Experimental Study on Mechanical Properties and Durability of Polymer Silica Fume Concrete with Vinyl Ester Resin
Abstract
:1. Introduction
2. Experimental Studies
2.1. Materials
2.2. Mixture Proportions
2.3. Preparation, Casting, and Curing of Specimens
2.4. Test Methods
2.4.1. Water Absorption Test
2.4.2. Compressive Strength Test
2.4.3. Tensile Strength Test
3. Result and Discussion
3.1. Water Absorption Results
3.2. Compressive and Tensile Strength Results
3.3. Failure of Specimens in the Compressive and Tensile Strength Tests
4. Conclusions
- (I)
- In the mixture design containing the vinyl ester resin and without the silica fume, by increasing the vinyl ester resin from 0 to 15%, the initial and final water absorption percentages decrease by 66.35% and 25.29%, respectively.
- (II)
- In the mixture design containing the silica fume and without the vinyl ester resin, by increasing the silica fume from 0 to 10%, the initial and final water absorption percentages decrease by 1.42% and 5.62%, respectively.
- (III)
- Among the results of the initial and final water absorption of all of the specimens, the mixture design including a combination of 15% vinyl ester resin and 5% silica fume has the minimum initial and final water absorption equal to 0.62% and 1.95%, respectively.
- (IV)
- Among the results of the strengths of all of the specimens, the specimen containing 10% silica fume has the maximum compressive strength (37.69 MPa) and the maximum tensile strength (6.56 MPa).
- (V)
- The optimum percentages of the vinyl ester resin, which have the maximum compressive strength (29.66 MPa) and the maximum tensile strength (4.21 MPa), are 10% and 5%, respectively.
- (VI)
- The optimum percentage of the silica fume, which has the maximum compressive strength (37.69 MPa) and the maximum tensile strength (6.56 MPa), is 10%.
- (VII)
- The optimum percentages for the combination of the silica fume and the vinyl ester resin, which have the maximum compressive strength (34.26 MPa) and the maximum tensile strength (4.92 MPa), are a combination of 10% silica fume and 5% vinyl ester resin.
- (VIII)
- In the specimen containing a combination of 10% silica fume and 5% vinyl ester resin, the slump value of the fresh concrete is 80 mm, which is 3 mm less than the slump value of the control concrete (0% silica fume and 0% vinyl ester resin).
- (IX)
- During the loading of the concrete specimens in the compressive strength test, shear cracks have appeared diagonally. Unlike the ordinary concrete, in the concrete specimens containing the vinyl ester resin and the silica fume, more fracture paths pass through the aggregates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Babafemi, A.J.; Sirba, N.; Paul, S.C.; Miah, M.J. Mechanical and Durability Assessment of Recycled Waste Plastic (Resin8 & PET) Eco-Aggregate Concrete. Sustainability 2022, 14, 5725. [Google Scholar] [CrossRef]
- Qiyami Taklimi, S.M.; Rezayfar, O.; Gholhaki, M. Investigation Experimental of the Effect of Bentonite as a Partial Replacement for Cement on Mechanical Properties of Concrete. J. Struct. Constr. Eng. 2022, 8, 144–163. [Google Scholar]
- Idrees, M.; Akbar, A.; Saeed, F.; Saleem, H.; Hussian, T.; Vatin, N.I. Improvement in Durability and Mechanical Performance of Concrete Exposed to Aggressive Environments by Using Polymer. Materials 2022, 15, 3751. [Google Scholar] [CrossRef] [PubMed]
