Additive Manufacturing of 3D Anatomical Models—Review of Processes, Materials and Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paper Selection Methods
- physical models for pre-operative preparation and surgery planning,
- physical models to perform simulated operations,
- physical models with a template to support the tissue reconstruction process (e.g., mandible, facial skeleton),
- surgical instruments and guiding templates to match the patient’s anatomy,
- physical models for the education and training of doctors and medical students,
- physical models for the educational purposes of the patient and his family,
- implants adjusted to the individual patient’s anatomy,
- improving the strength and quality of existing implants,
- tissue engineering and bioprinting.
2.2. Concepts of Manufacturing
3. Results
3.1. Design
3.1.1. Medical Images and Their Properties
3.1.2. Medical Images Processing
- Commercial: Mimics (Materialize NV);
- Free: 3D Slicer (The Slicer Community), InVesalius (CTI, Diadema, Brasil), OsiriX (Pixmeo SARL, Bernex, Switzerland).
3.2. Technologies and Materials
3.2.1. Additive Manufacturing Technologies
3.2.2. Non-Additive and Supporting Manufacturing Processes
3.2.3. Materials and Their Properties
- Eco Flex 00-30, SmoothOn with a hardness of 30 Shore 00, a working life of 45 min and a setting time of 4 h,
- SORTA-Clear, SmoothOn with a hardness of 18 Shore A, a service life of 60 min,
- Clear Flex 30, SmoothOn with a hardness of 30 Shore A, low pot life [16].
3.2.4. Examples of Used Materials and Technologies
3.3. Assessment and Application
3.3.1. Medical Models Assessment Techniques
3.3.2. Applications of Fabricated Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, W.L.; Chua, C.K.; Shen, Y.F. Print Me An Organ! Why We Are Not There Yet. Prog. Polym. Sci. 2019, 97, 101145. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Ahadian, S.; Xu, C.; Montazerian, H.; Ko, H.; Nasiri, R.; Barros, N.; Khademhosseini, A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater. Today Bio 2019, 1, 100008. [Google Scholar] [CrossRef] [PubMed]
- Tuomi, J.; Paloheimo, K.-S.; Vehviläinen, J.; Björkstrand, R.; Salmi, M.; Huotilainen, E.; Kontio, R.; Rouse, S.; Gibson, I.; Mäkitie, A.A. A Novel Classification and Online Platform for Planning and Documentation of Medical Applications of Additive Manufacturing. Surg. Innov. 2014, 21, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Pacione, D.; Tanweer, O.; Berman, P.; Harter, D.H. The utility of a multimaterial 3D printed model for surgical planning of complex deformity of the skull base and craniovertebral junction. J. Neurosurg. JNS 2016, 125, 1194–1197. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Pan, Z.; Wu, Y.; Gu, Z.; Li, M.; Liang, Z.; Zhu, H.; Yao, Y.; Shui, W.; Shen, Z.; et al. The role of three-dimensional printed models of skull in anatomy education: A randomized controlled trail. Sci. Rep. 2017, 7, 575. [Google Scholar] [CrossRef]
- Ganry, L.; Quilichini, J.; Bandini, C.M.; Leyder, P.; Hersant, B.; Meningaud, J.P. Three-dimensional surgical modelling with an open-source software protocol: Study of precision and reproducibility in mandibular reconstruction with the fibula free flap. J. Oral Maxillofac. Surg. 2017, 46, 946–957. [Google Scholar] [CrossRef]
- Kumar Malyala, S.; Kumar, R.Y.; Alwala, A.M. A 3D-printed osseointegrated combined jaw and dental implant prosthesis—A case study. Rapid Prototyp. J. 2017, 23, 1164–1169. [Google Scholar] [CrossRef]
