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Abstract: For wound healing, functional films with certain physicochemical and biological properties
are needed. Thus, the current work aimed to fabricate multifunctional materials comprising metal
oxide nanoparticles loaded with an efficient polymer to be used as dressing material. A composite
containing polymeric phases of cellulose acetate (CA) blended with zinc sulfide (ZnS), silver oxide
(Ag2O), and graphene oxide (GO) was successfully synthesized. The prepared composite crystallinity
was studied using the X-ray diffraction technique (XRD). Further, the functional groups and the
elemental analysis were investigated using Fourier-transform infrared spectroscopy (FTIR) and
energy-dispersive X-ray spectroscopy (EDX). Furthermore, the surface morphology was studied
using scanning electron microscopy (SEM) to obtain the shape and size of particles. SEM showed
that the particles were formed in wide distribution in the range of 18–915 nm with an average size of
235 nm for Ag2O/ZnS/GO/CA. The particle size of Ag2O in the CA film was in the range between
19 and 648 nm with an average size of 216 nm, while the particle size of ZnS in CA was in the range of
12–991 nm with an average age particle size of 158 mm. In addition, EDX, based on SEM investigation,
detected high carbon and oxygen quantities at around 94.21% of the composite. The contact angle
decreased and reached 26.28◦ ± 2.12◦ in Ag2O/ZnS/CA. Furthermore, thermogravimetric analysis
(TGA) was used to investigate the thermal stability, and the composition was thermally stable until
300 ◦C. Moreover, the cell viability of “normal lung cells” reached 102.66% in vitro at a concentration
of 1250 µg/mL. The antibacterial activity of Ag2O/ZnS/GO/CA was also detected against E. coli
with a zone of inhibition reaching 17.7 ± 0.5 mm. Therefore, the composite can be used in biomedical
applications due to its biocompatibility and antibacterial activity.

Keywords: wound healing; metal oxide nanocomposites; cellulose acetate; biomedical materials

1. Introduction

Tissue engineering is an essential modern field specializing in treating or replac-
ing degenerated or damaged tissues, such as bone tissues, instead of traditional clinical
methods [1,2]. Conventional techniques have many drawbacks, such as immune system
rejection, donor site scarcity, and microbial infection risks [2]. Further, polymers have
vast choices to be used in tissue engineering applications [3]. The polymers can be from
a natural or synthetic origin, and many have densities close to the biological tissues [4].
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Therefore, they are used as films and under biomaterial classification. However, synthetic
polymers such as polycaprolactone and polylactic acid show a slow degradation rate and
good mechanical properties [5,6]. That is compared to natural polymers, which show
biodegradability, bioactivity, and biocompatibility, such as collagen and alginate [7].

Cellulose acetate (CA) is a semi-synthetic polymer [8]. CA is non-mutagenic, non-
toxic, non-carcinogenic, and non-immunogenic [2]. These properties are why they are
widely investigated in bone tissue engineering articles [9,10]. Therefore, it is an excellent
biocompatible polymer. In addition, its mechanical properties, such as tensile stress, are
good, despite its low crystallinity [11,12]. This property means that CA can simulate the
bone tissue microenvironment when used as a scaffold. H. Tan et al. prepared nanofibers
based on CA as a scaffold, and they reported that it showed high biocompatible properties.
The cell viability exceeded 100% towards osteoblast cells [9]. A. Tsiapla et al. studied CA
loaded with dexamethasone and reported that the degradability reached around 25% after
150 days. In addition, dexamethasone is completely released after around 180 days. Further,
cell viability reached around 150% after 5 days [13].

Metal oxide nanoparticles have gained attraction and considerable interest due to
their distinct and unique physical and chemical features. They are widely used in various
applications such as photocatalysis, textile, heavy metal removal, gas sensing, and biomed-
ical applications. Additionally, bacteria that develop themselves against conventional
drugs become difficult-to-treat infections. This challenge can be treated with metal oxide
nanoparticles, showing good, promising results in the literature. Silver oxide (Ag2O) is one
of the metal oxides used in many applications, such as data storage devices, photocatal-
ysis, photovoltaic cells, sensors, and medical applications. In addition, being used as an
antibacterial agent in composites due to its desirable properties. A. Rajabi et al. prepared
nanocomposites containing Ag2O and CuO. They reported the antibacterial activity against
E. coli and that the nanoparticles had a positive charge, while the bacteria had a negative
charge. Therefore, electrostatic interaction occurs, leading to oxidation stress and bacte-
rial death [14]. Further, A. Rajabi et al. prepared Ag2O/polyethylene terephthalate and
reported that the inhibition zone against E. coli reached 14 ± 0.2 mm [15]. That indicates
the successful use of Ag2O as an antibacterial agent against E. coli.