- Taklymi, S.M.Q.; Rezaifar, O.; Gholhaki, M. Investigating the Properties of Bentonite and Kaolin Modified Concrete as a Partial Substitute to Cement. SN Appl. Sci. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Papadimitropoulos, V.C.; Tsikas, P.K.; Chassiakos, A.P. Modeling the Influence of Environmental Factors on Concrete Evaporation Rate. J. Soft Comput. Civ. Eng. 2020, 4, 79–97. [Google Scholar] [CrossRef]
- Jahangir, H.; Nikkhah, Z.; Rezazadeh Eidgahee, D.; Esfahani, M.R. Performance Based Review and Fine-Tuning of TRM-Concrete Bond Strength Existing Models. J. Soft Comput. Civ. Eng. 2023, 7, 43–55. [Google Scholar] [CrossRef]
- Alzubi, Y.; Adwan, J.A.; Khatatbeh, A.; Al-Kharabsheh, B. Parametric Assessment of Concrete Constituent Materials Using Machine Learning Techniques. J. Soft Comput. Civ. Eng. 2022, 6, 39–62. [Google Scholar] [CrossRef]
- Cavaleri, L.; Barkhordari, M.S.; Repapis, C.C.; Armaghani, D.J.; Ulrikh, D.V.; Asteris, P.G. Convolution-Based Ensemble Learning Algorithms to Estimate the Bond Strength of the Corroded Reinforced Concrete. Constr. Build. Mater. 2022, 359, 129504. [Google Scholar] [CrossRef]
- Naderpour, H.; Rezazadeh Eidgahee, D.; Fakharian, P.; Rafiean, A.H.; Kalantari, S.M. A New Proposed Approach for Moment Capacity Estimation of Ferrocement Members Using Group Method of Data Handling. Eng. Sci. Technol. Int. J. 2020, 23, 382–391. [Google Scholar] [CrossRef]
- Fakharian, P.; Rezazadeh Eidgahee, D.; Akbari, M.; Jahangir, H.; Ali Taeb, A. Compressive Strength Prediction of Hollow Concrete Masonry Blocks Using Artificial Intelligence Algorithms. Structures 2023, 47, 1790–1802. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.; Zhang, T.; Czarnecki, L. Chemical Interaction between Polymer and Cement in Polymer-Cement Concrete. Bull. Polish Acad. Sci. Tech. Sci. 2016, 64, 785–792. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Wong, H.S.; Abousnina, R.; AlAjarmeh, O.S.; Zhuge, Y.; Schubel, P. Optimal Design for Epoxy Polymer Concrete Based on Mechanical Properties and Durability Aspects. Constr. Build. Mater. 2020, 232, 117229. [Google Scholar] [CrossRef]
- Jafari, K.; Tabatabaeian, M.; Joshaghani, A.; Ozbakkaloglu, T. Optimizing the Mixture Design of Polymer Concrete: An Experimental Investigation. Constr. Build. Mater. 2018, 167, 185–196. [Google Scholar] [CrossRef]
- Jokhio, G.A.; Gul, Y.; Abu-Tair, A. Using Epoxy Resin as Partial Cement Replacement in Concrete with Silica Sand as Fine Aggregate. Civ. Eng. Archit. 2021, 9, 1513–1529. [Google Scholar] [CrossRef]
- Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive Strength Prediction of Environmentally Friendly Concrete Using Artificial Neural Networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Ehsani, M.R.; Saadatmanesh, H. Fiber Composite Plates for Strengthening Bridge Beams. Compos. Struct. 1990, 15, 343–355. [Google Scholar] [CrossRef]
- Nodehi, M. Epoxy, Polyester and Vinyl Ester Based Polymer Concrete: A Review. Innov. Infrastruct. Solut. 2022, 7, 64. [Google Scholar] [CrossRef]
- Qiyami Taklymi, S.M.; Rezaifar, O.; Gholhaki, M. Utilization of bentonite as partial replacement of cement in low-strength concrete. J. Concr. Struct. Mater. 2020, 5, 25–40. (In Persian) [Google Scholar] [CrossRef]
- Józefiak, K.; Michalczyk, R. Prediction of Structural Performance of Vinyl Ester Polymer Concrete Using FEM Elasto-Plastic Model. Materials 2020, 13, 4034. [Google Scholar] [CrossRef]