- Górski, F.; Wichniarek, R.; Kuczko, W.; Banaszewski, J.; Pabiszczak, M. Application of Low-Cost 3D Printing for Production of CT-Based Individual Surgery Supplies. In World Congress on Medical Physics and Biomedical Engineering; Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G., Eds.; Springer: Singapore, 2018; Volume 68/1. [Google Scholar]
- Favero, C.S.; English, J.D.; Cozad, B.E.; Wirthlin, J.O.; Short, M.M.; Kasper, F.K. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Cassetta, M.; Giansanti, M. Accelerating orthodontic tooth movement: A new, minimally-invasive corticotomy technique using a 3D-printed surgical template. Med. Oral Patol. Oral Cir. Bucal. 2016, 21, e483–e487. [Google Scholar] [CrossRef]
- Riedle, H.; Ghazy, A.; Seufert, A.; Seitz, V.; Dorweiler, B.; Franke, J. Generic design of an anatomical heart model optimized for additive manufacturing with silicone. Rapid Prototyp. J. 2021, 27, 217–222. [Google Scholar] [CrossRef]
- de Galarreta, S.R.; Aitor, C.; Antón, R.; Finol, E.A. Abdominal aortic aneurysm: From clinical imaging to realistic replicas. J. Biomech. Eng. 2014, 136, 014502. [Google Scholar] [CrossRef] [PubMed]
- Komai, Y.; Sugimoto, M.; Gotohda, N.; Matsubara, N.; Kobayashi, T.; Sakai, Y.; Shiga, Y.; Saito, N. Patient-specific 3-dimensional Printed Kidney Designed for “4D” Surgical Navigation: A Novel Aid to Facilitate Minimally Invasive Off-clamp Partial Nephrectomy in Complex Tumor Cases. Urology 2016, 91, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Atalay, H.A.; Canat, H.L.; Ülker, V.; Alkan, İ.; Özkuvanci, Ü.; Altunrende, F. Impact of personalized three-dimensional -3D- printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: A pilot study. Int. Braz. J. Urol. 2017, 43, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Kusaka, M.; Sugimoto, M.; Fukami, N.; Sasaki, H.; Takenaka, M.; Anraku, T.; Ito, T.; Kenmochi, T.; Shiroki, R.; Hoshinaga, K. Initial Experience With a Tailor-made Simulation and Navigation Program Using a 3-D Printer Model of Kidney Transplantation Surgery. Transplant. Proc. 2015, 47, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Muguruza Blanco, A.; Krauel, L.; Fenollosa Artés, F. Development of a patients-specific 3D-printed preoperative planning and training tool, with functionalized internal surfaces, for complex oncologic cases. Rapid Prototyp. J. 2019, 25, 363–377. [Google Scholar] [CrossRef]
- Witowski, J.S.; Pędziwiatr, M.; Major, P.; Budzyński, A. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int. J. CARS 2017, 12, 2047–2054. [Google Scholar] [CrossRef] [Green Version]
- Gibson, I.; Cheung, L.K.; Chow, S.P.; Cheung, W.L.; Beh, S.L.; Savalani, M.; Lee, S.H. The use of rapid prototyping to assist medical applications. Rapid Prototyp. J. 2006, 12, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Rengier, F.; Mehndiratta, A.; von Tengg-Kobligk, H.; Zechmann, C.M.; Unterhinninghofen, R.; Kauczor, H.-U.; Giesel, F.L. 3D printing based on imaging data: Review of medical applications. Int J. CARS 2010, 5, 335–341. [Google Scholar] [CrossRef]
- Żukowska, M.; Górski, F.; Bromiński, G. Rapid Manufacturing and Virtual Prototyping of Pre-surgery Aids. In World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings; Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G., Eds.; Springer: Singapore, 2018; Volume 68/3. [Google Scholar]
- Uccheddu, F.; Carfagni, M.; Governi, L.; Furferi, R.; Volpe, Y.; Nocerino, E. 3D printing of cardiac structures from medical images: An overview of methods and interactive tools. Int. J. Interact. Des. Manuf. (IJIDeM) 2018, 12, 597–609. [Google Scholar] [CrossRef]
