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Abstract: In this work, based on Y3Al5O12:Ce3+ (YAG:Ce3+) transparent ceramic and
(Sr, Ca)AlSiN3:Eu2+ phosphors, novel green-light-emitting materials were systematically studied.
YAG:Ce3+ transparent ceramics with different doping-concentrations, from 0% to 1%
(Sr, Ca)AlSiN3:Eu2+ phosphors, were fabricated by dry pressing and vacuum sintering. The serial
phosphor ceramics had 533 nm green-light emission when excited by 460 nm blue light. The PL, PLE,
and chromaticity performances were measured, indicating that more of the green-light component
was emitted with the increase in doping concentration. The addition of (Sr, Ca)AlSiN3:Eu2+ phosphor
increased the green-light wavelength area and improved the quantum yield (QY) of the YAG:Ce3+

ceramic matrix. The phase composition, microstructure, crystal-field structure and phosphor distri-
bution of (Sr, Ca)AlSiN3:Eu2+ phosphor-doped YAG:Ce3+ transparent ceramics were investigated, to
explore the microscopic causes of the spectral changes. Impressively, (Sr, Ca)AlSiN3:Eu2+ phosphors
were distributed homogeneously, and the pinning effect of phosphor caused the suppression of grain
growth. The novel materials could provide an effective strategy for full-spectrum white lighting and
displaying applications in the future.

Keywords: YAG:Ce3+ phosphor transparent ceramics; (Sr, Ca)AlSiN3:Eu2+ phosphors; green-light
ceramic; spectral regulation; white-light-emitting diode

1. Introduction

YAG:Ce3+ phosphor transparent ceramics (TCs) can be excited by approximately
450–460 nm of blue light, to produce white LEDs/LDs [1–3]. These ceramics have high
lumen-efficiency and thermal stability compared to phosphors in glass (PiG) [4–6] and sin-
gle crystals (SC) [7–9]. However, the lack of red- and green-light components causes a low
color-rendering-index (CRI) in the spectrum [2,10]. Therefore, to achieve the full spectrum
of high-quality white light, the development of green-light and red-light phosphor transpar-
ent ceramics is very urgent. Numerous studies have focused on red-light ceramics [11–13].
The multicolor-tunable Eu3+/Bi3+:Y2Zr2O7 transparent ceramic was successfully fabricated
using vacuum-sintering technology and strong red (λex = 250 nm) and orange (λex = 365 nm)
emissions, which were also observed at room temperature upon changing the excitation
wavelengths [14]. Novel red-emitting ZrO2-doped (Gd,Lu)2O3:Eu transparent phosphor
ceramics with a high color-rendering-index close to 90 were fabricated by Li et al. [15].
Additionally, a series of YAG:Ce,Mn transparent ceramics were prepared via a solid-state
reaction, and the Mn2+–Si4+ pairs effectively modulated the emission spectrum by com-
pensating a broad orange-red and red spectrum-component to yield high-quality warm
white light [16]. Zhou et al. adopted a Cr/Ce-doped YAG-transparent-ceramic strategy to
complement the red spectral component and improve the color-rendering performance [17].
Hence, co-doping red-emitting ions, such as Eu3+, Gd3+, Mn3+, or Cr3+, into YAG:Ce3+
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phosphor transparent ceramics has been considered as an effective way to compensate for
the loss of the red component.

However, green-light phosphor transparent ceramics also have an important role
and potential in lighting, displaying, and medical treatment [18–20]. In the past, we
studied green-light ceramics, which were mainly based on Lu3Al5O12:Ce3+ (LuAG:Ce3+)
phosphors ceramics, as the matrix to solve the spectral regulation [21–23]. LuAG:Ce3+

ceramic phosphors were also regarded as the most promising green color-converter, and
the luminous efficacy was promoted to 216.9 lm W−1 by designing the Ba2+–Si4+ pair and
air annealing [21]. Wei et al. reported an Al2O3-LuAG:Ce composite ceramic phosphor
for high-brightness laser phosphor display [24]. Likewise, the blue-green emitting Sc3+-
doped LuAG:Ce phosphor ceramics, as the phosphor converter of high-power LEDs, were
successfully prepared using vacuum solid-state sintering, based on the engineering of
ion substitution [25]. Nevertheless, green-light phosphor transparent ceramics based on
the YAG:Ce3+ matrix have rarely been reported. Green-light ceramics with YAG:Ce3+

matrix are conducive to co-firing and doping. This will greatly facilitate the preparation of
multi-doping and composite structural ceramics, and benefit the regulation of spectra.

