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Abstract: Five new complexes with metal cations (Mn2+, Fe3+, Co2+, Ni2+, and Cu2+) of monolacu-
nary Keggin monovanado-deca-tungstophosphate, K8[PVW10O39]·15H2O, have been synthesised.
The molar ratio of the combination between metal cations and K8[PVW10O39]·15H2O has been estab-
lished to be 1:1, and its general molecular formulas were found to be: Kn[MPVW10O39(H2O)]·xH2O
(n = 5 for M = Fe3+ and n = 6 for M = Mn2+, Co2+, Ni2+, and Cu2+). Optimal conditions for
complexes’ synthesis (pH, temperature, and reaction time) have been determined. The character-
isation of K8[PVW10O39]·15H2O and of its compounds Kn[MPVW10O39(H2O)]·xH2O have been
performed using AAS, TG-DTA-DTG, UV-VIS, IR, Raman, and powder XRD methods. In UV
spectra, two maximums of absorption were obtained, at 200 and 250 nm, characteristic of Keg-
gin polycondensate compounds. The coordination of cations Ni2+, Co2+, and Cu2+ through oxy-
gen atoms from K8[PVW10O39]·15H2O in an octahedron system has been reflected with VIS spec-
troscopy. All these methods have proved the compositions and structures of K8[PVW10O39]·15H2O
and Kn[MPVW10O39(H2O)]·xH2O, their similarity with other vanadotungstophosphates, and their
achievements in the Keggin class. Additionally, all analysis methods have shown an increase in the
degree of structural symmetry and the thermal stability of a polyoxoanion complex after attaching
metal cations compared to the monolacunary, K8[PVW10O39]·15H2O.

Keywords: polyoxometalates Keggin; mixed addenda; tungsten; vanadium; spectroscopy

1. Introduction

Polyoxometalates, Keggin type with a complete structure have the general formula
[XM12O40]n- and are a class of polycondensation inorganic compounds formed by twelve
units of MO6 (where M is Mo6+, W6+, V5+, Nb5+, or Ta5+, named addenda atoms) binding
together through commune corners and edges. Units of MO6 coordinate around a tetrahe-
dral unit, XO4, where X can be almost any element of the periodic system [1]. Three MO6
octahedrons are connected together by common edges in four M3O13 units, which in turn
are connected by common corners. Oxygen atoms can be distinguished by the nature of
the connection in Oi (oxygen shared between each of the three octahedrons of the M3O13
unit and XO4 group) in X-Oi-M bonds; Oe (oxygen shared between the MO6 octahedron of
the same M3O13 unit) in M-Oe-M bonds; Oc (oxygen shared between the MO6 octahedron
of a different M3O13 unit) in M-Oc-M bonds; and Ot, unshared oxygen from each MO6
octahedron (terminal oxygen) in M = Ot bonds. Keggin polyoxoanions [XM12O40]n- may
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lose one, two, or three units of MO6 to transform into a lacunary form, more active than
the complete structure, so that they can act as chelating ligands of cation metals. All the
bonds between heteroatoms X and addenda atoms M in polyoxoanions are carried out by
oxygen atoms, which may become electron pair donors for external metal cations. The
ability of polyoxometalates to engage a wide variety of metal atoms leads to an increase in
the synthesis of new compounds [1–3]. Moreover, special chemical and physical properties
of polyoxometalates facilitate their use in various fields such as chemical catalysis [4–7],
analytical chemistry [8], biochemistry [9], and medicine [10]. The authors of this article
have already published an application on monovanado-deca-tungstophosphate polyox-
ometalates, K8[PVW10O39]·15H2O, and its complexes Kn[MPVW10O39(H2O)]·xH2O (n = 5
for M = Fe3+ and n = 6 for M = Mn2+, Co2+, Ni2+, and Cu2+) on Triticale seed germination,
where the involvement of these polyoxometalates in the growth of Triticale seedlings during
the first days after germination and the possibility to use these compounds as fertilizers
were presented and discussed [11].

This paper is focused on the synthesis and structural analysis of polyoxometalates
K8[PVW10O39]·15H2O and Kn[MPVW10O39(H2O)]·xH2O (n = 5 for M = Fe3+ and n = 6 for
M = Mn2+, Co2+, Ni2+, and Cu2+). In the first part, the synthesis of monolacunary Keggin,
K8[PVW10O39]·15H2O was achieved in two steps, according to reactions (1) and (2) [12].

