Computer Simulations of End-Tapering Anchorages of EBR FRP-Strengthened Prestressed Concrete Slabs at Service Conditions
Abstract
:1. Introduction
2. Experimental Investigation
- PS-EBR-1-250-TP: EBR CFRP-strengthened slab, strip width 250 mm, tapered at one end anchorage (tapering length = 250 mm).
- PS-EBR-2-100-TP: EBR CFRP-strengthened slab, strip width 100 mm each, tapered at one end anchorage (tapering length = 250 mm).
- PS-EBR-1-250 and PS-EBR-2-100: same as above but without tapering.
- PS-C: unstrengthened control slab.
3. Numerical Investigations
3.1. Modeling Assumptions
3.2. Concrete Constitutive Model
4. Predictions of Slab Deflections
5. Parametric Studies
6. Performance of End Effect for EBR FRP-Strengthened Slabs
7. Summary and Conclusions
- In all CFRP-strengthened prestressed slabs, the ultimate failure was controlled by debonding of the CFRP sheets at the end anchorage. End debonding failure and intermediate crack-induced interfacial debonding failure were observed in the slabs without and with tapered CFRP sheets, respectively.
- The results from the tests showed that an end tapering technique improved the ultimate load by up to 5% compared to slabs without tapering. The tapering also prevented end debonding failure by allowing multiple interfacial debonding failures.
- For CFRP-strengthened slabs, the FE models predicted better the results compared to unstrengthened specimens up to a load level of approximately 75% of the ultimate load. However, the numerical predictions showed approximately 20–25% fewer deflections at ultimate loads. Further research is necessary to achieve better predictions at ultimate loads.
- Results from a parametric study showed that increasing the thickness or the elastic modulus of the CFRP strengthening sheets can affect the efficiency of the FRP plate bonding technique, thus, making it susceptible to potential premature debonding failures.
- The FE results confirmed that a tapering technique at the end anchorage of the CFRP sheets can increase the capacity of a CFRP strengthening system. For the CFRP-strengthened slabs analyzed in this study, the end tapering reduced the stresses by up to 15%, which can be sufficient to prevent concrete rip-off and peel-off debonding failures. Nonetheless, further numerical analyses are necessary to extend the validity of these observations to other structural elements strengthened with EBR CFRP sheets.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia, R.; Helal, Y.; Pilakoutas, K.; Guadagnini, M. Bond behaviour of substandard splices in RC beams externally confined with CFRP. Constr. Build. Mater. 2014, 50, 340–351. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.; Helal, Y.; Pilakoutas, K.; Guadagnini, M. Bond strength of short lap splices in RC beams confined with steel stirrups or external CFRP. Mater. Struct. 2015, 48, 277–293. [Google Scholar] [CrossRef]
- Imjai, T.; Setkit, M.; Garcia, R.; Figueiredo, F.P. Strengthening of damaged low strength concrete beams using PTMS or NSM techniques. Case Stud. Constr. Mater. 2020, 13, e00403. [Google Scholar] [CrossRef]
- Imjai, T.; Setkit, M.; Figueiredo, F.P.; Garcia, R.; Sae-Long, W.; Limkatanyu, S. Experimental and numerical investigation on low-strength RC beams strengthened with side or bottom near surface mounted FRP rods. Struct. Infrastruct. Eng. 2022, 1–16. [Google Scholar] [CrossRef]
- Smith, S.T.; Teng, J.G. FRP-strengthened RC beams. I: Review of debonding strength models. Eng. Struct. 2002, 24, 385–395. [Google Scholar] [CrossRef]
- Täljsten, B. Strengthening of beams by plate bonding. J. Mater. Civ. Eng. 1997, 9, 206–212. [Google Scholar] [CrossRef]