Zinc is one of the essential elements in the human body that serves in immunity,
metabolism, and cell growth [16,17]. Zinc and sulfur aim to heal wounds in the skin and
exhibit inflammation effects [18]. Zinc sulfide (ZnS) is in the film composition, which can
directly affect cell growth and biocompatibility. K. Sharma et al. reported the ability of ZnS
to purify water as a photocatalysis material [19]. Therefore, ZnS can be used to enhance the
ability of Ag2O to kill bacteria and improve biocompatibility.

Graphene oxide (GO) is a graphene derivative material, an extraordinary material
formed of a single layer of carbon atoms in sp2 hybridization in a honeycomb lattice [20].
GO has functional groups such as carboxylic acids, epoxy, and hydroxyl. GO has hy-
drophilic properties, high drug-loading capacity, size, and shape that can be controlled,
high mechanical properties, and a large surface area [21]. The growth factors that are essen-
tial formation, migration, and differentiation can be transported using GO [22]. Therefore,
GO can play a critical role in biomedical applications [23]. M. Tavakoli et al. prepared a
nanocomposite containing GO/chitosan/polymethyl-methacrylate, and they found that
the existence of GO improved the biological response. The cell viability reached around
100% after 3 days of incubation towards MG-63 cells [24]. S Purohit et al. synthesized a
nanocomposite of alginate, gelatin, and GO. They reported that GO directly affected the
mechanical properties, increasing from 30 MPa to 55 MPa. Further, the cell attachment
after 8 h enhanced from around 50% to about 70%, and in the same way, the proliferation
increased from 130% to 250% on the seventh day [25]. The combination of GO, ZnS, Ag2O,
and CA can present better properties when combining them.

Antibacterial activity is essential to prevent antibacterial invasion and decrease inflamma-
tion. T. Li et al. designed wound dressing materials consisting of a silk fibroin/polycaprolactone/
polyvinyl alcohol directional moisture transport composite sheet filled with antibacterial
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drug-loading microspheres [26]. The results showed that the antibacterial activity of the
sheets against S. aureus and E. coli is 98.79% and 95.39% [26]. Y. Zhang et al. prepared,
using wet spinning, a multipurpose sodium alginate (SA)@ urushiol fiber with specific
antibacterial, acid corrosion resistance, and flame-retardant characteristics [27]. The results
showed that the SA@ urushiol fiber had a 99.99% effective bactericidal rate against S. aureus.
On the other hand, urushiol had a delayed impact on E. coli’s ability to multiply at low
concentrations, perhaps as a result of the substance’s structure [27], and it wasn’t until the
urushiol level reached 3 wt % that it had a bacteriostatic effect, hitting 72.73% [27]. Cyto-
toxicity and cell viability are tests to measure the viable, normal cells, while antibacterial
activity is a test to study the behavior of the scaffold against bacterial invasions, which
could cause skin inflammation.

In this study, a combination of Ag2O, ZnS, and GO is encapsulated in CA film to be
utilized as a novel wound dressing material for wound healing application. The main
reason for choosing Ag2O is due to its usage in different medical applications and its superb
antibacterial activity. On the other hand, ZnS is selected as Zn has many desired properties
in biological applications. Zn aids in cell growth and serves the immune system. Sulfur and
zinc both work to reduce inflammation and heal skin wounds. Further, GO is supposed to
increase the hydrophilic nature of CA and aid in cell adhesion. Moreover, CA has good
biocompatibility, and it is a non-toxic material for the human body. CA serves as a matrix
for the previous drugs. XRD is used to investigate the crystallinity and crystal symmetry of
the used materials, while FTIR is used to describe the functional groups of the modified
films. On the other hand, SEM and EDX are used to study the surface morphology and
particle size of the films and to determine the percentages of the selected area, respectively.
Further, the contact angle test is measured to study the behavior of the films with the water
drops, while the UV-Vis measurement is tested to measure the transparency of the films
and the dispersion of the additives. Furthermore, the TGA test is used to study the thermal
stability of the films. Additionally, the antibacterial activity and cell viability are tested for
the samples. All these measurements and tests are carried out to understand the behavior
of the prepared films with the wounded area. This combination is thought to be a suitable
material to fit with wound healing applications.