H3PO4 + 9 Na2WO4 + 10 H3C-COOH→ Na8[HPW9O34] + 10 H3C-COONa + 6 H2O (1)

Na8[HPW9O34] + Na2WO4 + NaVO3 + 3 HCl + 8 KCl→ K8[PVW10O39] + 11 NaCl + 2 H2O (2)

In the second part, the stoichiometry of reactions between monolacunary polyox-
ometalate, K8[PVW10O39]·15H2O and metal transition cations M (where M is Mn2+, Fe3+,
Co2+, Ni2+, and Cu2+) in the synthesis of Kn[MPVW10O39(H2O)]·xH2O complexes was
determined. The result of this study was that the coordination of monolacunary poly-
oxometalate, K8[PVW10O39]·15H2O to the metal cation M took place according to the
following reaction scheme:
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In addition, the optimal reaction conditions for the formation of Kn[MPVW10O39(H2O)]·xH2O 
complexes, pH, reaction time, and temperature were determined. Then, 
Kn[MPVW10O39(H2O)]·xH2O complexes were prepared and characterised using AAS, thermogra-
vimetry, FT-IR, FT-Raman, UV-VIS, and XRD methods. 

2. Materials and Methods 

In addition, the optimal reaction conditions for the formation of Kn[MPVW10O39
(H2O)]·xH2O complexes, pH, reaction time, and temperature were determined. Then,
Kn[MPVW10O39(H2O)]·xH2O complexes were prepared and characterised using AAS,
thermogravimetry, FT-IR, FT-Raman, UV-VIS, and XRD methods.

2. Materials and Methods

All reagents were purchased from commercial sources and used as received. Distilled
water was used in all procedures. Conductometer and pH meter analyses have been per-
formed using a Multi 720 Inolab WTW series. Elemental analysis of P, Mo, V, Mn, Fe, Co,
Ni, and Cu was performed with a Varian ASA 220 type spectrophotometer (Palo Alto, CA,
USA). Potassium has been determined with an Eppendorf flame photometer (Hamburg,
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Germany). TG-DTA-DTG curves were used for the determination of the new synthesized
compounds’ thermal stabilities, and further, for the determination of the number of water
molecules in air on a Paulik-Erdely OD-103 (Budapest, Hungary) derivatograph (20–800 ◦C)
at 5 ◦C min−1. FT-IR spectra were recorded in the 4000–400 cm−1 range on a Biorad FTS
60A spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA) using KBr pellets.
Raman spectroscopy was performed on solid powders at room temperature, using a DILOR
OMARS 89 Raman spectrophotometer (Thousand Oaks, CA, USA) (λe = 1064 nm). UV-VIS
spectra were recorded in the range 190–1100 nm on a T-60 UV-VIS model spectrophotome-
ter (ThermoFisher Scientific, Waltham, MA, USA). Powder XRD patterns were obtained
using a Bruker D8 Advance powder diffractometer (Billerica, MA, USA) at 40 kV and
40 mA, equipped with an incident beam Ge 111 monochromator using CuKα1 radiation
(λ = 1.540598 Å). The patterns have been indexed using the Dicvol method. Accelrys
Software Inc., Materials Studio (Cambridge, UK), Release 5.5, 2010 was used to assess the
degree of crystallinity. The experimental density was determined using a pycnometer from
each polyoxometalate dissolved in acetone.

2.1. Synthesis of K8[PVW10O39]·15H2O (L)

The trilacunary polyoxometalate, α, A-Na8[HPW9O34]·11H2O, was prepared accord-
ing to the method from the literature [12]. In a beaker, a mixture of 1.95 g (10 mmol) of
NaVO3·4H2O and 3.3 g (10 mmol) of Na2WO4·2H2O were dissolved in 50 mL of distilled
water and 26.13 g (10 mmol) of α, and A-Na8[HPW9O34]·11H2O was added under vigorous
stirring. The pH was adjusted to 5.5 with the addition of a 3 M HCl solution. The insoluble
materials were removed by filtration under suction, and 7.45 g (100 mmol) of KCl was
added to the red filtrate. Orange crystals started to develop from the solution stored at 5 ◦C
for 30 min. Crystals of L were collected and washed with 20 mL of deionised water, 20 mL
of ethanol, and 20 mL of diethyl ether. The resulting mixture was dried in a desiccator.
The yield was 15.00 g (47.97%). UV: 206.5; 249 (nm); IR: 3415 vb, 1629 b, 1072 m, 1013 w,
943 vs, 880 sh, 827 s, 807 m, 752 s, 615, 594, and 508 (cm−1); Raman: 960, 889, 505, 376, 229,
and 150 (cm−1); Analytically calculated cd. (found) (M = 3127.4051): K, 10.00 (9.75); P, 0.99
(1.00); V, 1.63 (1.50); W, 58.79 (58.5); and H2O, 8.63 (8.69)%.