- Adams, F.; Qiu, T.; Mark, A.; Fritz, B.; Kramer, L.; Schlager, D.; Wetterauer, U.; Miernik, A.; Fischer, P. Soft 3D-Printed Phantom of the Human Kidney with Collecting System. Ann. Biomed. Eng 2017, 45, 963–972. [Google Scholar] [CrossRef]
- Cheung, C.L.; Looi, T.; Lendvay, T.S.; Drake, J.M.; Farhat, W.A. Use of 3-Dimensional Printing Technology and Silicone Modeling in Surgical Simulation: Development and Face Validation in Pediatric Laparoscopic Pyeloplasty. J. Surg. Educ. 2014, 71, 762–767. [Google Scholar] [CrossRef] [PubMed]
- van Eijnatten, M.; van Dijk, R.; Dobbe, J.; Streekstra, G.; Koivisto, J.; Wolf, J. CT image segmentation methods for bone used in medical additive manufacturing. Med. Eng. Phys. 2018, 51, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, M. Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 2002, 22, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Bibb, R.; Winder, J. A review of the issues surrounding three-dimensional computed tomography for medical modelling using rapid prototyping techniques. Radiography 2010, 16, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Mussi, E.; Mussa, F.; Santarelli, C.; Scagnet, M.; Uccheddu, F.; Furferi, R.; Volpe, Y.; Genitori, L. Current Practice in Preoperative Virtual and Physical Simulation in Neurosurgery. Bioengineering 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.C. 3D-printed patient-specific applications in orthopedics. Orthop. Res. Rev. 2016, 8, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Banaszewski, J.; Pabiszczak, M.; Pastusiak, T.; Buczkowska, A.; Kuczko, W.; Wichniarek, R.; Górski, F. 3D printed models in mandibular reconstruction with bony free flaps. J. Mater. Sci. Mater. Med. 2018, 29, 23. [Google Scholar]
- Liu, J.; Li, M.; Wang, J.; Wu, F.; Liu, T.; Pan, Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 2014, 19, 578–595. [Google Scholar]
- Rathnayaka, K.; Momot, K.I.; Noser, H.; Volp, A.; Schuetz, M.A.; Sahama, T.; Schmutz, B. Quan- tification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models. Med. Eng. Phys. 2014, 34, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 20, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Adams, R.; Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 641–647. [Google Scholar] [CrossRef]
- Ng, W.L.; Chan, A.; Ong, Y.S.; Chua, C.K. Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual Phys. Prototyp. 2020, 15, 340–358. [Google Scholar] [CrossRef]
- Asgari Taghanaki, S.; Abhishek, K.; Cohen, J.P.; Cohen-Adad, J.; Hamarneh, G. Deep semantic segmentation of natural and medical images: A review. Artif. Intell. Rev. 2020, 54, 137–178. [Google Scholar] [CrossRef]
- Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone Tissue Engineering Using 3D Printing. Mater. Today 2013, 16, 496–504. [Google Scholar] [CrossRef]
- Mashiko, T.; Otani, K.; Kawano, R.; Konno, T.; Kaneko, N.; Ito, Y.; Watanabe, E. Development of Three-Dimensional Hollow Elastic Model for Cerebral Aneurysm Clipping Simulation Enabling Rapid and Low Cost Prototyping. World Neurosurg. 2015, 83, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, S.; Bose, S.; Bishop, P.; Klatte, R.; Norris, F. Novel Application of Rapid Prototyping for Simulation of Bronchoscopic Anatomy. J. Cardiothorac. Vasc. Anesth. 2014, 28, 1122–1125. [Google Scholar] [CrossRef] [PubMed]