2. Materials and Methods
2.1. Materials

Silver oxide (Ag2O), zinc nitrate (Zn(NO3)2), sodium sulfide (Na2S), and sodium
hydroxide (NaOH) were purchased from Sigma-Aldrich Co., St. Louis, MO, USA. The
human fibroblasts cell line was used under culturing conditions in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, Waltham, MA, USA) to inspect cell viability. Cellulose
acetate (CA) Mw = 30,000 g/mol was purchased from ACROS. Acetone was obtained from
Merck, Darmstadt, Germany.

2.2. Experimental Methods

The compositional materials (Ag2O, ZnS, GO) were obtained in the powder phase
and then incorporated into the polymeric phase of CA. An amount of 5 g of Zn(NO3)2
was dissolved in deionized water (DIW), and 5 g of Na2S was dissolved in another beaker.
Then, S solution was added slowly into the Zn solution, and NaOH was dropped into the
mixed solution to obtain ZnS precipitated gel. The obtained gel was dried in a furnace to
obtain the powder. The polymeric film samples were prepared as follows: The first sample
was prepared by dissolving 2 g of CA powder in 20 mL of acetone under a magnetic stirrer
for 15 min. The second sample was prepared by dissolving the 2 g of CA in 20 mL of
acetone under a magnetic stirrer, then about 0.25 g of Ag2O was dropped in the CA bottle
and stirred for 20 min to disperse the solution. Further, the third sample was prepared by
dissolving 2 g of CA in 20 mL of acetone in the bottle under stirring, then 0.25 g of ZnS
was added to the solution bottle slowly and stirred for 20 min to be well dispersed in the
solution. The fourth sample was prepared by filling the bottle with 20 mL of acetone and
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dropping 2 g of CA slowly into the bottle under magnetic stirring for 15 min to dissolve
the polymer, then about 0.125 g of Ag2O was added to the solution and dispersed after
20 min of stirring, and 0.125 g of ZnS was added to the same solution and dispersed after
20 min of stirring. Finally, the last sample was prepared by dissolving about 2 g of CA in
20 mL of acetone in a bottle, then Ag2O, ZnS, and GO were added separately to the CA
solution, and every one of them was dispersed for 20 min in the CA solution. The final step
to obtaining CA films was that each sample was poured into a Petri dish with a diameter of
14 cm, and the diameter of the CA films was 2 mm; after that, the sample was placed in
drier francs at 40 ◦C until the solvent evaporated and CA films formed.

2.3. Characterization Methods

X-ray diffractometer was used to obtain the patterns of XRD (Malvern PANana-
lytical X′Pert Pro, Cu kα1 = 1.5404, Malvern, WR14 1XZ, UK). Morphological analysis
was conducted by scanning electron microscope (SEM) with an operating voltage of
20–30 kV (QUANTA-FEG250, Kolkata 700106, WB, India). Through a wavenumber range
of 4000–400 cm1, Fourier-transform infrared (FTIR) spectra were measured by using an
FTIR spectrometer (Perkin-Elmer 2000 Akron, OH, USA). The surface morphology of the
materials and EDX analysis were investigated using a scanning electron microscope (SEM)
(QUANTA-FEG250, Kolkata 700106, WB, India).

2.4. The Water Contact Angle

A customized system was used to detect the angle of water droplets on the sample.
On 2 cm2 of a sample, the water droplets were carefully dropped. After positioning the
sample upon that stand in front of the camera, the image was taken by (HiView). Three
experiments were made for each sample to determine the contact angle of each one. The
droplet diameter was 4 mm ± 1.4.

2.5. Thermal Gravimetric Analysis (TGA)

With an airflow rate of 100 mL/min, TGA was performed in a (DTG-60H Shimadzu)
analyzer from room temperature (R. T.) up to 1173 K. There was a 10 K/min heating rate.