2.2. Determination of Optimal Reaction Conditions for the Synthesis of Complexes 1–5

Conductometric and spectrophotometric methods were used to determine the pH
range where monolacunary L is stable. For the conductometric method, a 5.0 mM L
solution (0.469 g; 0.15 mmol) was used and adjusted to pH 2.0 by the addition of 0.1 N HCl
and brought to a pH of 7.0, gradually, using a 0.1 N KOH solution. Conductivities were
measured and are shown in Figure 1a. For the spectrophotometric method, 0.01 mM of L
was prepared in a 50 mL flask, and the pH was adjusted to the range 2.5–7.5, by adding
0.1 N HCl or 0.1 N KOH solutions. The absorbance of L solutions was measured at 206.5 nm
and is shown in Figure 1b.

The determination of the molar rate between L and metal cations M was performed
using a conductometric method. In a beaker, a 1 mL solution of 5 mM of L (5·10−3 mmol)
and a 4 mL buffer solution (acetic acid and sodium acetate) were added, corresponding
to a pH of 5.0. The solution volume was adjusted to 30 mL using distilled water and a
10 mM MnCl2 solution was added in 0.25 mL amounts to achieve different M/L rates. The
experiment and recording data were performed in the same way using 10 mM of FeCl3,
CoCl2, and NiCl2, respectively. CuCl2 solutions were used instead of 10 mM MnCl2. The
variation of conductivities from different M/L rates for all the experiments were recorded
and are shown in Figure 2.

Optimal reaction conditions (pH, temperature, and reaction time) were determined
using the colorimetric method. Measurements of absorbance were made only at a wave-
length when metal cation complexes had a significant absorbance, while monolacunary
ligand L and aquo complexes of cations had insignificant absorbances. Based on the crite-
ria mentioned above, the measurement of the absorbance for the prepared samples was
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performed at 800 nm for Ni2+ and Cu2+ and at 870 nm for Fe3+, respectively, and at 1100
nm for Mn2+ and Co2+.
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Figure 2. Determination of the molar combination ratio between monolacunary ligand L and metal
cations M (Mn2+, Fe3+, Co2+, Ni2+, and Cu2+) in a buffer solution at pH 5.0 using the conductomet-
ric method.

In a 50 mL flask, 20 mL of L and 20 mL of MnCl2 with the same concentration
(5·10−3 M) were mixed, and the pH was adjusted from 3.5 to 6.5 with 0.1 N HCl and 5%
KHCO3 solutions, respectively. The method was repeated for each metal cation solution
mentioned previously in the molar rate study, instead of MnCl2. These reaction mixtures
were used in the following studies. All measurements of absorbencies were undertaken at
room temperature 30 min after preparation. The variation in absorbance at different pHs in
the range 3.5–6.5 for each reaction mixture between solutions of metal cations and L was
recorded in Figure 3.

To determine the optimal reaction time, the absorbance of the mixtures prepared above
was read after 10, 30, 60, and 90 min (Figure 4). The measurements were performed at room
temperature under the optimal pH conditions already found for each metal cation, M.
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Figure 4. Determination of the optimal reaction time for the synthesis of complexes between ligand L
and metal cation M (Mn2+, Fe3+, Co2+, Ni2+, and Cu2+) using a spectrophotometric method.

To determine the optimal synthesis temperature, the absorbance of the reaction mix-
tures were performed at different temperatures: 25, 40, 60, 80, and 100 ◦C. Measurements
was measured after an optimal reaction time and in optimal pH conditions ascertained
from previous experiments. Figure 5 shows a plot of the curves of absorbance variation
with temperature.
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Figure 5. Determination of the optimal temperature for the synthesis of complexes between ligand L
and metal cation M (Mn2+, Fe3+, Co2+, Ni2+, and Cu2+) using a spectrophotometric method.
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2.3. Synthesis of K6[MnPVW10O39(H2O)]·14H2O (1)

In a beaker containing 12.5 g (4.00 mmol) of L dissolved in distilled water, a solution
resulting from the dissolution of 0.79 g (4.00 mmol) of MnCl2·4H2O in a minimum quantity
of water was gradually added. The pH of the solution was adjusted to 5.0 by adding dropp
by drop solutions of HCl (0.1 M) and KHCO3 (5%). The mixture was kept at a temperature
of 60 ◦C for 30 min. Any insoluble material was removed by filtration under suction, and
2.5 g (33.53 mmol) of KCl powder was added to the filtrate. The resulting red solution was
kept in the fridge, at a temperature of 5 ◦C, for 2–3 days. After 3 days, red-orange crystals
of 1 were filtered and then washed with ethanol. The crystals were kept for two days at
room temperature in desiccators. Crystals of 1 were recrystallized from deionised water
at a pH of 5.0 at room temperature. The yield was 7.34 g (59.1%). UV: 199, 251.5 (nm); IR:
3441 vb, 1617 b, 1082 m, 1058 m, 957 vs, 881 m, 792 s, 700 sh, 593, and 505 (cm−1); Raman:
987, 890, 519, 229, and 156 (cm−1); Analytically calculated (found) (M = 3104.1471): K, 7.56
(7.51); Mn, 1.77 (1.73); P, 1.00 (0.95); V, 1.64 (1.61); W, 59.23 (59.35); and H2O, 8.70 (8.78)%.

