.R.; Huang, J. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhao, M.; Wu, R.; Xing, Y.; Yang, J.; Wang, M.; Li, Z.; Song, N.; Wan, C.; Pan, W. Non-destructive evaluation of thermally grown oxides in thermal barrier coatings using impedance spectroscopy. J. Eur. Ceram. Soc. 2019, 39, 5048–5058. [Google Scholar] [CrossRef]
- Tang, W.; Tang, S.; Zhang, C.; Ma, Q.; Xiang, Q.; Yang, Y.W.; Luo, J. Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets. Adv. Energy Mater. 2018, 8, 1800866. [Google Scholar] [CrossRef]
- Huang, K.; Rowe, P.; Chi, C.; Sreepal, V.; Bohn, T.; Zhou, K.G.; Su, Y.; Prestat, E.; Pillai, P.B.; Cherian, C.T.; et al. Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil-water separation. Nat. Commun. 2020, 11, 1097. [Google Scholar] [CrossRef] [Green Version]
- Marcos, C.; Arango, Y.; Rodriguez, I. X-ray diffraction studies of the thermal behaviour of commercial vermiculites. Appl. Clay Sci. 2009, 42, 368–378. [Google Scholar] [CrossRef]
- Liu, W.; Li, B.; Liu, H.; Pan, W. Electrical conductivity of textured Sm3+ and Nd3+ Co-doped CeO2 thin-film electrolyte. Electrochim. Acta 2011, 56, 3334–3337. [Google Scholar] [CrossRef]
- Baral, A.K.; Narayanan, S.; Ramezanipour, F.; Thangadurai, V. Evaluation of fundamental transport properties of Li-excess garnet-type Li5+2xLa3Ta2−xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 11356–11365. [Google Scholar] [CrossRef]
- Prasad, V.; Pavić, L.; Moguš-Milanković, A.; Siva Sesha Reddy, A.; Gandhi, Y.; Ravi Kumar, V.; Naga Raju, G.; Veeraiah, N. Influence of silver ion concentration on dielectric characteristics of Li2O-Nb2O5-P2O5 glasses. J. Alloys Compd. 2019, 773, 654–665. [Google Scholar] [CrossRef]
- Narayanan, S.; Baral, A.K.; Thangadurai, V. Dielectric characteristics of fast Li ion conducting garnet-type Li5+2xLa3Nb2−xYxO12 (x = 0.25, 0.5 and 0.75). Phys. Chem. Chem. Phys. 2016, 18, 15418–15426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; He, F.; Si, L.; Wang, Y.; Wang, Q. Investigation on friction and wear behaviors of Cu-Zn composition with doped MoS2 powder under electric field. Mater. Res. Express 2019, 6, 1150b1154. [Google Scholar] [CrossRef]
- Jawahar, P.; Gnanamoorthy, R.; Balasubramanian, M. Tribological behaviour of clay-thermoset polyester nanocomposites. Wear 2006, 261, 835–840. [Google Scholar] [CrossRef]
- Zhang, X.; Prakash, B.; Lauwerens, W.; Zhu, X.; He, J.; Celis, J.-P. Low-friction MoSx coatings resistant to wear in ambient air of low and high relative humidity. Tribol. Lett. 2003, 14, 131–135. [Google Scholar] [CrossRef]
- Hu, J.; Xiao, X.-d.; Ogletree, D.F.; Salmeron, M. Atomic scale friction and wear of mica. Surf. Sci. 1995, 327, 358–370. [Google Scholar] [CrossRef]
- Ikari, M.J.; Saffer, D.M.; Marone, C. Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. J. Geophys. Res. 2007, 112, B06423. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Mao, J. Double layer aligned-graphene nanosheets/styrene-butadiene rubber composites: Tribological and mechanical properties. J. Appl. Polym. Sci. 2019, 136, 46939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Y.; Chen, X.; Huang, Y.; Zhen, X.; Wei, L.; Zhong, X.; Pan, W. Facile Synthesis of Two-Dimensional Natural Vermiculite Films for High-Performance Solid-State Electrolytes. Materials 2023, 16, 729. https://doi.org/10.3390/ma16020729
Xing Y, Chen X, Huang Y, Zhen X, Wei L, Zhong X, Pan W. Facile Synthesis of Two-Dimensional Natural Vermiculite Films for High-Performance Solid-State Electrolytes. Materials. 2023; 16(2):729. https://doi.org/10.3390/ma16020729
Chicago/Turabian StyleXing, Yan, Xiaopeng Chen, Yujia Huang, Xiali Zhen, Lujun Wei, Xiqiang Zhong, and Wei Pan. 2023. "Facile Synthesis of Two-Dimensional Natural Vermiculite Films for High-Performance Solid-State Electrolytes" Materials 16, no. 2: 729. https://doi.org/10.3390/ma16020729
APA StyleXing, Y., Chen, X., Huang, Y., Zhen, X., Wei, L., Zhong, X., & Pan, W. (2023). Facile Synthesis of Two-Dimensional Natural Vermiculite Films for High-Performance Solid-State Electrolytes. Materials, 16(2), 729. https://doi.org/10.3390/ma16020729