- Azuma, M.; Yanagawa, T.; Ishibashi-Kanno, N.; Uchida, F.; Ito, T.; Yamagata, K.; Hasegawa, S.; Sasaki, K.; Adachi, K.; Tabuchi, K.; et al. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity. Head Face Med. 2014, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Żukowska, M.; Górski, F.; Wichniarek, R.; Kuczko, W. Methodology of Low Cost Rapid Manufacturing of Anatomical Models with Material Imitation of Soft Tissues. Adv. Sci. Technol. Res. J. 2019, 13, 120–128. [Google Scholar] [CrossRef]
- Werz, S.M.; Zeichner, S.J.; Berg, B.-I.; Zeilhofer, H.-F.; Thieringer, F. 3D Printed Surgical Simulation Models as educational tool by maxillofacial surgeons. Eur. J. Dent. Educ. 2018, 22, e500–e505. [Google Scholar] [CrossRef]
- Watson, R.A. A Low-Cost Surgical Application of Additive Fabrication. J. Surg. Educ. 2014, 71, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, D.; Zhao, J.; Wu, Y.; Zheng, B. 3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning? J. Surg. Educ. 2016, 73, 518–523. [Google Scholar] [CrossRef] [PubMed]
- BBernhard, J.-C.; Isotani, S.; Matsugasumi, T.; Duddalwar, V.; Hung, A.J.; Suer, E.; Baco, E.; Satkunasivam, R.; Djaladat, H.; Metcalfe, C.; et al. Personalized 3D printed model of kidney and tumor anatomy: A useful tool for patient education. World J. Urol. 2016, 34, 337–345. [Google Scholar] [CrossRef]
- Lee, H.; Nguyen, N.H.; Hwang, S.I.; Lee, H.J.; Hong, S.K.; Byun, S.S. Personalized 3D kidney model produced by rapid prototyping method and its usefulness in clinical applications. Int. Braz. J. Urol. 2018, 44, 952–957. [Google Scholar] [CrossRef]
- Torres, I.O.; de Luccia, N. A simulator for training in endovascular aneurysm repair: The use of three dimensional printers. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.R.; Chen, T.; Nakaji, P.; Frakes, D.H.; Gonzalez, L.F. Ventriculostomy Simulation Using Patient-Specific Ventricular Anatomy, 3D Printing, and Hydrogel Casting. World Neurosurg. 2015, 84, 1333–1339. [Google Scholar] [CrossRef]
- Thawani, J.P.; Pisapia, J.M.; Singh, N.; Petrov, D.; Schuster, J.M.; Hurst, R.W.; Zager, E.L.; Pukenas, B.A. Three-Dimensional Printed Modeling of an Arteriovenous Malformation Including Blood Flow. World Neurosurg. 2016, 90, 675–683.e2. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.R.; Almefty, K.K.; Nakaji, P.; Frakes, D.H. Cerebral Aneurysm Clipping Surgery Simulation Using Patient-Specific 3D Printing and Silicone Casting. World Neurosurg. 2016, 88, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Kurenov, S.N.; Ionita, C.; Sammons, D.; Demmy, T.L. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. Cardiothorac. Surg. Educ. Train. 2015, 149, 973–979.E1. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, J.T.; Zeller, A.N.; Lemound, J.; Lichtenstein, T.E.; Rana, M.; Gellrich, N.-C.; Wagner, M.E. 3D-Printed Simulation Device for Orbital Surgery. J. Surg. Educ. 2017, 74, 2–8. [Google Scholar] [CrossRef]
- Javan, R.; Bansal, M.; Tangestanipoor, A. A Prototype Hybrid Gypsum-Based 3-Dimensional Printed Training Model for Computed Tomography–Guided Spinal Pain Management. J. Comput. Assist. Tomogr. 2016, 40, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Tam, M.D.; Laycock, S.D.; Bell, D.; Chojnowski, A. 3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J. Radiol. Case Rep. 2012, 6, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Ding, J.; Xu, Y.; Hou, C. Accuracy and efficacy of osteotomy in total knee arthroplasty with patient-specific navigational template. Int. J. Clin. Exp. Med. 2015, 8, 12192–12201. [Google Scholar] [PubMed]