2.4. Synthesis of K5[FePVW10O39(H2O)]·11H2O (2)

For the synthetic procedure of 2, the same steps as the synthesis of 1 were followed, as
described before. A quantity of 12.5 g (4.00 mmol) of L was used and 0.65 g (4.00 mmol) of
FeCl3 instead of MnCl2·4H2O. The addition of 2.5 g (33.53 mmol) of KCl to the solution led
to orange crystals of 2. The crystals were filtered off and dried in desiccators. The yield was
3.86 g (32.05%). UV: 204, 250 (nm); IR: 3444 vb, 2921, 2851, 1624 b, 1087 m, 1060 m, 961 vs,
883 m, 795 s, 595, and 505 (cm−1); Raman: 995, 890, 517, 223, and 155 (cm−1); Analytically
calculated (found) (M = 3011.9122): Fe, 1.85 (1.75); K, 6.49 (6.26); P, 1.03 (1.00); V, 1.69 (1.62);
W, 61.04 (61.10); and H2O, 7.17 (7.45)%.

2.5. Synthesis of K6[CoPVW10O39(H2O)]·21H2O (3)

The synthesis of 3 was performed using the same mode as 1, adding 0.95 g (4.00 mmol)
of CoCl2·6H2O instead of MnCl2·4H2O at 12.5 g (4.00 mmol). Red-orange crystals of 3 were
formed after the addition of 2.5 g (33.53 mmol) of KCl in solution. The resulting mixture
was then filtered and dried in desiccators. The yield was 8.07 g (62.38%). UV: 203, 251 (nm);
IR: 3445 vb, 1617 b, 1077 m, 1058 m, 1051 m, 959 vs, 889 m, 802 s, 750 sh, 705 sh, 592, and
509 (cm−1); Raman: 989, 974, 890, 518, 229, and 154 (cm−1); Analytically calculated (found)
(M = 3234.2492): Co, 1.82 (1.78); K, 7.25 (7.15); P, 0.96 (0.93); V, 1.58 (1.50); W, 56.84 (57.00);
and H2O, 12.24 (12.72)%.

2.6. Synthesis of K6[NiPVW10O39(H2O)]·19H2O (4)

The synthesis method used in the preparation of complex 1 was followed for the
preparation of complex 4, using a mixture of 12.5 g (4.00 mmol) of L and 0.95 g (4.00 mmol)
of NiCl2·6H2O. In solution, 2.5 g (33.53 mmol) of KCl was added, and red-orange crystals of
4 were formed after three days. The red-orange crystals of 4 were recrystallized in deionised
water at room temperature. The yield was 8.65 g (67.63%). UV: 201, 252 (nm); IR: 3440 vb,
1617 b, 1080 sh, 1059 m, 958 vs, 883 m, 792 s, 700 sh, 592, and 507 (cm−1); Raman: 991,
980, 890, 517, 235, and 155 (cm−1); Analytically calculated (found) (M = 3197.9755): K, 7.34
(7.30); Ni, 1.84 (1.80); P, 0.97 (0.95); V, 1.59 (1.58); W, 57.49 (57.53); and H2O, 11.26 (11.21)%.

2.7. Synthesis of K6[CuPVW10O39(H2O)]·14H2O (5)

The synthetic procedure mentioned above was followed for the synthesis of 5, using
0.68 g (4.00 mmol) of CuCl2·2H2O instead of MnCl2·4H2O for 12.5 g (4.00 mmol) of L. The
pH in this synthesis was adjusted to 4.5. The addition of 2.50 g (33.53 mmol) of KCl to the
synthesis mixture led to red-orange crystals of 5 after three days. The crystals were filtered,
dried in desiccators, and recrystallized. The yield was 5.27 g (42.33%). UV: 200, 251 (nm);
IR: 3440 vb, 1617 b, 1121 w, 1098 m, 1071 m, 1051 m, 955 vs, 880 m, 796 s, 745 sh, 691 sh, 595,
and 506 (cm−1); Raman: 979, 890, 519, 235, 156, and 108 (cm−1); Analytically calculated
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(found) (M = 3112.7551): Cu, 2.04 (1.95); K, 7.54 (7.50); P, 1.00 (0.95); V, 1.64 (1.60); W, 59.06
(59.13); and H2O, 8.67 (8.73)%.

3. Results and Discussions
3.1. Determination of Optimal Reaction Conditions for the Synthesis of Complexes 1–5

In Figure 1a,b, both the conductivity and spectrometric plots show monolacunary L
is stable in the pH range 3.5–6.5, given that the complete structure, [PV2W10O40]5-, was
performed at a pH under 3.5 [8,12].