- Severin, I.; El Abdi, R.; Corvec, G.; Caramihai, M. Optical Fiber Embedded in Epoxy Glass Unidirectional Fiber Composite System. Materials 2013, 7, 44–57. [Google Scholar] [CrossRef]
- Zegardło, B.; Szeląg, M.; Ogrodnik, P.; Bombik, A. Physico-Mechanical Properties and Microstructure of Polymer Concrete with Recycled Glass Aggregate. Materials 2018, 11, 1213. [Google Scholar] [CrossRef] [PubMed]
- Hong, S. Influence of Curing Conditions on the Strength Properties of Polysulfide Polymer Concrete. Appl. Sci. 2017, 7, 833. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, X.; Rong, H.; Yang, X.; Duan, Y.; Ren, T. Effect of Super-Absorbent Polymer (SAP) Incorporation Method on Mechanical and Shrinkage Properties of Internally Cured Concrete. Materials 2022, 15, 7854. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, H.J.; Saleem, M.U.; Javed, M.F.; Al Fuhaid, A.F.; Ahmad, J.; Amin, M.N.; Khan, K.; Aslam, F.; Arifuzzaman, M. Prediction of Autogenous Shrinkage of Concrete Incorporating Super Absorbent Polymer and Waste Materials through Individual and Ensemble Machine Learning Approaches. Materials 2022, 15, 7412. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Dong, Y.; Liu, X.; Sun, W.; Lou, T. Prediction of Structural Behavior of Continuous Reinforced Concrete Beams with Hybrid CFRP-Steel Bars. Materials 2022, 15, 7542. [Google Scholar] [CrossRef] [PubMed]
- Moujdin, I.A.; Totah, H.S.; Abulkhair, H.A.; Alsaiari, A.O.; Shaiban, A.A.; Organji, H.A. Development of Low Shrinkage Curing Techniques for Unsaturated Polyester and Vinyl Ester Reinforced Composites. Materials 2022, 15, 2972. [Google Scholar] [CrossRef]
- Sokołowska, J.J. Long-Term Compressive Strength of Polymer Concrete-like Composites with Various Fillers. Materials 2020, 13, 1207. [Google Scholar] [CrossRef] [Green Version]
- Nodehi, M.; Nodehi, S.E. Ultra High Performance Concrete (UHPC): Reactive Powder Concrete, Slurry Infiltrated Fiber Concrete and Superabsorbent Polymer Concrete. Innov. Infrastruct. Solut. 2022, 7, 39. [Google Scholar] [CrossRef]
- Lokuge, W.; Aravinthan, T. Effect of Fly Ash on the Behaviour of Polymer Concrete with Different Types of Resin. Mater. Des. 2013, 51, 175–181. [Google Scholar] [CrossRef]
- Hussain, Q.; Ruangrassamee, A.; Tangtermsirikul, S.; Joyklad, P. Behavior of Concrete Confined with Epoxy Bonded Fiber Ropes under Axial Load. Constr. Build. Mater. 2020, 263, 120093. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.A.; Gil-Martín, L.M.; Carbonell-Márquez, J.F.; Hernández-Montes, E. Epoxy Resin and Ground Tyre Rubber Replacement for Cement in Concrete: Compressive Behaviour and Durability Properties. Constr. Build. Mater. 2018, 173, 49–57. [Google Scholar] [CrossRef]
- Gil-Martín, L.M.; Rodríguez-Suesca, A.E.; Fernández-Ruiz, M.A.; Hernández-Montes, E. Cyclic Behavior of RC Beam-Column Joints with Epoxy Resin and Ground Tire Rubber as Partial Cement Replacement. Constr. Build. Mater. 2019, 211, 659–674. [Google Scholar] [CrossRef]
- El-Hawary, M.M.; Abdul-Jaleel, A. Durability Assessment of Epoxy Modified Concrete. Constr. Build. Mater. 2010, 24, 1523–1528. [Google Scholar] [CrossRef]
- Su, N.; Lou, L.; Amirkhanian, A.; Amirkhanian, S.N.; Xiao, F. Assessment of Effective Patching Material for Concrete Bridge Deck -A Review. Constr. Build. Mater. 2021, 293, 123520. [Google Scholar] [CrossRef]