2.6. UV-Vis Spectrophotometer

UV–visible (UV-Vis) spectroscopy (METASH, Shanghai, China) was employed to
examine the optical characteristics of the films from 400 to 800 nm. The system was
calibrated to air. About 2 × 2 cm2 of each film was placed in front of the UV lamp
and tested.

2.7. Cytotoxicity Test

Human lung cells were used under culturing conditions in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, ThermoFisher Scientific, Gillingham, UK) to inspect cell
viability. Cells with a density of 5 × 103 (cells/cm2) were cultured on the composites
through 24-well plates and then incubated at 37 ◦C. After three days of incubation, media
were removed, and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
was injected into each well, then cell viability was detected through an optical analyzer
(The Vi-Cell XR Cell Viability Analyzer, Beckman Coulter, Indianapolis, IN, USA).

2.8. Antibacterial Measurement

The antibacterial behavior of the films was measured by diffusion mechanism. The
antibacterial behavior was tested against 2 types of bacteria: Staphylococcus aureus (S. aureus)
and Escherichia coli (E. coli). About 0.055 mg from each film was immersed in 2 mL of DIW
for 24 h. Each film was immersed in 2 mL of water separately. After that, the inhibition
zone was calculated for each film.
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3. Results and Discussions
3.1. XRD

The XRD technique was used to investigate the crystal symmetry and crystalline
nature of the compositions, as shown in Figure 1. The patterns are exhibited in Figure 1.
However, in the pure CA in Figure 1A, the pattern shows diffuse peaks, which indicate the
amorphous nature at around 30.9◦ and 41.6◦. There is also a peak at around 9.2◦, which
is less broadening than the others, indicating the crystalline nature of CA. Therefore, this
explains why CA is considered a semicrystalline polymer. Further, the low signal-to-noise
ratio indicates the low crystallinity of the polymer. These observations agree with previous
studies [28–30]. Figure 1B shows cubic crystal symmetry with lattice parameters around
0.472 nm (JCPDS File No. 75e1532) [31]. Further, the most characteristic peaks of Ag2O can
be determined at 32.5◦, 37.8◦, and 54.6◦. The mentioned peaks belong to the crystal planes
of (111), (200), and (220) [32]. From Figure 1C, ZnS hexagonal symmetry can be determined
with peaks at 26.9◦, 28.5◦, 30.5◦, 47.6◦, and 56.4◦ [33,34]. These peaks belong to (100), (002),
(110), and (112), respectively [33]. The composition of Ag2O/ZnS/GO/CA, as shown in
Figure 1E, contains three phases, which belong to Ag2O, ZnS, and CA, while the peaks of
GO cannot be observed due to the low quantity of GO relative to the total composition.
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3.2. FTIR

FTIR spectroscopy was used to determine the functional groups in the prepared
compositions and is illustrated in Figure 2 and Table 1. It can be observed that there is a
band at around 1738.44 cm−1, which belongs to C=O stretching vibration (carbonyl group).
Two C-O bands can be determined at 1211.88 and 1027.16 cm−1, respectively [35]. These
groups confirm the existence of the ester group (O=C-O) in cellulose acetate [36]. The
mentioned peaks of C-O have asymmetric vibrations of the (-C-O) that left the oxygen
ester (higher wavenumber) and (O-C-), which is to the right of the oxygen ester (lower
wavenumber). Further, the acetyl group also has a characteristic band of C-H due to the
C-CH3 (alkane) group, which can be determined at 1368.24 cm−1 [37,38]. Moreover, the
band at 901.69 cm−1 belongs to the bending vibrational mode of C-H [39]. Furthermore, the
O-H band originated from the adsorbed water molecules and can be detected, with a broad
but fragile band, at around 3431.03 cm−1 [40]. It can be observed that after the addition of
GO, there are bands that have more intensity, such as 1027.30, 1212.02, and 1746.30 cm−1.
These bands become more robust due to the existence of alkoxyl (HO-CH3), epoxy (C-O-C),
and carboxyl (O=C-OH) groups, which confirm GO incorporation [41]. It can be observed
that there are two weak bands around 485 and 1380.2 cm−1 that are due to Ag-O [42]. On
the other hand, it can be seen that ZnS shares a peak with CA at 1027.16 cm−1 [43]. The
two weak peaks at 485 and 677.2 are attributed to Zn-S cm−1 [43]. The peaks of ZnS and
Ag2O could be due to their very low concentrations compared to CA film.
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Table 1. The detected bands by FTIR technique and their assignments.