In Figure 2, five plots of conductivity variation at different M/L rates (where M is
Mn2+, Fe3+, Co2+, Ni2+, and Cu2+) were recorded. Each plot included two lines, and their
intersection point corresponded to the optimal combination rate between M and L (M/L).
The first line was assigned by the change in conductivity due to the formation of the
complex between M and the ligand L, while the second line was due to the increase in
conductivity by adding the metal cation M in excess. In the curves of Figure 2, it is shown
that cation M is coordinated to an unit L with a molar report M/L of 1:1, characteristic of
monolacunary Keggin ligands [13].

In Figure 3, the plot for each metal cation was traced and the greatest absorbance
was found to be at pH 4.5 for the synthesis of the copper complex, respectively, pH 5.0 in
others [8]. In Figure 4, it is shown that all the samples have reacted completely after 30 min.
All the synthesis reactions of complexes between L and metal cations were took placed
better at 60 ◦C than room temperature (Figure 5), but the absorbance decreased at higher
temperatures (between 80 and 100 ◦C).

3.2. Thermogravimetric Study of Ligand L and Complexes 1–5

In thermogravimetric analysis the weight loss, recorded in the TG curve between
20 and 320 ◦C was assigned to the dehydration process. The weight loss of each sample
and the corresponding number of water molecules were recorded in Table 1. The weight
loss of complexes 1–5 resulted in two stages: in the first stage, the water attributed to
crystallization was lost, and in the second stage, the water molecule coordinated in the
transition metal cation was lost. In the DTG and DTA curves, it is shown that the loss of
water molecules is an endothermic process, resulting in several steps [14–16].

Table 1. Thermogravimetric data of ligand L and complexes 1–5.

Thermogravimetric Process L 1 2 3 4 5

DTA
(◦C)

Endothermic
62 80.5 75.5 83 88 71

107 113.5 118 178 164

Exothermic 275 344.5 344.5 356 360 339.5

Endothermic
500 457.5 460.5 468 479 540

500 550 521 546.5

DTG
(◦C)

54.5 77 68.5 79 80.5 67

98.5 155 106 111 117.5 104.5

154.5 350 163 167 173.5 158.5

295 339 350.5 332

TG

Weight lost (%)
8.69 8.78 6.83 12.15 10.65 7.76

0.58 0.62 0.58 0.56 0.97

H2O
no. molecules

15 14 11 21 19 14

1 1 1 1 1

The loss of the first water molecules was observed at low temperatures, under 100 ◦C,
due to the efflorescence property specific to this type of compound. The exothermic
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process in the DTA curve in the range 275–360 ◦C was caused by the structural damage of
polyoxometalates [17]. The final endothermic process in the DTA curve, which was held at
a temperature above 460 ◦C, was due to the oxide formation of atomic components and
structural changes resulting from the oxides. Thermal transformations between 700 and
800 ◦C were due to melting oxides [17].

3.3. FT-IR Study

The IR spectra of complexes 1–5 and monolacunary ligand L were plotted in the
4000–400 cm−1 range (Figure 6). Specific vibration bands of polyoxometalates structures
were obtained from the spectra of monolacunary ligand L and complexes 1–5. Two broad
bands from 1600 to 3450 cm−1 [18,19] were assigned to vibrations within the crystallization
of water molecules and were found in all polyoxometalates spectra, as L and complexes 1–5.
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The more intensive vibration band from 3415 cm−1 in the spectrum of L has shifted
to higher energies between 3440 and 3444 cm−1 in the spectra of 1–5 and is attributed to
the stretching vibration of coordination water involved in hydrogen bonds, the νas(OH)
vibration. The medium vibration band from 1629 cm−1 in L was assigned to δ(OH) in-
plane vibration of water molecules involved in hydrogen bonds and shifted between
1617 and 1624 cm−1 for complexes 1–5 [15,20–22]. The vibration bands between 1000 and
1100 cm−1 were assigned to an asymmetrical stretch band (νas(P-Oi)), where Oi is the
internal oxygen bond between phosphorus and addenda atoms (tungsten or vanadium)
in L, coordinated at transition metal cation in complexes 1–5, respectively. Monolacunary
polyoxometalate L has shown an intense band at 1072 cm−1, a weak shoulder around
1100 cm−1 and a very weak split band between 1013 and 1040 cm−1. In complexes 1–5
vibration bands of P-Oi bonds have shifted to higher energies, indicating that the free
position of monolacunary structure L was occupied by the transitional metal cation M and
the symmetry of the polyoxometalate lattice has been partially restored. Two medium
intensity bands corresponding to νas(P-Oi), were recorded between 1051 and 1060 cm−1