- Teng, J.G.; Smith, S.T.; Yao, J.; Chen, J.F. Intermediate crack-induced debonding in RC beams and slabs. Constr. Build. Mater. 2003, 17, 447–462. [Google Scholar] [CrossRef]
- Imjai, T.; Garcia, R. Performance of Damaged RC Beams Repaired and/or Strengthened with FRP Sheets: An Experimental Investigation. In Mechanics of Structures and Materials XXIV, 1st ed.; Hao, H., Zhang, C., Eds.; CRC Press: London, UK, 2016; p. 1963. [Google Scholar] [CrossRef]
- Grelle, S.V.; Sneed, L.H. Review of anchorage systems for externally bonded FRP laminates. Int. J. Concr. Struct. Mater. 2013, 7, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Godat, A.; Chaallal, O.; Obaidat, Y. Non-linear finite-element investigation of the parameters affecting externally bonded FRP flexural-strengthened RC beams. Results Eng. 2020, 8, 100168. [Google Scholar] [CrossRef]
- Askar, M.K.; Hassan, A.F.; Al-Kamaki, Y.S. Flexural and Shear Strengthening of Reinforced Concrete Beams Using FRP Composites: A State of The Art. Case Stud. Constr. Mater. 2022, 17, e01189. [Google Scholar] [CrossRef]
- Ashour, A.F.; El-Refaie, S.A.; Garrity, S.W. Flexural strengthening of RC continuous beams using CFRP laminates. Cement. Concr. Compos. 2004, 26, 765–775. [Google Scholar] [CrossRef]
- Pham, H.; Al-Mahaidi, R. Experimental investigation into flexural retrofitting of reinforced concrete bridge beams using FRPComposites. Compos. Struct. 2004, 66, 617–625. [Google Scholar] [CrossRef]
- Lundquist, J.; Nordin, H.; Täljsten, B.; Olafsson, T. Numerical analysis of concrete beams strengthened with CFRP: A study of anchorage lengths. In Proceedings of the BBFS: International Symposium on Bond Behaviour of FRP in Structures, Hong Kong, China, 7–9 December 2005. [Google Scholar]
- Zhang, A.H.; Jin, W.L.; Li, G.B. Behavior of preloaded RC beams strengthened with CFRP laminates. J. Zhejiang Univ. Sci. A 2006, 7, 436–444. [Google Scholar] [CrossRef]
- Coronado, C.A.; Lopez, M.M. Sensitivity analysis of reinforced concrete beams strengthened with FRP laminates. Cement. Concr. Compos. 2006, 28, 102–114. [Google Scholar] [CrossRef]
- Arduini, M.; Nanni, A. Behavior of precracked RC beams strengthened with carbon FRP sheets. J. Compos. Constr. 1997, 1, 63–70. [Google Scholar] [CrossRef]
- Hu, H.T.; Lin, F.M.; Jan, Y.Y. Nonlinear finite element analysis of reinforced concrete Beams strengthened by fibre reinforced plastics. Compos. Struct. 2001, 63, 271–281. [Google Scholar] [CrossRef]
- Teng, J.G.; Zhang, J.W.; Smith, S.T. Interfacial stresses in reinforced concrete beams bonded with a soffit plate: A finite element study. Constr. Build. Mater. 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Pesic, N.; Pilakoutas, K. Concrete beams with externally bonded flexural FRP reinforcement: Analytical investigation of debonding failure. Compos. B Eng. 2003, 34, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Chen, J.; Proverbs, D. Finite element modelling of concrete cover separation failure in FRP plated RC beams Construct. Build. Mater. 2003, 17, 3–13. [Google Scholar] [CrossRef]
- Li, L.J.; Guo, Y.C.; Liu, F.; Bungey, J. An experimental and numerical study of the effect of thickness and length of CFRP on performance of repaired reinforced concrete beams. Constr. Build. Mater. 2006, 20, 901–909. [Google Scholar] [CrossRef]
- Camata, G.; Spacone, E.; Zarnic, R. Experimental and nonlinear finite element studies of RC beams strengthened with FRP plates. Compos. B Eng. 2007, 38, 277–288. [Google Scholar] [CrossRef]