CA
(cm−1)

Ag2O/CA
(cm−1)

ZnS/CA
(cm−1)

Ag2O/ZnS/CA
(cm−1)

Ag2O/ZnS/GO/CA
(cm−1) Assignment Refs

- - 485 485.2 457.6 Zn-S [43]

- 561.8 - 561.9 562 Ag-O [42]

- - 677.2 671.5 676 Zn-S [43]

901.69 901.03 901.33 901.25 901.38 C-H [39]

1027.16 1027.17 1026.90 1027.53 1027.30 C-O
Zn-S [36,43]

1211.88 1212.74 1212.55 1212.36 1212.02 C-O [36]

1368.24 1367.76 1368.30 1368.11 1367.86 C-H [37]

- 1380.2 - 1378.2 1377.9 Ag-O [42]

1663.46 1662.89 1662.58 1663.23 1663.25 C=C [37]

1738.44 1743.94 1746.07 1744.29 1746.30 C=O [37]

2901.12 2922.70 2912.33 2922.70 2931.48 C-H [44]

3431.03 3451.77 3462.15 3431.03 3422.25 O-H [36]

3.3. SEM/EDX Analysis

A scanning electron microscope was used to study morphology and changes in size
distribution and shape. The size and shape are essential parameters in biomedical ap-
plications that can reflect the self-assembly of particles. The magnification micrograph
(10kX) is demonstrated in Figure 3A and shows a polymeric membrane of CA covered with
particles of Ag2O. These particles have a wide-size distribution from a few nanometers to a
hundred nanometers. In addition, more information can be collected from lower magnifi-
cation (2kX) in Figure 3B, such as the irregular shape. Still, most are rod morphs for the
nanoparticles and a rocky texture for large, aggregated particles. Further, Figure 3C shows
the size distribution, which is in the range of 19–648 nm 333.5 ± 56.3 nm with an average
size of 216 nm. Moreover, the addition of ZnS to the nanocomposite directly affected the
morphology, as can be seen in Figure 3D,E. Due to the broader distribution of ZnS particles,
more nanoparticles are added to the nanocomposite. Furthermore, the porosity of CA is
obvious in this sample, which is a critical factor in biomedical applications. The average
particle size is around 158 nm, and the distribution in the range of 12–991 nm means,
560 ± 90.6 nm smaller and larger particles are incorporated by adding ZnS. The addition
of GO nanosheets and their effect on the morphology can be observed in Figure 3G–I. It
can be seen that the CA film is covered with particles of Ag2O/ZnS with a nanosheet of
GO. That led to less distribution width than the composition of Ag2O/ZnS/CA, where
the sizes are in the range of 18–915 nm with an average size of 235 nm. It is very hard
to recognize the dopants in the film due to their low concentration compared to the con-
centration of the film; the maximum concentration of the embedded dopants is 12.5 wt
% from the total percentage of the film, while CA is 88.9 wt %. Additionally, in the final
sample, the weight percent of CA, Ag2O, ZnS, and GO are added to CA with the following
percentages 88.9/4.44/4.44/2.22 wt %, respectively. The difference between the particles
can be recognized from the other works of the literature. The weight ratio of CA to the
particles is CA, Ag2O, ZnS, and GO 88.9/4.44/4.44/2.22 wt %, respectively. So, it is very
hard to recognize the particles as they have a low ratio compared to CA and are embedded
in the film. Moreover, the EDX investigation was based on SEM micrographs, and it is
shown in Figure 4 that the elements of CA and GO can be detected by determining C and
O, which form 94.21% of the film. In addition, the high content of oxygen is due to its
sharing with Ag2O, GO, and CA. Moreover, Table 2 shows that the Zn, S, and Ag can also
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be determined, consisting of Ag2O and ZnS. The very low percentage of nitrogen may be
due to the organic cellulose acetate.
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3.4. Contact Angle