In this work, YAG:Ce phosphor transparent ceramics with different doping concen-
trations of (Sr, Ca)AlSiN3:Eu2+ phosphors have been fabricated using vacuum sintering,
emitting a 533 nm green-light when excited by 460 nm blue-light. Optical properties such
as photoluminescence (PL), photoluminescence excitation (PLE), quantum yield (QY), and
the chromaticity performance were measured, and the influence of the (Sr, Ca)AlSiN3:Eu2+

phosphor-doping concentration was discussed systematically. In particular, the phase
composition, microstructure, crystal-field structure, and (Sr, Ca)AlSiN3:Eu2+ phosphor
distribution were investigated, to explore the microscopic causes of the spectral changes.
Therefore, the composite transparent ceramics have been designed as novel green-light-
emitting materials for white LEDs.

2. Experimental Procedure
2.1. YAG:Ce-Phosphors Composite Ceramics

In the present research, high-purity commercial α-alumina (Al2O3, 99.99% purity,
D = 160 nm), yttrium oxide (Y2O3, 99.99% purity, D = 600 nm) and ceria oxide pow-
ders (CeO2, 99.9% purity, D = 50 nm, all chemicals from Alfa Aesar, Ward Hill, Amer-
ica) were selected as starting materials. They were weighed precisely, in accordance
with the (Ce0.001Y0.999)3Al5O12 formula. The commercial (Sr, Ca)AlSiN3:Eu2+ phosphors
(99.9% purity, D = 15 µm, Beijing Yuelong Chemical, Beijing, China) and Y2O3-Al2O3-CeO2
mixed powders were mixed precisely, using the weight formula x(Sr, Ca)AlSiN3:Eu2+:
(1-x) (Ce0.001Y0.999)3Al5O12 (x = 0%, 0.05%, 0.1%, 0.5%, 1%), denoted as 0SCASNE (only
YAG:Ce as a reference), 0.05SCASNE, 0.1SCASNE, 0.5SCASNE and 1SCASNE, respectively.
A measure of 0.5 wt.% tetraethyl orthosilicate (TEOS, 99.99%, Alfa Aesar, Ward Hill, MA,
America) was chosen as the sintering additive.

These powders were mixed with absolute ethyl alcohol in a ball-milling jar and then
planetary milled for 12 h. The mixture was dried at 60 ◦C in an oven for 18 h and then
meshed and sieved through a 200-mesh screen. After that, the sieved powder mixture was
initially uniaxially pressed at 20 MPa in a stainless-steel mold with a diameter of 25 mm,
and then cold isostatic pressed (CIPed) at 200 MPa for 300 s, to obtain further compacted
powder pellets. The pressed pellets were then calcined at 800 ◦C for 4 h in air, to remove
the organic residues. The calcined green bodies were then sintered in a tungsten-mesh
heated vacuum furnace at 1780 ◦C, for 8 h. After that, the specimens were mirror polished
on both surfaces to a thickness of 1.0 mm. The flowchart using the nine-square lattice of the
whole preparation process is shown in Figure 1.



Materials 2023, 16, 730 3 of 12Materials 2023, 16, x FOR PEER REVIEW 3 of 14 
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ment was performed using the Rietveld method with the software FULLPROFTM. The frac-
ture-surface microstructures and elemental distributions of the ceramics were observed 
using a scanning electron microscope (SEM, Hitachi, TM-3030 plus) with an energy-dis-
persive-spectrometer (EDS) system. A confocal laser scanning microscope (CLSM, TCS 
SP5, Leica, Germany) was used to observe the distribution of phosphors in YAG: Ce3+ 

Figure 1. Flowchart for the preparation process of SCASNE phosphor transparent ceramics. The
sequence of numbers represents the process of sample preparation and characterization. It has already
indicated it on the diagram.