- Kotynia, R.; Abdel Baky, H.M.; Neale, K.W.; Ebead, U.A. Flexural strengthening of RC beams with externally bonded CFRP systems: Test results and 3-D nonlinear finite element analysis. J. Compos. Constr. 2008, 12, 190–201. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Leonetti, L.; Blasi, P.N.; Pranno, A. A cohesive fracture model for predicting crack spacing and crack width in reinforced concrete structures. Eng. Fail. Anal. 2022, 139, 106452. [Google Scholar] [CrossRef]
- Rimkus, A.; Cervenka, V.; Gribniak, V.; Cervenka, J. Uncertainty of the smeared crack model applied to RC beams. Eng. Fract. Mech. 2020, 233, 107088. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Leonetti, L.; Blasi, P.N.; Pranno, A. An investigation about debonding mechanisms in FRP-strengthened RC structural elements by using a cohesive/volumetric modeling technique. Theor. Appl. Fract. Mech. 2022, 117, 103199. [Google Scholar] [CrossRef]
- ASTM A421/A421M-21; Standard Specification for Stress-Relieved Steel Wire for Prestressed Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- CEB-FIB. Model Code. Comité Euro-International du Béton; Thomas Telford Services Ltd.: London, UK, 2010. [Google Scholar]
- Hibbitt, Karlsson & Sorensen, Inc. ABAQUS User’s Manual, Version 6.13; Hibbitt, Karlsson & Sorensen, Inc.: Providence, RI, USA, 2013. [Google Scholar]
- Okumus, P.; Oliva, M.; Becker, S. Nonlinear finite element modeling of cracking at ends of pretensioned bridge girders. Eng. Struct. 2012, 40, 267–275. [Google Scholar] [CrossRef]
- Imjai, T.; Guadagnini, M.; Pilakoutas, K. Bend Strength of FRP Bars: Experimental investigation and Bond Modelling. J. Mater. Civ. Eng. 2017, 29, 04017024. [Google Scholar] [CrossRef]
Parameters | Tensile Steel | Compressive Steel | CFRP Sheets | Resin |
---|---|---|---|---|
Modulus of elasticity [GPa] | 200 | 206 | 200 | 5 |
Poisson’s ratio | 0.29 | 0.29 | 0.29 | 0.35 |
Yield stress [MPa] | 470 | 360 | - | - |
Ultimate strength [MPa] | 560 | 400 | 2590 | 20 |
Ultimate plastic strain | 0.023 | 0.0082 | - | - |
Initial elastic modulus | 22,750 | MPa | |
Poisson’s ratio | 𝜈 | 0.15 | - |
Compressive cylinder strength | 30.8 | MPa | |
Tensile strength | 0.037 | MPa | |
Tension stiffening(pre-load) | 0.0007 | - | |
Tension stiffening | 0.0031 | - |
FRP Thickness tf (mm) | Normal Stress in FRP (MPa) | Load (kN) |
---|---|---|
0.7 | 413 | 4.72 |
1.4 | 281 | 4.35 |
2.0 | 254 | 4.30 |
4.0 | 160 | 4.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wattanapanich, C.; Imjai, T.; Garcia, R.; Rahim, N.L.; Abdullah, M.M.A.B.; Sandu, A.V.; Vizureanu, P.; Matasaru, P.D.; Thomas, B.S. Computer Simulations of End-Tapering Anchorages of EBR FRP-Strengthened Prestressed Concrete Slabs at Service Conditions. Materials 2023, 16, 851. https://doi.org/10.3390/ma16020851
Wattanapanich C, Imjai T, Garcia R, Rahim NL, Abdullah MMAB, Sandu AV, Vizureanu P, Matasaru PD, Thomas BS. Computer Simulations of End-Tapering Anchorages of EBR FRP-Strengthened Prestressed Concrete Slabs at Service Conditions. Materials. 2023; 16(2):851. https://doi.org/10.3390/ma16020851
Chicago/Turabian StyleWattanapanich, Chirawat, Thanongsak Imjai, Reyes Garcia, Nur Liza Rahim, Mohd Mustafa Al Bakri Abdullah, Andrei Victor Sandu, Petrica Vizureanu, Petre Daniel Matasaru, and Blessen Skariah Thomas. 2023. "Computer Simulations of End-Tapering Anchorages of EBR FRP-Strengthened Prestressed Concrete Slabs at Service Conditions" Materials 16, no. 2: 851. https://doi.org/10.3390/ma16020851
APA StyleWattanapanich, C., Imjai, T., Garcia, R., Rahim, N. L., Abdullah, M. M. A. B., Sandu, A. V., Vizureanu, P., Matasaru, P. D., & Thomas, B. S. (2023). Computer Simulations of End-Tapering Anchorages of EBR FRP-Strengthened Prestressed Concrete Slabs at Service Conditions. Materials, 16(2), 851. https://doi.org/10.3390/ma16020851