The contact angle measurement is a critical factor in film properties due to its impor-
tance in determining the hydrophobicity and hydrophilicity behavior. The ideal hydrophilic
surface has a contact angle of 0◦, and when the angle increases, the hydrophobic character
of the film increases [45]. The measurements are exhibited in Table 3, and it can be seen that
pure CA has a contact angle of 48.04◦ ± 1.59◦. The addition of Ag2O led to enhancement in
the spreading of the water droplet, where the contact angle decreased to 46.12◦ ± 2.65◦. Fur-
thermore, adding ZnS enhanced the hydrophilicity, and the angle reached 45.46◦ ± 2.50◦.
Moreover, the Ag2O/ZnS/CA composition shows the highest hydrophilic behavior, and
the contact angle reached 26.28◦ ± 2.12◦. The hydrophilic behavior decreased by adding
GO to the composition to around 34.04◦ ± 3.24◦. The increase in the hydrophilic nature of
CA due to the presence of additives would enhance the surface interaction with body fluids.
This means that the skin moisture is higher, and cell proliferation and adhesion are higher.
Consequently, more cells can proliferate and grow on the surface of the film. The decrease
in contact angle may be due to the increase in roughness as a result of the addition of the
chosen particles in the film. The increase in surface roughness would aid in the wettability
of the surface, which will decrease the angle. The hydrophilicity of the film was boosted by
the reactive hydroxyl groups in the GO, particularly the hydroxyl OH group on the film’s
surface. The density of hydrophilic groups present on the surface of this film also reduces
the energy of the water interaction [46]. The positive effects of encapsulated GO on film
hydrophilicity were in line with the results of other studies of a similar kind [46].

Table 3. The contact angle of all composites with the error bars was estimated by repeating the
experiment 3 times.

Sample Angle Stander Deviation

CA 48.04 1.59806

Ag2O/CA 46.12 2.65872

ZnS/CA 45.64 2.50316

Ag2O/ZnS/CA 26.285 2.12839

Ag2O/ZnS/GO/CA 34.045 3.24562
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3.5. TGA

Thermal stability is essential for any film owing to the flexibility of biomaterial inside
the human body under different temperatures and thermal conditions. However, the
TGA analysis is illustrated in Figure 5, and it can be noticed that the degradation of
Ag2O/ZnS/GO/CA started at around 300 ◦C. The composition lost about 80% of its weight
at about 370 ◦C, and at 600 ◦C, it lost about 90% of its weight. This is due to the acetate
group loss, dehydration, and depolymerization of CA, and the remaining 10% at the end
are Ag2O, ZnS, and GO. However, that means the composition is stable under the thermal
circumstances humans can expose. The final sample was chosen for the TGA test as it is
the film that contains all materials. The TGA curve was studied for the combination as
it is the sample that exhibited the most favorable properties in the other tests. Thermal
stability is an important property to study the behavior of the film from room temperature
to 600 ◦C. According to the TGA curve, three stages can be studied. TGA is useful as the
injured area might be exposed to a high temperature accidentally. So, it is important to
know the behavior of the film with different temperatures. This study might allow us to
find other applications for the film.
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Figure 5. The TGA analysis for the final Ag2O/ZnS/GO/CA composite from room temperature to
600 ◦C.

3.6. Cytotoxicity

The normal lung cell line was used to investigate the biocompatibility and cytotoxicity
of the prepared film. The initial concentration was 5000 µg/mL. The results are demon-
strated in Figure 6; it can be noticed that the small concentration of around 2.44 µg/mL
showed a cell viability of 125.31%. By increasing the concentration, the viable cells de-
creased but at a low rate, where 102.66% of cells were viable at 1250 µg/mL. The highest
tested concentration was 5000 µg/mL, which records relatively high cell viability with a
value of 75.16%. These results indicate the biocompatibility of Ag2O/ZnS/GO/CA, which
contains CA and GO, known as biocompatible materials. Moreover, the morphology of the
composition, such as the film’s porous structure, led to reaching the cells’ nutrients and
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oxygen [47]. Therefore, more cells are viable with the existence of the film in addition to
the enhancement in the hydrophilic behavior. The reactive hydroxyl groups of the GO, in
particular, the hydroxyl (O-H) group on the film’s surface, increased the hydrophilicity of
the film. Additionally, the density of hydrophilic groups on this film’s surface minimizes
the energy of the water contact [46]. The favorable effects of encapsulating GO on film
wettability are consistent with findings from earlier investigations of the same kind [46].
The addition of GO to the surface of the film might also increase the surface roughness,
which plays a significant role in increasing the hydrophilicity, which would increase cell
adhesion on the scaffold and cell generation. The porosity in the film aided in the growth
and generation of cells, which explains the growth of the cells until reaching 125.31% viable
cells. In addition, the enhancement in the hydrophilic behavior of CA occurred as a result
of the addition of the mentioned drugs in the CA film.
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Figure 6. Cell viability of normal lung cells upon different Ag2O/ZnS/GO/CA concentrations.