and between 1071 and 1087 cm−1, with a shoulder better defined around 1100 cm−1 [20,23].
The most split bands were those for complex 5 of copper, attributed to the Jahn–Teller effect,
and the highest symmetry was achieved in complex 4 of nickel. Bands of the stretching
vibration νas(Mo-Ot) and νas(V-Ot) (Ot was a terminal oxygen from a M=O bond in each
MO6 octahedron) appeared as a single intense and sharp band at 943 cm−1 in L and shifted
to a higher energy from 955 to 961 cm−1 in spectra for complexes 1–5. The symmetric
shape of this vibration band was due to the overlap of the two signals of Mo-Ot and V-Ot
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bonds [23,24]. In the FT-IR spectrum of L, a medium band at 827 cm−1 with a shoulder
around 880 cm−1 was recorded, corresponding to M-Oc-M (M is W6+ and V5+) bonds,
where Oc was an oxygen atom between two corner-sharing MoO6 octahedrons [25,26]. This
spectrum allure, with splitting of the M-Oc-M band, was due to the decrease in structure
symmetry after removing the MO6 octahedron from the complete structure. Therefore,
M-Oc-M angles located near the lacunary position were modified, and the rigidity and
cohesion of anion were reduced. In complexes 1–5, only one vibrational asymmetric band,
νas (M-Oc-M), has remained and has shifted to higher energies, from 880 cm−1 in spectrum
1 to 889 cm−1 in spectrum 3 [23,27]. The last intense band from 752 cm−1 in spectrum
L was assigned to M-Oe-M (M is W6+ and V5+) bonds, where Oe was an oxygen atom
between two edge-sharing MoO6 octahedrons. The poor delineation from the previous
band in the spectrum of L was due to two bonds of different lengths. The coordination
of the transition metal in complexes 1–5 has restored the polyoxometalate lattice as a
single νas M-Oe-M band and was recorded between 792 and 802 cm−1. Both, M-Oc-M
and M-Oe-M bonds were better defined and intensive in the complexes 1–5 FT-IR spectra
than in the monolacunary L spectrum. Moving towards the higher energy of the M-Oc-
M and M-Oe-M bands corresponded to a shortening of the bonds, as in the complete
structure, characterised by the highest symmetry and structural stability of (between)
Keggin polyoxometalates, which proved that oxygen atoms (Oc and Oe) were involved
in coordination of a transition metal cation, M [27]. The band positions in the spectra of
compounds 1–5 showed an increase in polyoxometalate structural symmetry compared to
the monolacunary ligand L [27].

3.4. Raman Study

The Raman spectra of complexes 1–5 and monolacunary Keggin ligand L are shown
in Figure 7, in the 1200–100 cm−1 range.
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In the Raman spectrum of the ligand L, both bands, one intensive at 960 cm−1 and the
other weaker at 889 cm−1, can be assigned to W-Ot symmetric and asymmetric stretching
vibrations. Instead, in the spectra for complexes 1–5, the W-Ot stretching vibration repre-
sented an intensive band with a shoulder shifting to higher energies from 979 cm−1 for 5
to 995 cm−1 for 2, compared to 960 cm−1 for L. The W-Ot band of ligand L of 889 cm−1

was observed to be weaker in the spectra for complexes 1–5 because the complete Keggin
lattice was rebuilt after coordination of the metal cation [23,28]. In spectrum L, the M-Oc-M
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and M-Oe-M bonds (M is W6+, V5+) were assigned to a band of 229 cm−1, which in spectra
1–5 has shifted slightly to higher energies (235 cm−1 maximum in spectra 4 and 5). The
broad Raman bands from 505 cm−1 and the less intense vibrations from 150 cm−1 and
376 cm−1, are due to the symmetric and asymmetric M-Oi-M bonds (M = W6+ and V5+). In
the monolacunary structure L the spectra of complexes 1–5 became weaker [21,29,30].

3.5. UV-VIS Study

The UV spectra of ligand L and complexes 1–5 are represented in Figure 8, where two
charge-transfer (CT) bands characteristic of all polyoxometalates can be observed. The
most intense band can be assigned to dπ-pπ transitions corresponding to W=Ot and V=Ot
bonds (ν2), which appeared at 48,430 cm−1/206.5 nm in spectrum L.
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This band shifted at higher energies in the spectra of complexes 1–5 to 50,250 cm−1/199
nm for 1, 49,020 cm−1/204 nm for 2, 492,610 cm−1/203 nm for 3, 49,710 cm−1/201 nm
for 4, and 50,030 cm−1/200 nm for 5. The second band (ν1) was assigned to dπ–pπ-dπ
transitions from M-Oc-M and M-Oe-M bonds (M is W6+ and V5+), and it was less defined
and shifted to higher intensities, 40,160 cm−1/249 nm in spectrum L than in similar spectra
of complete Keggin structures [15,21,31]. This shift was due to the asymmetry created
by the presence of the vanadium atom in the structure and the lacunary position. In the
spectra of complexes 1–5, the ν1 band became more intensive and better defined than in L
after the linking of metal cations in the lacunary position and was shifted toward lower
energies of 39,760 cm−1/251.5 nm for 1, 40,020 cm−1/250 nm for 2, 39,840 cm−1/251 nm
for 3, 39,680 cm−1/252 nm for 4, and 39,760 cm−1/251.5 nm for 5. The position and shape
of bands in spectra 1–5 resemble those with complete Keggin structures, which indicates
the formation of a Keggin lattice after coordination of the metal cations (Mn2+, Fe3+, Co2+,
Ni2+, and Cu2+) [20,29,32–34].