- Benmokrane, B.; Ali, A.H.; Mohamed, H.M.; ElSafty, A.; Manalo, A. Laboratory Assessment and Durability Performance of Vinyl-Ester, Polyester, and Epoxy Glass-FRP Bars for Concrete Structures. Compos. Part B Eng. 2017, 114, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.T. Handbook of Composites; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 1461563895. [Google Scholar]
- Lokuge, W.P.; Aravinthan, T. Mechanical Properties of Polymer Concrete with Different Types of Resin. In Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials (ACMSM 22), Sydney, Australia, 11–14 December 2012; Taylor & Francis (CRC Press)/Balkema: London, UK, 2013; pp. 1147–1152. [Google Scholar]
- Farahani, A.; Taghaddos, H.; Shekarchi, M. Chloride Diffusion Modeling in Pozzolanic Concrete in Marine Site. ACI Mater. J. 2018, 115, 509–518. [Google Scholar] [CrossRef]
- Farahani, A.; Taghaddos, H.; Shekarchi, M. Prediction of Long-Term Chloride Diffusion in Silica Fume Concrete in a Marine Environment. Cem. Concr. Compos. 2015, 59, 10–17. [Google Scholar] [CrossRef]
- Mane, K.M.; Kulkarni, D.K.; Prakash, K.B. Prediction of Flexural Strength of Concrete Produced by Using Pozzolanic Materials and Partly Replacing NFA by MS. J. Soft Comput. Civ. Eng. 2019, 3, 69–77. [Google Scholar] [CrossRef]
- Bellum, R.R.; Muniraj, K.; Madduru, S.R.C. Characteristic Evaluation of Geopolymer Concrete for the Development of Road Network: Sustainable Infrastructure. Innov. Infrastruct. Solut. 2020, 5, 91. [Google Scholar] [CrossRef]
- Sharbatdar, M.K.; Abbasi, M.; Fakharian, P. Improving the Properties of Self-Compacted Concrete with Using Combined Silica Fume and Metakaolin. Period. Polytech. Civ. Eng. 2020, 64, 535–544. [Google Scholar] [CrossRef]
Property | Value |
---|---|
SiO2 (%) | 20.70 |
Al2O3 (%) | 5.20 |
Fe2O3 (%) | 4.60 |
CaO (%) | 63.85 |
MgO (%) | 1.80 |
SO3 (%) | 2.20 |
K2O (%) | 0.50 |
Na2O (%) | 0.15 |
LOI (%) | 1.00 |
Property | Value |
---|---|
SiO2 (%) | 89.22 |
Al2O3 (%) | 1.20 |
Fe2O3 (%) | 2.12 |
CaO (%) | 1.64 |
MgO (%) | 1.61 |
K2O (%) | 1.054 |
Na2O (%) | 0.556 |
LOI (%) | 2.60 |
Property | Value |
---|---|
Type Liquid state | Bisphenol |
Viscosity (MPas @250c) | 420–580 |
Gel time (min) | 35–45 |
Density (g/cm3) | 1.29 |
Mixture | Vinyl Ester (%) (I) | Silica Fume (%) (I) | Water (kg/m3) | Cement (kg/m3) | W/CM (II) | Fine Aggregates (kg/m3) | Coarse Aggregates (kg/m3) | Superplasticizer (%) (I) | Slump (mm) |
---|---|---|---|---|---|---|---|---|---|
V0S0 | 0 | 0 | 135 | 300 | 0.45 | 1073.1 | 777.5 | 1 | 83 |
V5S0 | 5 | 0 | 135 | 285 | 0.45 | 1073.1 | 777.5 | 1 | 85 |
V10S0 | 10 | 0 | 135 | 270 | 0.45 | 1073.1 | 777.5 | 1 | 82 |
V15S0 | 15 | 0 | 135 | 255 | 0.45 | 1073.1 | 777.5 | 1 | 78 |
V0S5 | 0 | 5 | 135 | 285 | 0.45 | 1073.1 | 777.5 | 1 | 82 |
V0S10 | 0 | 10 | 135 | 270 | 0.45 | 1073.1 | 777.5 | 1 | 80 |
V0S15 | 0 | 15 | 135 | 255 | 0.45 | 1073.1 | 777.5 | 1 | 78 |
V5S5 | 5 | 5 | 135 | 270 | 0.45 | 1073.1 | 777.5 | 1 | 83 |
V5S10 | 5 | 10 | 135 | 255 | 0.45 | 1073.1 | 777.5 | 1 | 80 |
V5S15 | 5 | 15 | 135 | 240 | 0.45 | 1073.1 | 777.5 | 1 | 77 |
V10S5 | 10 | 5 | 135 | 255 | 0.45 | 1073.1 | 777.5 | 1 | 81 |
V10S10 | 10 | 10 | 135 | 240 | 0.45 | 1073.1 | 777.5 | 1 | 80.5 |
V10S15 | 10 | 15 | 135 | 225 | 0.45 | 1073.1 | 777.5 | 1 | 78 |
V15S5 | 15 | 5 | 135 | 240 | 0.45 | 1073.1 | 777.5 | 1 | 78 |