- Guenette, J.P.; Himes, N.; Giannopoulos, A.A.; Kelil, T.; Mitsouras, D.; Lee, T.C. Computer-Based Vertebral Tumor Cryoablation Planning and Procedure Simulation Involving Two Cases Using MRI-Visible 3D Printing and Advanced Visualization. Am. J. Roentgenol. 2016, 207, 1128–1131. [Google Scholar] [CrossRef] [Green Version]
- Putzier, M.; Strube, P.; Cecchinato, R.; Lamartina, C.; Hoff, E.K. A New Navigational Tool for Pedicle Screw Placement in Patients With Severe Scoliosis: A Pilot Study to Prove Feasibility, Accuracy, and Identify Operative Challenges. Clin. Spine Surg. 2017, 30, E430–E439. [Google Scholar] [CrossRef]
- Weigelt, L.; Fürnstahl, P.; Hirsiger, S.; Vlachopoulos, L.; Espinosa, N.; Wirth, S.H. Three-Dimensional Correction of Complex Ankle Deformities With Computer-Assisted Planning and Patient-Specific Surgical Guides. J. Foot Ankle Surg. 2017, 56, 1158–1164. [Google Scholar] [CrossRef]
- Park, H.J.; Wang, C.; Choi, K.H.; Kim, H.N. Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training. J. Orthop. Surg. Res. 2018, 86, 1–8. [Google Scholar] [CrossRef]
- Piles, L.; Reig, M.J.; Seguí, V.J.; Pla, R.; Martínez, F.; Seguí, J.M. Reverse engineering applied to biomodelling and pathological bone manufacturing using FDM technology. Procedia Manuf. 2019, 41, 739–746. [Google Scholar] [CrossRef]
- Frizziero, L.; Liverani, A.; Donnici, G.; Osti, F.; Neri, M.; Maredi, E.; Trisolino, G.; Stilli, S. New Methodology for Diagnosis of Orthopedic Diseases through Additive Manufacturing Models. Symmetry 2019, 11, 542. [Google Scholar] [CrossRef] [Green Version]
- Clifton, W.; Nottmeier, E.; Edwards, S.; Damon, A.; Dove, C.; Refaey, K.; Pichelmann, M. Development of a Novel 3D Printed Phantom for Teaching Neurosurgical Trainees the Freehand Technique of C2 Laminar Screw Placement. World Neurosurg. 2019, 129, e812–e820. [Google Scholar] [CrossRef]
- Mishra, A.; Verma, T.; Vaish, A.; Vaish, R.; Vaishya, R.; Maini, L. Virtual preoperative planning and 3D printing are valuable for the management of complex orthopaedic trauma. Chin. J. Traumatol. 2019, 22, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Farias, T.; Dias, F.; Sousa, B.; Galvão, M.; Bispo, D.; Pastl, A. Prototyping: Major Advance in Surgical Planning and Customizing Prostheses in Patients with Bone Tumors of the Head and Neck. Int. J. Clin. Med. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Bücking, T.M.; Hill, E.R.; Robertson, J.L.; Maneas, E.; Plumb, A.A.; Nikitichev, D.I. From medical imaging data to 3D printed anatomical models. PLoS ONE 2017, 12, e0178540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinari, G.; Emiliani, N.; Cercenelli, L.; Bortolani, B.; Gironi, C.; Fernandez, I.J.; Presutti, L.; Marcelli, E. Assessment of a novel patient-specific 3D printed multi-material simulator for endoscopic sinus surgery. Front. Bioeng. Biotechnol. 2022, 10, 974021. [Google Scholar] [CrossRef]
- Eltes, P.E.; Kiss, L.; Bartos, M.; Gyorgy, Z.M.; Csakany, T.; Bereczki, F.; Lesko, V.; Puhl, M.; Varga, P.P.; Lazary, A. Geometrical accuracy evaluation of an affordable 3D printing technology for spine physical models. J. Clin. Neurosci. 2020, 72, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Turney, B.W. A New Model with an Anatomically Accurate Human Renal Collecting System for Training in Fluoroscopy-Guided Percutaneous Nephrolithotomy Access. J. Endourol. 2014, 28, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Mercader, C.; Vilaseca, A.; Moreno, J.L.; López, A.; Sebastià, M.C.; Nicolau, C.; Ribal, M.J.; Peri, L.; Costa, M.; Alcaraz, A. Role of the three-dimensional printing technology incomplex laparoscopic renal surgery: A renal tumor in a horseshoe kidney. Int Braz J. Urol 2019, 45, 1129–1135. [Google Scholar] [CrossRef]
