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Abstract: CeO2/ZnO-based photocatalytic materials were synthesized by the sol-gel method in order
to establish heterojunctions that increase the degradation efficiency of some types of antibiotics by
preventing the recombination of electron–hole pairs. The synthesized materials were analysed by
XRD, SEM, EDAX, FTIR, and UV-Vis. After several tests, the optimal concentration of the catalyst
was determined to be 0.05 g·L−1 and 0.025 g·L−1 for chlortetracycline and 0.05 g·L−1 for ceftriaxone.
CeO2/ZnO assemblies showed much better degradation efficiency compared to ZnO or CeO2 tested
individually. Sample S3 shows good photocatalytic properties for the elimination of ceftriaxone and
tetracycline both from single solutions and from the binary solution. This work provides a different
perspective to identify other powerful and inexpensive photocatalysts for wastewater treatment.

Keywords: photocatalyst; CeO2/ZnO heterojunction; chlortetracycline; ceftriaxone

1. Introduction

In our constantly and rapidly evolving world, finding solutions to protect the envi-
ronment has been a priority lately. Among the substances that improve our life, but also
make it more difficult, antibiotics are indispensable products due to the positive health
benefits, though they have negative effects on natural ecosystems. Antibiotics are nec-
essary medicines; many of them are on the WHO list of essential medicines, and their
consumption is continuously increasing [1,2]. Unfortunately, some of these substances
are excreted from the body unmetabolized in percentages that vary depending on the
compound (up to 80% for tetracycline [3]), and their accumulation in wastewater and soil
causes complications [4–8]. The presence of antibiotics in wastewater and also in drinking
water has been detected in small amounts, but this is quite alarming for environmental
safety [2,9]. The use of antibiotics in excess also leads to the appearance of antibiotic-
resistant microorganisms [5,6,10,11]. Antibiotic resistance is a current problem leading to
a decrease in the effectiveness of these classes of drugs. Tetracycline and ceftriaxone are
widely used to treat various bacterial infections and have been detected in wastewater at
varying concentrations. They are stable over time in the complex wastewater mixtures and
are difficult to remove using classic water treatment methods; they can adversely affect the
wastewater treatment processes (for example the ammonia removal process or chemical
oxygen demand removal). There are several ways to remove antibiotics and other contami-
nants from wastewater, such as adsorption, sonochemical processes, ozonation, membrane
technology, aerobic or anaerobic treatment, phytoremediation, biogeochemical methods
such as wetlands, chemical disinfection methods such as chlorination, electrochemical
oxidation processes, osmosis and electro-osmosis, electro-flocculation, ionizing radiation,
and hybrid technologies [8,10,12–24]. However, it seems that the most effective methods
of reducing the level of antibiotics in water are the methods that involve photocatalysis
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and advanced oxidation processes. Photocatalytic methods are preferable to others be-
cause they are financially inexpensive and effective at low antibiotic concentrations, and
the photocatalytic materials used are stable and environmentally benign [25–31]. Over
time, several semiconducting materials have been tested for photocatalytic activity, but
good results have been obtained showing oxides, sulphides, and their composites. Oxide
materials were chosen because they are stable and inert, and the combination of two oxides
leads to improved semiconductor properties. Although the most studied photocatalytic
material is TiO2, the results obtained with other materials have shown promising results.
Photocatalytic systems based on oxides from blocks d and f (with semiconductor prop-
erties) have given good results in eliminating or reducing some polluting compounds
from wastewater. Semiconductor materials are particularly attractive for environmental
remediation applications. If semiconductors are exposed to electromagnetic radiation with
an energy intensity greater than or close to the value of the band gap (Eg), electron–hole
pairs are generated (valence band–conduction band); as a consequence (e−–h+) pairs are
able to initiate redox reactions. According to studies in the literature, a photocatalyst’s
activity can be increased by doping, which is the addition of a substance that modifies
the band gap value slightly in regions where incident radiation (ultraviolet or visible)
can be used efficiently, by forming heterostructures, or by including reaction accelerators
in the system that have the purpose of producing more free radicals or preventing their
recombination [31–33]. The photocatalytic activity is closely related to the physicochemical
properties but also to the morphology and texture of the materials studied, so the synthesis
techniques are often of great importance. In this study, we followed the efficiency of some
zinc oxide and cerium dioxide heterostructured materials synthesized in our laboratory
towards the photocatalytic degradation of a classical antibiotic (chlortetracycline) and a
third-generation cephalosporin-type antibiotic—ceftriaxone. Cerium has exciting catalytic
characteristics because 4d and 5p electrons sufficiently defend the 4f orbitals. Ceria or
Cerium(IV) oxide is a versatile, inert, and physically and chemically stable material with
multiple and diverse applications. Due to its hardness (Mohs scale 7), it was initially used
as an abrasive material, but today it is used (alone or in binary or complex mixtures) in
the field of heterogeneous catalysis (oxidation of hydrocarbons) or in the field of sensors,
energy, and fuels such as solid oxide fuel cells, but also in water-splitting processes or
photocatalysis [33–35]. CeO2 applications in the dermato-cosmetics industry and in the
biomedical field (antibacterial effect) should also be mentioned here [36–38]. It is also
possible to combine two or more properties, such as the infrared filtering properties with
the photocatalytic ones, to optimize practical applications. Zinc oxide also has physical
and chemical properties that ensure numerous practical uses, since it is introduced into the
composition of many products to improve their properties (e.g., UV or antimicrobial pro-
tection); ZnO (alone or together with other oxides) is used in environmental applications,
in medical applications, or as a sensor [32,39–41]. Using ZnO or CeO2 separately leads
to fast recombination processes that decrease the photocatalytic efficiency. The reduction
in recombination rate can occur through the combination of two or more oxides as new
energy bands are formed. Zinc oxide and cerium dioxide work well together and, in most
cases, have a synergistic effect when they are associated in practical applications. [34,40,41].