The electronic bands of the d-d transition characteristic for metal cations coordinated
by a monolacunary polyoxometalate ligand, L, can be found in the VIS spectra. Only d-d
transition bands of Co2+, Ni2+, and Cu2+ can be determined in the VIS spectra because
intense bands of Mn2+ and Fe3+ ions are covered by bands of L [35]. Solutions of monola-
cunary L and its complexes 1–5 have an orange colour and exhibit a very intensive band in
VIS at 468 nm/21,370 cm−1. This visible band may be due to a charge transfer transition of
oxygen to addenda atoms (O→M) (M = W6+ and V5+). Both curves of complexes and aqua
cations were very similar, corresponding to the preservation of an octahedral coordination
of metal cations in complex molecules. The coordination of metal cations to polyoxoanions
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shifted the cation transition band to lower energies than in aqua complexes, due to weaker
interactions between the metal cation and the oxygen atoms of polyoxoanions.

The characteristic band of the cation [Co(H2O)6]2+ from 511 nm/19,570 cm−1 corre-
sponding to an energetic transition 4T1g(P)← 4T1g (F), (ν2) has shifted to lower energies in
complex 3, and appears at 550 nm/18,180 cm−1, where it overlaps with the intense band of
complex 3 in the VIS spectrum (Figure 9a).
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(c) Cu(H2O)6]2+ and complex 5.

This shift was due to the decrease in the symmetry of the octahedral ligand fields of
Co2+ in complex 3 compared to the aqua ion, [Co(H2O)6]2+ [36].

In complex 4, the Ni2+ cation had a d8 electronic configuration with the fundamental
term 3F4. The Ni2+ cation occupied a central position in the NiO6 octahedron after coor-
dination by monolacunary polyoxometalate, L. An hydrated ion [Ni(H2O)6]2+ with an
octahedral configuration, coordinated by six oxygen atoms as in complex 4, was chosen as
the reference. The VIS absorption spectra of complex 4 and the aqua cation [Ni(H2O)6]2+

are shown in Figure 9b.
For Ni2+ in an octahedral field, it was expected to see three d-d electronic bands:

3A2g(F)→ 3T2g(F) = (ν1) ~ 8700 cm−1/1150 nm; 3A2g(F)→ 3T1g(F) = (ν2) ~ 14,500 cm−1/689
nm, and 3A2g(F)→ 3T1g(P) = (ν3) ~ 25,300 cm−1/395 nm. Charge-transfer bands due to
a high intensity can mask some d-d bands, so that in the spectra only one or two bands
can be seen. Moreover, band ν2 is generally of very low intensity. The allure of the VIS
electronic spectra of complex 4 it is characteristic for octahedral symmetry (Oh), as in the
hydrated ion [Ni(H2O)6]2+. Only a low band, ν2 to 713 nm/14,025 cm−1, was observed
in the spectrum for complex 4 and was shifted to lower energies than in the [Ni(H2O)6]2+

spectrum (653 nm/15,340 cm−1). This movement of band ν2 indicated that the Ni2+ cation
has a weaker coordination by oxygen atoms of the monolacunary polyoxometalate L than
water molecules in [Ni(H2O)6]2+. The NiO6 octahedron in complex 4 was distorted due to
non-equivalent bonds. Both bands from 798 nm/12,530 cm−1 in the spectrum of complex 4
and the 725 nm/13,800 cm−1 band in the spectrum of [Ni(H2O)6]2+ were assigned to the
spin forbidden transition 3A2g(F)→1Eg(D), and the intensity of this transition increased on
account of the intensity theft from the allowed electronic transition. The band (ν1) from
the near IR was not visible in both 4 and [Ni(H2O)6]2+ because the spectrophotometer was
limited to measurements in the 190–1100 nm range.
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The VIS spectrum of complex 5 (Figure 9c) presents a broad absorption with a maxi-
mum around 857 nm/11,650 cm−1, suggesting a distorted octahedral environment around
the Cu2+ (d9) cation.

This band was attributed to the 2T2g(D)← 2Eg(D) (ν1) transition and shifted to a lower
energy in complex 5 than in [Cu(H2O)6]2+ (813 nm/12,300 cm−1) because of the Jahn–Teller
effect, characteristic of a copper ion coordinated with different ligands, in this case a water
molecule and different oxygen atoms of L.