2.2. Characterization

The crystalline-phase compositions of all samples were characterized using an X-ray
diffraction system (XRD, Model D5005, Siemens, Munich, Germany) with a scanning range
of 10–80 ◦C (2θ) and a dwelling time of 0.02 s per step. The crystal-structure refinement
was performed using the Rietveld method with the software FULLPROFTM. The fracture-
surface microstructures and elemental distributions of the ceramics were observed using
a scanning electron microscope (SEM, Hitachi, TM-3030 plus) with an energy-dispersive-
spectrometer (EDS) system. A confocal laser scanning microscope (CLSM, TCS SP5, Leica,



Materials 2023, 16, 730 4 of 12

Germany) was used to observe the distribution of phosphors in YAG:Ce3+ ceramic matrix.
The transmission spectra of the 1 mm-thickness polished specimens were tested using a
UV–VIS–NIR spectrophotometer (UV 3600 Plus, Shimadzu, Japan). The QY, PL, and PLE
were measured using a fluorescence spectrophotometer (FLS1000, Edinburgh Instruments,
Edinburgh, Scotland). An integrating sphere (HPCS6500, HOPOOCOLOR, Hangzhou,
China) was used to obtain the chromaticity performance of a series of samples excited by a
460 nm blue chip with 350 mA current and 10 W electric power.

3. Results and Discussion

Figure 2 shows the XRD patterns and refinement results of the serial SCASNE ce-
ramics. Figure 2a exhibits the XRD patterns of samples from 0SCASNE to 1SCASNE
sintered at 1780 ◦C for 8 h. All the diffraction peaks of the SCASNE ceramics were matched
well with the cubic YAG phase (PDF #97-006-7103) [26], and there was no impurity or
redundant peaks observed at any (Sr, Ca)AlSiN3:Eu2+ phosphor-doping concentration
(from 0% to 1%). This indicated that the phosphors were a complete solid solution in
the host YAG lattice. As could be seen from the magnified diffraction peaks around
33.5 ◦C (shown in Figure 2b), all the diffraction peaks of the SCASNE ceramics were
shifted to lower angles. This demonstrated that (Sr, Ca)AlSiN3:Eu2+ phosphor doping
resulted in a larger unit cell [27,28]. To further acquire the effect of phosphor doping
on the YAG:Ce3+ crystal structure, crystal-structure refinement was performed using
the Rietveld method with the software FULLPROFTM [29]. The refinement results of
0SCASNE and 1SCASNE are presented in Figure 2c,d, respectively. Because χ2 = 1.88
and χ2 = 2.03 < 10, this indicated that refinement was effective. The 0SCASNE lattice
constant was a = b = c = 12.0074 Å, α = β = γ = 90 ◦C while the 1SCASNE lattice constant
was a = b = c = 12.0086 Å, α = β = γ = 90 ◦C. The larger lattice size coincided with the trend
in Figure 2b, owing to the bigger ionic of (Sr, Ca)AlSiN3:Eu2+ phosphors in the YAG:Ce3+

host lattice.
The SEM micrographs of the fracture surfaces of the prepared ceramics 0SCASNE

to 1SCASNE are exhibited in Figure 3a–e. The samples displayed regular grains and
clean grain boundaries. As the phosphor concentration increased, the fracture surface
morphologies changed from transgranular to intergranular. Additionally, the micro-pores
could be more easily observed (marked with yellow circles in Figure 3d,e), resulting in a
decrease in their transmittance consistent with the optical-transmittance spectra shown in
Figure 6b. Moreover, the micro-pores could act as scattering centers in phosphor ceramics,
improving the utilization of incident blue-light. The source of micro-pores must be the
position of the original phosphor dissolved into the ceramic. In addition, the grain sizes
were significantly smaller with the increase in the doping concentration. This indicated
that the pinning effect of the phosphor on the grain boundary caused the suppression of
grain growth [30–32].

To further understand the element distribution within the samples, the EDS analysis of
the 1SCASNE phosphor ceramics was recorded, and is shown in detail
in Figure 3f–n. The six elements of Y, O, Al, Si, C and N were distributed homogeneously,
implying that phosphor (Sr, Ca)AlSiN3:Eu2+ and the ceramic matrix were fully mixed and
made a solid solution. However, the weighing percentage of six elements only reached
99.99%, regardless of mass or atoms. It was most likely that some doping concentrations
such as Ce3+ and Eu2+ were very low, which was beyond the detection limit of the EDS.