As we know, there are several available studies on CeO2/ZnO applications, as het-
erostructures as well as individually [20,24,32,38]. However, here, PVA, Poly(vinyl alcohol)
was used as a dispersant for heterostructure management, and the obtained material
showed good results for the photocatalytic degradation of two antibiotics, separately and
in admixture, for low doses of UV radiation and for a small amount of catalyst. The results
of this study can serve as a starting point for further research on CeO2/ZnO materials.

2. Materials and Methods
2.1. Reagents and Preparation

Photocatalytic materials were obtained by hydrothermal synthesis [42,43] starting from
Zn(CH3COO)2·2H2O and Ce(NO3)3·6H2O (Sigma-Aldrich) as precursors and NH4OH (25%
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from Chemical Company, Romania) and PVA (average Mw 89,000–98,000, 99%, Aldrich) as
anti-agglomeration agents. The precursors were mixed with ammonia solution in different
molar ratios (S2- 2ZnO:CeO2; S3- ZnO:2CeO2), the mixture was kept at 120 ◦C for 8 h in
a Teflon autoclave, and then the precipitates obtained were separated by centrifugation
and washed with bidistilled water until the total elimination of NH4OH, NH4NO3, and
CH3COOH. The precipitates thus obtained (cerium and zinc hydroxide) were immersed
in a 0.001 mol·L−1 PVA solution for 30 min, filtered, and then calcined at 400 ◦C (at a
heating rate of 5 grd·min−1). Polyvinyl alcohol has the task of avoiding the agglomeration
of particles and is eliminated by calcination. The samples obtained were named S1: ZnO,
S2: 2ZnO-CeO2, S3: ZnO-2CeO2, and S4: CeO2.

The antibiotics tested were chlortetracycline and ceftriaxone (Sigma Aldrich), pre-
sented in Table 1.

Table 1. Chemical structure and some characteristics of antibiotics.

Chemical Composition and Structure Properties

CT—Chlortetracycline hydrochloride
C22H23ClN2O8·HCl
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Melting point: 155 ◦C
Solubility: 0.105 g·L−1

Biological half-life: 5.8–8.7 h
Excretion mode: 33–67% renal, 35–45% biliary [46]

2.2. Sample Characterization

The synthesized samples were characterized by X-ray diffraction (Rigaku, Tokyo,
Japan) and CuKα radiation (2θ angle, range from 10 to 80; step 0.02◦/s); the possible
functional groups remaining on the surface of the photocatalyst were identified by FTIR
(Perkin Elmer Spectrum 100, PerkinElmer Inc., Shelton, CT, USA), resolution 2 cm−1

using 32 scans in the range 4000–400 cm−1; all samples were prepared as KBr pellets
(ratio 5/95 wt.%). The morphology of the prepared samples was observed with a Quanta
200 scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy
analyzer (Bruker Optics Inc, Billerica, MA, USA). The UV-Vis absorption spectra of the
solid samples were obtained with a Jasco V-550 device (Jasco International CO, Kyoto,
Japan) equipped with an integrating sphere. Monitoring of the photocatalytic degradation
of antibiotics was performed also with a Jasco V-550 device (Kyoto, Japan).