Cytotoxicity and cell viability are tests to measure viable normal cells, while antibacte-
rial activity is a test to study the behavior of the scaffold against bacterial invasion, which
could cause skin inflammation.

3.7. Uv-Vis

Concerning the optical properties or the transparency of the prepared composition
of Ag2O/ZnS/GO/CA, less transparency means less light can pass through the film. The
degree of the dispersed particles is one of the main factors that control this optical behavior.
Pure CA shows relatively high transmittance photons at around 75%. The addition of Ag2O
decreased that transparency to about 45%, as shown in Figure 7. Further, ZnS decreased
that behavior to about 20%, and this indicates the ability of ZnS to prevent light from
being passed through the film. Moreover, adding Ag2O/ZnS and Go into the CA phase
blocked the photons from transmitting with a transmittance value lower than 5%. This
behavior is due to the agglomerated particles detected by the SEM investigation. The larger
particles are shown in distribution particle sizes, which directly affect the optical properties
by blocking the photons from being transmitted through the sample. The optical properties
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are essential as the transparency of the films means that the particles are well dispersed
on the film surface, which is a targeted result. When the light falls on the surface of the
film and particles, free electrons and charge carriers are generated, which could aid in the
degradation of the bacteria and inhibit inflammation. Additionally, it could play a key role
in sterilizing the wounded area.
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Figure 7. UV-Vis transmittance measurement for all composites.

3.8. Antibacterial

The bacterial growth was determined and is illustrated in Figure 8. It can be clarified
that CA and ZnS/CA have no antibacterial activity against both strains. In this regard,
S. aureus is only sensitive to Ag2O/CA and showed 10.7 ± 0.5 mm as a zone of inhibition.
The other films showed no antibacterial activity against S. aureus. Further, Ag2O/CA
showed a zone of inhibition with a value around 10.7± 1.2 mm against E. coli. The addition
of ZnS developed that activity and reached 17.0 ± 0.8 mm. Moreover, adding GO slightly
enhanced the antibacterial behavior, and the zone of inhibition reached 17.7 ± 0.5 mm. The
antibacterial activity of Ag ions has been reported in previous studies, affecting the cell
membrane; consequently, E. coli bacteria cannot establish protection, thereby leading to
cell death [48–50]. In the case of Ag2O/ZnS/GO, the weight percentage of each dopant
was lowered; for example, by comparing the percentage of Ag2O in the second and final
samples, we could recognize that the weight percentage of Ag2O decreased from 11.11 wt %
to 4.44 wt % from the total weight of the film. So, the effect of the Ag2O on killing bacteria
is lowered or not found.
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4. Conclusions

Silver oxide (Ag2O), zinc sulfide (ZnS), and graphene oxide (GO) were separately
prepared and combined with cellulose acetate (CA). Structural, compositional, elemental,
and morphological investigations were conducted. In addition, the biological response
was investigated in vitro. XRD showed the cubic and hexagonal symmetries of Ag2O and
ZnS in addition to the low crystallinity of CA. Fourier-transform infrared spectroscopy
investigated and detected the epoxy, hydroxyl, and carboxylic functional groups in the
Ag2O/ZnS/GO/CA composition. Further, the morphological investigation using scanning
electron microscopy (SEM) showed that the average particle size reached 158 nm with a dis-
tribution range of 12–991 nm. In addition, the contact angle decreased from 48.04◦ ± 1.59◦

to 34.04◦ ± 3.24◦ and, consequently, the hydrophobicity. The transmittance efficiency
decreased from around 75% to 5%, and the composition was thermally stable until 300 ◦C.
Moreover, the antibacterial activity enhanced and reached 17.7 ± 0.5 mm against E. coli
bacteria. Additionally, Ag2O/ZnS/GO/CA composition showed a cell viability value of
125.31% at 2.44 µg/mL and reached 75.16% at 5000 µg/mL. The low contact angle, high
antibacterial activity, high viable cells, cell generation, and good dispersion of the additives
in the CA films largely support this film’s use in wound healing applications.
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