In order to explore the existence and distribution of luminescent trace ions in the
sample 1SCASNE, the 3D reconstruction CLSMs of 0.05SCASNE and 1SCASNE are further
shown in Figure 3o,p, respectively. The phosphors are uniform in Figure 3o, while some
micro-pores appear in Figure 3p (marked within red circles). As the phosphor-doping
concentration increased, it was supposed that certain phosphor substances had been
removed under vacuum-sintering conditions.



Materials 2023, 16, 730 5 of 12Materials 2023, 16, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 2. XRD patterns of (a) serial SCASNE ceramics with different phosphor-doping concentra-
tions; (b) magnified XRD patterns around 33.5°; Rietveld-refinement patterns of (c) 0SCASNE and 
(d) 1SCASNE. 

The SEM micrographs of the fracture surfaces of the prepared ceramics 0SCASNE to 
1SCASNE are exhibited in Figure 3a–e. The samples displayed regular grains and clean 
grain boundaries. As the phosphor concentration increased, the fracture surface morphol-
ogies changed from transgranular to intergranular. Additionally, the micro-pores could 
be more easily observed (marked with yellow circles in Figure 3d,e), resulting in a de-
crease in their transmittance consistent with the optical-transmittance spectra shown in 
Figure 6b. Moreover, the micro-pores could act as scattering centers in phosphor ceramics, 
improving the utilization of incident blue-light. The source of micro-pores must be the 
position of the original phosphor dissolved into the ceramic. In addition, the grain sizes 
were significantly smaller with the increase in the doping concentration. This indicated 

Figure 2. XRD patterns of (a) serial SCASNE ceramics with different phosphor-doping concen-
trations; (b) magnified XRD patterns around 33.5◦; Rietveld-refinement patterns of (c) 0SCASNE
and (d) 1SCASNE.

Figure 4 indicates the PL and PLE spectra of the prepared serial-SCASNE phosphor
ceramics. From Figure 4a, showing the PL (λex = 460 nm) spectra, it was clear that the
SCASNE phosphor ceramics had broadband emission centered at 533 nm under 460 nm
excitation. This was a “blue-shift”, compared to the conventional typical Ce3+:5d→4f
emission spectra [33–35]. Additionally, as the (Sr, Ca)AlSiN3:Eu2+ doping concentration
increased (from 0SCASNE to 1SCASNE), the emission power became stronger, and the full
width at half maximum (FWHM) was broader. The peak of the emission spectrum was
533 nm, which was in the wavelength range of the green-light wave band. Correspondingly,
Figure 4b of the PLE spectra shows the excitation-spectrum peaks at 467 nm, mainly
originating from the Ce3+: 4f→5d transitions under an emission peak of 535 nm. As the



Materials 2023, 16, 730 6 of 12

(Sr, Ca)AlSiN3:Eu2+ doping concentration increases, the emission power becomes stronger,
and the FWHM increases.
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Figure 3. Microscopic information of the prepared samples. SEM images of the fracture surfaces of
(a) 0SCASNE, (b) 0.05SCASNE, (c) 0.1SCASNE, (d) 0.5SCASNE and (e) 1SCASNE. (f) SEM image of
1SCASNE for EDS mapping, and (g–n) EDS elemental-mapping and proportion-analysis images of
1SCASNE; 3D-reconstruction CLSM images of (o) 0.05SCASNE and (p) 1SCASNE, respectively.
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The quantum yield (QY) values of a series of SCASNE phosphor ceramics were studied
and are provided in Figure 5. Under the excitation of 460 nm blue light, the QY values
were 91.21%, 98.70%, 97.21%, 99.30%, and 97.80%, respectively, for a 0%, 0.05%, 0.1%, 0.5%,
and 1% (Sr, Ca)AlSiN3:Eu2+ phosphor-doping concentration. It was found that the QY
of YAG:Ce3+ matrix ceramics were greater than 90%, and (Sr, Ca)AlSiN3:Eu2+ phosphor
enhanced the YQ, due to a higher energy-transfer efficiency [36]. The maximum QY at a
0.5% doping concentration was 99.30%, and the corresponding sample was 0.5SCASNE.
This demonstrated that (Sr, Ca)AlSiN3:Eu2+ phosphor was competent as an efficient dopant
for improving the QY of the serial-SCASNE phosphor ceramic.

