Construction of Z-Scheme TiO2/Au/BDD Electrodes for an Enhanced Electrocatalytic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the TiO2/Au/BDD Electrode
2.2. Simulated Wastewater Degradation Experiment
2.3. Characterization
3. Results
3.1. Phase Analysis of the Electrode
3.2. Morphology and the Element Distribution Analysis of the Electrode
3.3. Electrochemical Performance Analysis
3.4. Treatment of the Simulated Wastewater
3.5. The Potential Working Mechanism of the TiO2/Au/BDD Electrode
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Amrani, A.; Dumas, A.-S.; Wick, L.Y.; Yergeau, E.; Berthomé, R. “Omics” Insights into PAH Degradation toward Improved Green Remediation Biotechnologies. Environ. Sci. Technol. 2015, 49, 11281–11291. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef] [PubMed]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yang, L.; Liu, J.; Logan, B.E. Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci. Water Res. Technol. 2016, 2, 800–831. [Google Scholar] [CrossRef]
- Feng, L.; van Hullebusch, E.D.; Rodrigo, M.A.; Esposito, G.; Oturan, M.A. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J. 2013, 228, 944–964. [Google Scholar] [CrossRef]
- Chaplin, B.P. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci. Process. Impacts 2014, 16, 1182–1203. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, M.; Hu, Y.; Groenen Serrano, K.; Yu, F. Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: A mini review. Environ. Sci. Pollut. Res. 2014, 21, 8417–8431. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Särkkä, H.; Bhatnagar, A.; Sillanpää, M. Recent developments of electro-oxidation in water treatment—A review. J. Electroanal. Chem. 2015, 754, 46–56. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Shao, G.; Liu, W.; Fan, B.; Lu, H.; Xu, H.; Zhang, R.; Yan, N.; Zhao, Y.; et al. Preparation and properties of boron-doped diamond composites fabricated by high-pressure and high-temperature sintering. Ceram. Int. 2019, 45, 9271–9277. [Google Scholar] [CrossRef]
- He, Y.; Lin, H.; Guo, Z.; Zhang, W.; Li, H.; Huang, W. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Sep. Purif. Technol. 2019, 212, 802–821. [Google Scholar] [CrossRef]
- Mordačíková, E.; Vojs, M.; Grabicová, K.; Marton, M.; Michniak, P.; Řeháček, V.; Bořík, A.; Grabic, R.; Bruncko, J.; Mackuľak, T.; et al. Influence of boron doped diamond electrodes properties on the elimination of selected pharmaceuticals from wastewater. J. Electroanal. Chem. 2020, 862, 114007. [Google Scholar] [CrossRef]
- Jiang, H.; Dang, C.; Liu, W.; Wang, T. Radical attack and mineralization mechanisms on electrochemical oxidation of p-substituted phenols at boron-doped diamond anodes. Chemosphere 2020, 248, 126033. [Google Scholar] [CrossRef]
- Suzuki, N.; Okazaki, A.; Kuriyama, H.; Serizawa, I.; Hirami, Y.; Hara, A.; Hirano, Y.; Nakabayashi, Y.; Roy, N.; Terashima, C.; et al. Synergetic effect in water treatment with mesoporous TiO2/BDD hybrid electrode. RSC Adv. 2020, 10, 1793–1798. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.A.; Couto, A.B.; Almeida, D.A.L.; Ferreira, N.G. Singular properties of boron-doped diamond/carbon fiber composite as anode in Brilliant Green dye electrochemical degradation. Diamond Relat. Mater. 2020, 103, 107708. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Li, M.; Li, C.; Lei, Y.; Sun, D.; Yang, B. Fabrication and catalytic activities of anodes consisting of ZnO nanorods on boron-doped diamond film. J. Alloys Compd. 2018, 743, 187–195. [Google Scholar] [CrossRef]