V15S10 | 15 | 10 | 135 | 225 | 0.45 | 1073.1 | 777.5 | 1 | 81 |
V15S15 | 15 | 15 | 135 | 210 | 0.45 | 1073.1 | 777.5 | 1 | 82 |
Mixture | Specimen Weight after Leaving Oven | Specimen Weight after Leaving Water | Percentage of Water Absorption of Concrete Specimens at Different Times (%) | Tensile Strength-28 Days (MPa) | Compressive Strength-28 Days (MPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 min | 60 min | 6 h | 24 h | 48 h | 30 min | 60 min | 6 h | 24 h | 48 h | ||||
V0S0 | 2221.7 | 2268.6 | 2280.4 | 2304.8 | 2315.1 | 2316.6 | 2.11 | 2.64 | 3.74 | 4.20 | 4.27 | 4.85 | 33.65 |
V5S0 | 2227.2 | 2254.4 | 2262.7 | 2289.5 | 2316.0 | 2322.2 | 1.22 | 1.59 | 2.80 | 3.99 | 4.27 | 4.21 | 27.53 |
V10S0 | 2137.0 | 2159.5 | 2166.9 | 2190.6 | 2217.4 | 2226.4 | 1.05 | 1.40 | 2.51 | 3.76 | 4.18 | 3.54 | 29.66 |
V15S0 | 2088.5 | 2103.4 | 2107.5 | 2120.6 | 2145.2 | 2155.2 | 0.71 | 0.91 | 1.54 | 2.71 | 3.19 | 1.87 | 21.90 |
V0S5 | 2205.6 | 2258.9 | 2271.8 | 2291.2 | 2300.0 | 2301.7 | 2.42 | 3.00 | 3.88 | 4.28 | 4.36 | 5.08 | 34.46 |
V0S10 | 2269.5 | 2316.6 | 2328.7 | 2349.5 | 2358.7 | 2360.9 | 2.08 | 2.61 | 3.53 | 3.93 | 4.03 | 6.56 | 37.69 |
V0S15 | 2205.3 | 2256.2 | 2268.7 | 2287.7 | 2296.9 | 2299.7 | 2.31 | 2.87 | 3.74 | 4.15 | 4.28 | 3.94 | 27.50 |
V5S5 | 2205.7 | 2231.0 | 2236.0 | 2245.0 | 2253.7 | 2257.9 | 1.15 | 1.37 | 1.78 | 2.18 | 2.37 | 4.77 | 29.47 |
V5S10 | 2207.1 | 2234.2 | 2242.7 | 2268.4 | 2297.9 | 2306.7 | 1.23 | 1.61 | 2.78 | 4.11 | 4.51 | 4.92 | 34.26 |
V5S15 | 2077.7 | 2105.8 | 2114.3 | 2140.4 | 2172.0 | 2181.1 | 1.35 | 1.76 | 3.02 | 4.54 | 4.98 | 3.02 | 26.84 |
V10S5 | 2145.9 | 2165.7 | 2171.3 | 2189.1 | 2216.9 | 2228.0 | 0.92 | 1.18 | 2.01 | 3.31 | 3.83 | 3.03 | 27.26 |
V10S10 | 2096.3 | 2109.1 | 2114.0 | 2125.9 | 2143.3 | 2153.9 | 0.61 | 0.84 | 1.41 | 2.24 | 2.75 | 4.05 | 32.17 |
V10S15 | 2049.7 | 2068.2 | 2073.2 | 2089.7 | 2118.5 | 2130.5 | 0.90 | 1.15 | 1.95 | 3.36 | 3.94 | 2.25 | 25.14 |
V15S5 | 2175.5 | 2188.9 | 2193.3 | 2204.6 | 2213.4 | 2217.9 | 0.62 | 0.82 | 1.34 | 1.74 | 1.95 | 2.05 | 20.79 |
V15S10 | 2121.7 | 2134.2 | 2138.8 | 2151.5 | 2161.5 | 2164.7 | 0.59 | 0.81 | 1.40 | 1.88 | 2.03 | 1.91 | 21.11 |
V15S15 | 2109.7 | 2123.9 | 2127.9 | 2138.9 | 2149.0 | 2152.4 | 0.67 | 0.86 | 1.38 | 1.86 | 2.02 | 1.36 | 19.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farahani, H.Z.; Farahani, A.; Fakharian, P.; Jahed Armaghani, D. Experimental Study on Mechanical Properties and Durability of Polymer Silica Fume Concrete with Vinyl Ester Resin. Materials 2023, 16, 757. https://doi.org/10.3390/ma16020757
Farahani HZ, Farahani A, Fakharian P, Jahed Armaghani D. Experimental Study on Mechanical Properties and Durability of Polymer Silica Fume Concrete with Vinyl Ester Resin. Materials. 2023; 16(2):757. https://doi.org/10.3390/ma16020757
Chicago/Turabian StyleFarahani, Hosein Zanjirani, Atiye Farahani, Pouyan Fakharian, and Danial Jahed Armaghani. 2023. "Experimental Study on Mechanical Properties and Durability of Polymer Silica Fume Concrete with Vinyl Ester Resin" Materials 16, no. 2: 757. https://doi.org/10.3390/ma16020757
APA StyleFarahani, H. Z., Farahani, A., Fakharian, P., & Jahed Armaghani, D. (2023). Experimental Study on Mechanical Properties and Durability of Polymer Silica Fume Concrete with Vinyl Ester Resin. Materials, 16(2), 757. https://doi.org/10.3390/ma16020757