2.3. Photodegradation Experiments

The magnetically stirred aqueous suspensions were UV-irradiated in a flat cylinder
reactor (total volume: 100 cm3) exposed to air. The radiant flux entering the reactor was
about 0.21 mW·cm−2 (Hamamatsu C9536-01 m with H9958 detector for 310–380 nm),
calculated from the distance between the samples and the light source produced by a UV-B
lamp with Hg (18 W) (OSRAM, Munich, Germany). The volume of the solution was 75 cm3,
and the catalyst dose was 0.05 g·L−1. Aqueous solutions were prepared using deionized
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bidistilled water (Milli-Q, Millipore, Darmstadt, Germany). The degradation operations
were carried out at room temperature at natural pH. The aerated suspension was first
stirred in the dark for 40 min, which was sufficient to achieve equilibrated adsorption. The
initial concentration was 0.025 mg·mL−1 chlortetracycline and ceftriaxone 0.05 mg·mL−1.

The tests were performed without changing the pH of the native antibiotic solution.
Samples were taken at fixed timed intervals and centrifuged to remove the solid, then the
absorbance of the supernatant was read three times, noting the mean value. The level of
antibiotic degradation was quantified using the correlation Equation (1):

R(%) =
(A0 − Ai)

A0
·100 (1)

where R(%) is the antibiotic degradation yield, A0 and Ai are the initial and ti time antibiotic
absorbance values at the same time values.

3. Results and Discussion
3.1. Characterization of the Photocatalysts

The X-ray diffraction spectra of ZnO and CeO2 and those of the as-synthesized compos-
ites are shown in Figure 1. They present several peaks that could be indexed in accordance
with the diffraction spectrum of ZnO (JCPDS card no. 36-1451) and CeO2 (JCPDS card
no. 34-0394). For S1 (ZnO), the peaks were positioned at the 2θ angles: 31.83, 34.51, 36.32,
47.61, 55.64, 62.94, 68.03, and 69.16 can be indexed as (100), (002), (101), (102), (102), (103),
(112), and (210), indicating a hexagonal wurtzite phase of ZnO; for S4 (CeO2), the peaks
were positioned at the 2 angle: 28.55, 56.44, 59.22, 69.37, 76.79, 79.11, and 88.48, which can
also be indexed as (111), (311), (222), (400), (311), (420), and (422). The CeO2 (111) peak is
associated with the cubic structure. Samples S2 and S3 show the peaks corresponding to the
polycrystalline structures of pure oxides, indicating the formation of composite materials
with no other impurities [47–50].
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Figure 1. XRD patterns of the S1–S4 samples.

In order to get more information about the appearance of the surfaces of the prepared
samples, the SEM (Scanning Electron Microscopy) images were examined. The SEM elec-
tron microscopy images showing the morphology of the surfaces at different magnifications
and the EDAX (Energy Dispersive X-ray) profiles are shown in Figure 2. Samples S1–S4
present porous structures with different surface morphologies, from small and uneven
aggregates for S1–S3 to aggregates with an isometric structure for S4. The boundaries
between the particles are not well defined.
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For S4, crystallite size varies from below 0.1 µm × 0.1 µm × 0.1 µm to approximately
1 µm × 2 µm × 3 µm. The accumulation of micro-crystallites is a normal process; the
crystallites try to reach the minimum energy state, minimizing the contact area with
the external environment. The small size of the obtained crystallites explains the good
photocatalytic activity. EDAX analysis confirms the existence of Zn, Ce, and O elements, so
CeO2 and ZnO oxides are present.

The FTIR spectra are presented in Figure 3. FTIR analysis confirms that the organic
phase has been eliminated by calcination. The peaks in the 3400–3450 cm−1 range are
due to adsorbed water molecules (the O-H bond stretching vibration), and those in the
550–400 cm−1 range are generated by the vibrations of the metal oxide bonds [49,51].
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Next, solid-state UV-Vis spectroscopy was used to obtain information on the optical
properties of the synthesized samples and to calculate the Eg values (Figure 4). The optical
band gap was determined using the Tauc formula, (ahν)2= A

(
hν − Eg

)
, in which a is the

absorption coefficient, A is a constant, h is Planck’s constant, ν is the frequency of incident
radiation, Eg is the optical band gap, and n = 1/2 (for ZnO and CeO2) [48,52]. The Eg values
are obtained by extrapolating the straight lines to the point of intersection with the x-axis.
Compared to pure ZnO and pure CeO2, the composite materials S2 and S3 have a different
Eg value.
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The observed decrease in Eg values can be explained by the occurrence of numer-
ous surface defect states such as oxygen vacancies, the coexistence of Ce4+ and Ce3+ in the
CeO2/ZnO heterostructure, and the interaction between ZnO and CeO2 nanocrystals [53,54].