- Noman, M.T.; Ashraf, M.A.; Ali, A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019, 26, 3262–3291. [Google Scholar] [CrossRef]
- Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler, H.; Brunner, S.; Vonmont, H.; Burkhardt, M.; et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 2008, 156, 233–239. [Google Scholar] [CrossRef]
- Qu, J.; Zhao, X. Design of BDD-TiO2 Hybrid Electrode with P−N Function for Photoelectrocatalytic Degradation of Organic Contaminants. Environ. Sci. Technol. 2008, 42, 4934–4939. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Meng, A.; Zhang, Z.; Xiao, S.; Guo, X.; Wu, X.; Huang, S.; Ma, G.; Han, P.; He, B. Enhanced Visible-Light-Driven Photoelectrochemical Activity in Nitrogen-Doped TiO2/Boron-Doped Diamond Heterojunction Electrodes. ACS Appl. Energy Mater. 2022, 5, 7144–7156. [Google Scholar] [CrossRef]
- Alulema-Pullupaxi, P.; Fernández, L.; Debut, A.; Santacruz, C.P.; Villacis, W.; Fierro, C.; Espinoza-Montero, P.J. Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (TiO2/BDD) as a photoanode. Chemosphere 2021, 278, 130488. [Google Scholar] [CrossRef] [PubMed]
- Sigcha-Pallo, C.; Peralta-Hernández, J.M.; Alulema-Pullupaxi, P.; Carrera, P.; Fernández, L.; Pozo, P.; Espinoza-Montero, P.J. Photoelectrocatalytic degradation of diclofenac with a boron-doped diamond electrode modified with titanium dioxide as a photoanode. Environ. Res. 2022, 212, 113362. [Google Scholar] [CrossRef] [PubMed]
- Espinola-Portilla, F.; Navarro-Mendoza, R.; Gutiérrez-Granados, S.; Morales-Muñoz, U.; Brillas-Coso, E.; Peralta-Hernández, J.M. A simple process for the deposition of TiO2 onto BDD by electrophoresis and its application to the photoelectrocatalysis of Acid Blue 80 dye. J. Electroanal. Chem. 2017, 802, 57–63. [Google Scholar] [CrossRef]
- Yu, H.; Chen, S.; Quan, X.; Zhao, H.; Zhang, Y. Fabrication of a TiO2-BDD Heterojunction and its Application As a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI). Environ. Sci. Technol. 2008, 42, 3791–3796. [Google Scholar] [CrossRef]
- Wei, M.; Liu, Y.; Gu, Z.-Z.; Liu, Z.-D. Electrochemical Detection of Catechol on Boron-doped Diamond Electrode Modified with Au/TiO2 Nanorod Composite. J. Chin. Chem. Soc. 2011, 58, 516–521. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, J.; Jaroniec, M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef]
- Kothe, T.; Plumeré, N.; Badura, A.; Nowaczyk, M.M.; Guschin, D.A.; Rögner, M.; Schuhmann, W. Combination of A Photosystem 1-Based Photocathode and a Photosystem 2-Based Photoanode to a Z-Scheme Mimic for Biophotovoltaic Applications. Angew. Chem. Int. Ed. 2013, 52, 14233–14236. [Google Scholar] [CrossRef] [Green Version]
- Bard, A.J.; Fox, M.A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Acc. Chem. Res. 1995, 28, 141–145. [Google Scholar] [CrossRef]
- Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786. [Google Scholar] [CrossRef]
- Lin, H.; Cao, J.; Luo, B.; Xu, B.; Chen, S. Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity. Catal. Commun. 2012, 21, 91–95. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Wang, L.; Chen, Z.-G.; Lu, G.Q.; Cheng, H.-M. ZnO-CdS@Cd Heterostructure for Effective Photocatalytic Hydrogen Generation. Adv. Energy Mater. 2012, 2, 42–46. [Google Scholar] [CrossRef]
- Brillas, E.; Martínez-Huitle, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B 2015, 166–167, 603–643. [Google Scholar] [CrossRef]
- Yarbrough, W.A.; Messier, R. Current Issues and Problems in the Chemical Vapor Deposition of Diamond. Science 1990, 247, 688–696. [Google Scholar] [CrossRef]