3.6. Powder XRD Study

The patterns indexed using the Dicvol method powder XRD pattern for L and complexes
1 and 4 are presented in Figure 10. Based on the calculation and determination of Miller
indices the following parameters for monolacunary ligand L crystallization in a tetragonal
system were determined: a = b = 19.888 Å and c = 24.729 Å (α = β = γ = 90◦) was determined,
with a unit cell volume V = 9781 Å3 and density, Dcalc (Dexp) = 4.2468 (4.2340) g cm−3.
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Both complexes 1 and 4 were found to have a primitive cubic structure, assigned
to the Pm-3n space group. A primitive cubic structure is expected to have the entire
studied group of complexes of the same Keggin ligand, L. The cell parameters of 1 were
a = b = c = 21.636 Å (α = β = γ = 90◦), with a volume V = 10,633.5 Å3 and density, Dcalc
(Dexp) = 3.8774 (3.8658) g cm−3, while for 4, a = b = c = 22.191 Å (α = β = γ = 90◦) was
found, with a volume V = 10,928 Å3 and density, Dcalc (Dexp) = 3.8774 (3.8658) g cm−3. The
increase in cell parameters for complex 4 compared to complex 1 is due to the increasing
number of crystallisation water molecules in lattice 4 [31,37–39]. For complexes 1 and 4,
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the first diffraction peak was very intense compared to the others because crystallites were
oriented preferentially in the sample [27,40]. The average crystallite size D for samples
L, 1, and 4 was calculated using the Debye–Scherrer formula [41]. We have obtained the
following values: 740 Å for L, 1400 Å for 1, and 1500 Å for 4. The degree of crystallinity, Xc,
was evaluated as the ratio of the area due to the diffraction peaks and the total diffraction
area, which includes diffraction peaks and an amorphous halo. To assess the degree of
crystallinity, the Reflex computer program, part of the Material Studio software suite, was
used. The results obtained for the degree of crystallinity were: 55% for L, 93% for 1, and
94% for 4. One can see that the degree of crystallinity is correlated with crystallite size,
samples 1–4 being very crystalline while the crystallinity of the polyoxometalate ligand
L is moderate. The coordination of the Mn2+ or Ni2+ cations in a lacunary position for L
contributed to the stabilization of the crystal lattice and the increase of symmetry from
a tetragonal to a cubic system [42]. For each of the studied compounds, the number of
molecules in a unit cell is 8.00, while the experimental parameter Z is 7.98 [43].

4. Conclusions

The conductometric method showed that the complexes of the monolacunary Keg-
gin ligand K8[PVW10O39]·15H2O with transition metal cations have the general formula
Kn[MPVW10O39(H2O)]·xH2O, similar to complexes already mentioned in the literature [5].
The optimal pH for synthesis was found to be a value of 4.5 for the copper complex and 5.0
for the other complexes, which is characteristic for Keggin tungstophosphate, even when
partially substituted with molybdenum addenda [2,8].

The IR spectra showed that the transition metal cation was coordinated in a lacunary
position in K8[PVW10O39]·15H2O lattice, involving oxygen atoms from M-Oe-M, M-Oc-M,
and P-Oi bonds, as in other complexes of monolacunary Keggin ligands [20,23–27].

IR, Raman, and UV spectra revealed that Kn[MPVW10O39(H2O)]·xH2O complexes
have higher stability and symmetry than monolacunary K8[PVW10O39]·15H2O after coor-
dination of a transition metal cation [28,29,35]. The VIS data of polyoxometalate complexes
revealed that Co2+, Ni2+, and Cu2+ cations were coordinated in an octahedral ligand field,
and coordination was performed with oxygen atoms. For each metal cation Co2+, Ni2+, or
Cu2+, an octahedral ligand field created by monolacunary polyoxometalate was weaker
compared to water molecules in the aqua ions of a transition metal cation [36]. Based
from recorder X-ray spectra, can conclude that complex K6[MnPVW10O39(H2O)]·14H2O
and K6[NiPVW10O39(H2O)]·19H2O have high crystallinity, being crystallised in a cubic
system, while monolacunary polyoxometalate K8[PVW10O39]·15H2O presented moder-
ate crystallinity due to high structural instability, which was associated with a lacunary
position in the polyoxometalate lattice [37,40].

Another Keggin compound with a similar structure as L and 1–5 complexes has been re-
searched for its versatile properties, like good solubility in organic solvents and water, easy
counter-ion exchange, and reversible redox properties. Their potential has not been com-
pletely explored [44]. For example, the recently, catalytic properties of different [PW12-xVx]n-

anions proved to be interesting, especially for the oxidation of organic compounds [45–47].
Additionally, Keggin compounds with different compositions are recommended to be used
in rechargeable batteries [46] or to fabricate mesoporous materials [48,49].
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