3.2. Antibiotic Photocatalytic Degradation

To evaluate the photocatalytic activity, the synthesized samples were contacted with
solutions of chlortetracycline, ceftriaxone, and a chlortetracycline–ceftriaxone mixture
(Figures 5–7). Work was carried out without adjustments to the natural pH value of the
solutions. The doses of photocatalytic material have been studied previously; only the
results for the 0.05 g·L−1 concentration are presented here. Experiments performed with
UV irradiation but without a photocatalyst showed that both antibiotics are relatively stable
to UV exposure. The experimental results have similar profiles; only a small fraction of the
antibiotics is degraded after exposure to ultraviolet light in the absence of photocatalysts.
The substantial increase in the photocatalytic performance of samples S2 and S3 compared
to S1 and S4 (pure oxides) is due to the process of delaying the recombination of electron–
hole pairs, owing to the formation of heterojunctions between the two oxides; this is
advantageous for keeping the promoted electron in the conduction band of ZnO for a
longer period of time. In this situation, adsorbed oxygen is more likely to form superoxide
O2
− radicals.
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When CeO2/ZnO —based photocatalytic materials are irradiated with UV rays, pairs
of electric charge holes in the valence band and electric charge electrons in the conduction
band are formed. The holes immediately react with water molecules or hydroxyl ions
and form hydroxyl radicals, which are very strong oxidizing agents of organic molecules,
according to the following Equations (2)–(9) [29,43,49]:

ZnO + hυ → ZnO
(

e−
(cb) + h +

(VB)

)
(2)

CeO2 + hυ → CeO2

(
e−
(cb) + h +

(VB)

)
(3)

ZnO
(
e−

)
+ O2 → O−2 + ZnO

H2O→ ·OH + ZnO (4)

ZnO
(
h+) + OH− → ·OH + ZnO (5)

CeO2
(
e−

)
+ O2 → O−2 + CeO2

H2O→ ·OH + CeO2 (6)
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CeO2
(
h + )

+ OH− → ·OH + CeO2 (7)

Ce4+ + e−
(CB) → Ce3+ (8)

·OH + O−2 + h +
(VB) + Antibiotic → degradation products (9)
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Oxidation processes of antibiotics take place in hole species (h+) and O2
−. Pho-

tocatalytic activity is influenced by crystal structure, specific surface area, particle size
distribution, porosity, surface hydroxyl group density, etc. All these properties affect the
formation of electron–hole pairs, the adsorption–desorption surface area, and the redox
process. The photocatalytic activity of the studied materials was enhanced by delaying the
recombination of electron–hole pairs. The main method of slowing down is through the
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formation of heterojunctions in the CeO2/ZnO mixture (Figure 8), a process described in
other studies [49,52,53].
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Figure 8. Proposed reaction mechanism for the photocatalytic activity of CeO2/ZnO heterojunctions.

The electrons in the 4f orbitals of Ce interfere with the 3d electrons of Zn and the
2p electrons of O, resulting in the formation of a new band between BV and BC that
changes the characteristics of the oxide mixture. The highest level of degradation was
achieved for CFTX at 71.23% in the presence of S3, followed by CT at 58.65%, also for
S3 (Figure 9). The higher proportion of CeO2 in the synthesized materials has resulted
in a higher degradation rate; Ce4+ ions act as a trap to prevent the recombination of
electron–hole pairs generated by irradiation with ultraviolet rays, with E > Eg; thereby, the
photocatalytic process is accelerated.
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Compared to pure CeO2 and pure ZnO, the superior catalytic performance of
samples S2 and S3 is attributed to the formation of heterojunctions, which are an effec-
tive method for modifying the properties of mixed oxides.

The information gathered in Table 2 reveals the large diversity of materials that can be
used as photocatalytic materials for ceftriaxone and tetracycline degradation.