- Liu, F.; Cao, Z.; Tang, C.; Chen, L.; Wang, Z. Ultrathin Diamond-like Carbon Film Coated Silver Nanoparticles-Based Substrates for Surface-Enhanced Raman Spectroscopy. ACS Nano 2010, 4, 2643–2648. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Li, M.; Li, C.; Qian, L.; Su, L.; Yang, B. Preparation of polycrystalline BDD/Ta electrodes for electrochemical oxidation of organic matter. Electrochim. Acta 2018, 290, 109–117. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.; Liu, F.; Miao, D.; Ma, L.; Gao, X.; Wei, Q.; Zhou, K.; Yu, Z.; Yu, Y. Microstructure of boron doped diamond electrodes and studies on its basic electrochemical characteristics and applicability of dye degradation. J. Environ. Chem. Eng. 2020, 8, 104348. [Google Scholar] [CrossRef]
- Kodama, D.; Tamura, A.; Hattori, T.; Masatoshi, S.; Kamiya, T.; Maeda, Y.; Shimomura, M. Oxidation behavior of trivalent chromium ions on boron-doped diamond electrodes. Diamond Relat. Mater. 2021, 119, 108588. [Google Scholar] [CrossRef]
- Sun, H.; Yu, M.; Wang, G.; Sun, X.; Lian, J. Temperature-Dependent Morphology Evolution and Surface Plasmon Absorption of Ultrathin Gold Island Films. J. Phys. Chem. C 2012, 116, 9000–9008. [Google Scholar] [CrossRef]
- Kochuveedu, S.T.; Jang, Y.H.; Kim, D.H. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev. 2013, 42, 8467–8493. [Google Scholar] [CrossRef] [PubMed]
- Byun, K.-E.; Chung, H.-J.; Lee, J.; Yang, H.; Song, H.J.; Heo, J.; Seo, D.H.; Park, S.; Hwang, S.W.; Yoo, I.; et al. Graphene for True Ohmic Contact at Metal–Semiconductor Junctions. Nano Lett. 2013, 13, 4001–4005. [Google Scholar] [CrossRef] [PubMed]
- Ou, F.; Buchholz, D.B.; Yi, F.; Liu, B.; Hseih, C.; Chang, R.P.H.; Ho, S.-T. Ohmic Contact of Cadmium Oxide, a Transparent Conducting Oxide, to n-type Indium Phosphide. ACS Appl. Mater. Interfaces 2011, 3, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Borjigin, T.; Zhang, Y.; Liu, H.; Liu, B.; Guo, H. Z-Scheme Au@Void@g-C3N4/SnS Yolk-Shell Heterostructures for Superior Photocatalytic CO2 Reduction under Visible Light. ACS Appl. Mater. Interfaces 2018, 10, 34123–34131. [Google Scholar] [CrossRef] [PubMed]
Sample Electrodes | Hall Mobility (cm2/V·s) | Sheet Carrier Concentration (cm−2) | Sheet Resistivity (Ω·m) |
---|---|---|---|
BDD | 158 | 2.26 × 1017 | 0.175 |
TiO2/BDD | 178 | 2.03 × 1017 | 0.173 |
TiO2/Au/BDD-30 | 194 | 2.25 × 1017 | 0.143 |
TiO2/Au/BDD-60 | 239 | 2.14 × 1017 | 0.122 |
TiO2/Au/BDD-90 | 486 | 1.87 × 1017 | 0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhang, K.; Ma, Y.; Wang, H.; Shao, J.; Li, M.; Shao, G.; Fan, B.; Lu, H.; Xu, H.; et al. Construction of Z-Scheme TiO2/Au/BDD Electrodes for an Enhanced Electrocatalytic Performance. Materials 2023, 16, 868. https://doi.org/10.3390/ma16020868
Zhang K, Zhang K, Ma Y, Wang H, Shao J, Li M, Shao G, Fan B, Lu H, Xu H, et al. Construction of Z-Scheme TiO2/Au/BDD Electrodes for an Enhanced Electrocatalytic Performance. Materials. 2023; 16(2):868. https://doi.org/10.3390/ma16020868
Chicago/Turabian StyleZhang, Kai, Kehao Zhang, Yuxiang Ma, Hailong Wang, Junyong Shao, Mingliang Li, Gang Shao, Bingbing Fan, Hongxia Lu, Hongliang Xu, and et al. 2023. "Construction of Z-Scheme TiO2/Au/BDD Electrodes for an Enhanced Electrocatalytic Performance" Materials 16, no. 2: 868. https://doi.org/10.3390/ma16020868
APA StyleZhang, K., Zhang, K., Ma, Y., Wang, H., Shao, J., Li, M., Shao, G., Fan, B., Lu, H., Xu, H., Zhang, R., & Shi, H. (2023). Construction of Z-Scheme TiO2/Au/BDD Electrodes for an Enhanced Electrocatalytic Performance. Materials, 16(2), 868. https://doi.org/10.3390/ma16020868