Figure 6 presents the photographs of the serial SCASNE ceramics with a 1 mm thick-
ness and the optical- transmittance spectra under a 350–800 nm wavelength. In Figure 6a,
with the increase in (Sr, Ca)AlSiN3:Eu2+ phosphor, the black logo behind the SCASNE
ceramics becomes more and more blurred. It was confirmed that the increase in phosphor
concentration promoted the transition from transparent/translucent to basically opaque
SCASNE ceramics. This was consistent with the in-line transmittance spectrum presented
in Figure 6b. When the contents of the phosphor were 0%, 0.05%, 0.1%, 0.5%, and 1%, the
transmittances were 79.71%, 81.35%, 52.35%, 42.74%, and 27.09% @800 nm, respectively. It
could be speculated that the phosphor acts as the second phase and scattering centers in the
YAG:Ce3+ ceramic matrix, to reduce their transmission [37,38]. Meanwhile, the introduction
of phosphor also affected the absorption. When the content of doped phosphor was low (0%
and 0.05%), the absorption band was observed at 457 nm for 0SCASNE and 0.05SCASNE.
This was mainly due to the 4f→5d-level electron transition of the Ce3+ ion [39–41]. When
the phosphor made up more of the content (0.1%, 0.5% and 1%), the absorption band was
mainly 365 nm, and the original absorption at 457 nm was not as strong as for the low
concentration of doping. This implied that the high concentration of phosphor-doping
changed the matrix crystal-field structure [42–44].
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screenshot of the 0.5SCASNE-ceramic test curve.

The chromaticity parameters, EL spectra and corresponding photographs of LEDs
driven by a 350 mA current and 10 V voltage, are shown in Figure 7. With
(Sr, Ca)AlSiN3:Eu2+ phosphor increased from 0% to 1%, and the CIE color coordinates
ranged from (0.3052, 0.3187) to (0.4277, 0.4986) in Figure 7a, corresponding to the pale-white
and yellow-green areas, respectively. Obviously, the green light produced by the composite
ceramics was consistent with the emission spectrum of Figure 4a. Meanwhile, the CCT
of white LED varied from 7049 K to 3750 K, which gradually changed from cool colors
to warm colors. The EL and test photographs are provided in Figure 7b/b’–f/f’. Remote-
excited white LEDs were constructed by combining the prepared serial-SCASNE ceramics
with a blue chip excited at 460 nm, to further evaluate the EL performance. Notably, it was
evident that more of the green-light component was emitted from the 0SCASNE ceramics
to the 1SCASNE samples, with the obtained CCT of Figure 7a showing the same tendency.
The addition of (Sr, Ca)AlSiN3:Eu2+ could increase the width of 525 nm–625 nm, and the
green-light wavelength area increased significantly. Additionally, (Sr, Ca) AlSiN3:Eu2+

could be used as the second phase, to improve the blue-light utilization. The results
showed that green light could be obtained by optimizing the (Sr, Ca)AlSiN3:Eu2+ phosphor
concentration in the YAG:Ce3+ ceramic matrix.
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Figure 7. Chromaticity parameters, electroluminescence (EL) spectra, and corresponding pho-
tographs of white LEDs driven by a 350 mA current: (a) the color coordinates, (b/b’) 1SCASNE,
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diamond, triangle and circle represent the color coordinates of 1SCASNE, 0.5SCASNE, 0.1SCASNE,
0.05SCASNE, 0SCASNE, respectively.

4. Conclusions

In this paper, 0.1% YAG:Ce3+ phosphor transparent ceramics with different doping
concentrations from 0% to 1% (Sr, Ca)AlSiN3:Eu2+ phosphors were fabricated by dry press-
ing and vacuum sintering. The serial-SCASNEs phosphor ceramics had 533 nm green-light
emission when excited by 460 nm blue light. The PL, PLE, and chromaticity performance
were measured, indicating that more of the green-light component was emitted from the
0SCASNE to the 1SCASNE ceramic samples. The addition of (Sr, Ca)AlSiN3:Eu2+ phosphor
increased the green-light wavelength area and improve the QY of the YAG:Ce3+ ceramic
matrix. Moreover, information from SEM, EDS, and CLSM showed that (Sr, Ca)AlSiN3:Eu2+

phosphors were distributed homogeneously, and were cleaned under vacuum-sintering
conditions. Impressively, the pinning effect of phosphor caused the suppression of grain
growth. The novel doped-phosphor and crystal-field design provided an interesting per-
spective for creating the green light.
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