Table 2. Summaries of the literature on the photodegradation of ceftriaxone and tetracycline.

Antibiotic
(Target Pollutant) Catalyst Type

Irradiation Source
Power Intensity, Exposure Time, Mineralization

Degree
Ref

Ceftriaxone ZnO nanospherical particles supported
TiO2-nanorod MXene

Solar simulator 2000
550 W Max Lamp, 100 mW·cm−2, 99.4% [47]

Ceftriaxone
C0 = 16.5–66 µM Bi2WO6 and g-C3N4 nanosheets KrCl excilamp, 222 nm

23 W, incident irradiance—0.74 mW·cm−2, 60 min [55]

Ceftriaxone
20–100 mg·L−1

Fenton-like oxidation process,
persulphate activator, iron

dosage—0.1–0.5 g·L−1 + scavengers
(tert-butyl alcohol and isopropanol)

60 min, pH influence:
54.4% (pH: 5–6, Fe2+ dosage: 0.2 g·L−1, PS

concentration: 3 mM, initial antibiotic concentration:
20 mg·L−1, UV power: 8 W: 20 ◦C)

95.7% (pH: 4.0, Fe2+ dosage: 0.3 g·L−1, PS
concentration: 4 Mm, UV, power: 8 W, 20 ◦C)

[27]

Ceftriaxone Bi2WO6/g-C3N4 300 W Xe lamp, 120 min, 94.5% [29]

Tetracycline,
Oxytetracycline,

Chlortetracycline
MoSSe nanohybrids

60 min
48.6% for TC

51.1% for OTC
56.5% for CTC

[56]

Oxytetracycline MgAl calcined hydrotalcites

Pen Ray Power Supply 2.16 W
MgAl-2.0, 59.32% for 5 h
MgAl-2.5, 65.82% for 5 h
MgAl-3, 63.87% for 5 h

[57]

Tetracycline CeO2-ZnO hetero photocatalyst 300 W Xenon lamp, 60 min, 87.25% [53]

Tetracycline La2Ti2O7/AK—acid-modified
coal-bearing strata kaolinite

300 W Xenon lamp
La2Ti2O7, 60 min, 57.11%

La2Ti2O7/CK, 60 min, 83.07%
La2Ti2O7/AK, 60 min, 88.61%

[58]

3.3. Kinetic Analysis

The photocatalytic process was assumed to follow a pseudo-first-order model accord-
ing to Equation (10).

− kobs·t = ln(Ct − C0)= ln(At − A0) (10)

where A0 and At represent the absorbance of antibiotics solution measured at specific λ, ini-
tially and at t moment, and kobs is the first-order oxidation rate constant (min−1) [28,29,51].
The kinetic curves of the photocatalytic degradation of the two antibiotics with the pre-
pared samples in 120 min are shown in Figures 10–12. According to this equation, if the
experimental data show first-order kinetics, a line in the coordinates −ln(A/A0) vs. t must
be obtained. Therefore, a pseudo-first-order kinetic model was used to fit the experimental
data presented in Figures 10–12. Fitting of the rate data using a higher reaction order does
not generate good coefficients.
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0.025 g·L−1, ceftriaxone concentration 0.05 g·L−1).

4. Conclusions

In this work, we have reported a CeO2/ZnO mixed oxide powder with good photocat-
alytic activity for the degradation of some antibiotics (ceftriaxone and chlortetracycline) that
are relatively stable to UV radiation. Four samples were synthesized by the hydrothermal
method, two of which were pure oxides (ZnO and CeO2) and two of which were mixed
oxides with different molar ratios (CeO2/ZnO). These were characterized by XRD, FTIR,
SEM + EDAX, and UV-Vis on the solid. All four samples showed photocatalytic activity
to reduce the level of antibiotics in wastewater (CFTX, CT, and the mixture of the two);
the experimental results showed that mixed oxides behave better than pure oxides (Ce:Zn
ratio = 2.1) and have better photocatalytic activity in all three tested situations (CFTX,
CT, CFTX + CT). Since the radiation dose used is very low and the synthesized materials
are chemically inert, we consider that they are useful for reducing the level of antibiotics
in wastewater. The heterogeneous photocatalytic processes have a net advantage in the
reduction in some contaminants from the aqueous medium (antibiotics), including the
non-selective breakdown of pollutants to very low concentrations, normal pressure and
temperature, use of oxygen as the primary oxidant, and the possibility of simultaneously
inducing both oxidation reactions and reduction reactions.
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