- Christiansen, A.R.; Shorti, R.M.; Smith, C.D.; Prows, W.C.; Bishoff, J.T. Intraoperative utilization of advanced imaging modalities in a complex kidney stone case: A pilot case study. World J. Urol. 2018, 36, 733–743. [Google Scholar] [CrossRef]
- Silberstein, J.L.; Maddox, M.M.; Dorsey, P.; Feibus, A.; Thomas, R.; Lee, B.R. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: A pilot study. Urology 2014, 84, 268–272. [Google Scholar] [CrossRef]
- Dunkin, B.; Adrales, G.L.; Apelgren, K.; Mellinger, J.D. Surgical simulation: A current review. Surg. Endosc. 2007, 21, 357–366. [Google Scholar] [CrossRef]
- Weinstock, P.; Rehder, R.; Prabhu, S.P.; Forbes, P.W.; Roussin, C.J.; Cohen, A.R. Creation of a novel simulator for minimally invasive neurosurgery: Fusion of 3D printing and special effects. J. Neurosurg. Pediatrics 2017, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
Technology | Examples of Printers | Layer Thickness [mm] | Form of Material | Used Materials |
---|---|---|---|---|
Fused Filament Fabrication (FFF) | LOW-COST | 0.10–0.33 | Filament spool | ABS, PLA, HIPS, PP, TPU, Nylon |
| ||||
PROFESSIONAL | ||||
| ||||
Stereolithography (SLA) | LOW COST | 0.05–0.15 | Liquid photopolymer | Resins: standard, pure, casting, with increased strength, high temperature, dental, rubber-like |
| ||||
PROFESSIONAL | ||||
| ||||
Selective Laser Sintering (SLS) |
| 0.060–0.150 | Polymer powder | PA (12, 11), PS, TPE, PP, PEEK, Nylon |
Inkjet Printing |
| 0.1 | Ceramic powder | Plaster (CaSO4) |
Polyjet Printing |
| 0.016–0.028 | Liquid photopolymer | Resins: standard, flexible, simulating PP or ABS, high temperature, transparent, medical |
S. No | Authors | Year | Discipline | Materials | Technology | Organ | Use |
---|---|---|---|---|---|---|---|
1 | R. A. Watson [42] | 2014 | Hepatology | Nylon | Selective Laser Sintering | Portal and hepatic veins | Surgical education |
2 | Y. Zheng et al. [43] | 2016 | Hepatology | ABS | Objet 500 Connex 3 (Polyjet) | Pancreas Artery Portal vein Spleen | Surgical education Preoperative planning |
3 | J. S. Witowski et al. [17] | 2017 | Hepatology | PLA Silicone rubber—Polastosil M-2000 | Ultimaker 2+ (FFF) cast + internal structures Manual casting | Liver Internal structures Tumour | Preoperative planning |
4 | A.M. Blanco et al. [16] | 2018 | Hepatology | PLA Shenzhen Esun Industrial Co./Colorfila PVA Shenzhen Esun Industrial Co.—support material Silicone rubbers: The Smooth-On EcoFlex 00-30 SortaCLEAR Shore A 18 ClearFlex 30 by SmoothOn | Sigma BCN3D (FFF)—cast + internal structures Manual casting (material a)) Renishaw Vacuum System 5/01(material b)) Manual casting (material c)) | Liver Internal structures Tumours | Presurgical planning |
5 | C. L. Cheung et al. [23] | 2014 | Urology | Powder ZP-131 + bonding agent ZB-60 Infiltration process Z-Bond 90 Silicon rubber—Dragon Skin 30 + Slacker Tactire Mutator (SmothOn) | Spectrum Z510 3D Printer (Inkjet Printing)—cast Manual casting + vacuum chamber (degassed process) | Kidney Dilated renal pelvis Ureter Overlying peritoneum | Training models for paediatric laparoscopic pyeloplasty |
6 | JC. Bernhard et al. [44] | 2015 | Urology | Photopolymer | Objet 500 Connex 3 (Polyjet) | Kidney Tumour Internal structures | Patient education |
7 | F. Adams et al. [22] | 2016 | Urology | Engineered wax material Photopolymer VeroClear Silicone rubber—The SmoothOn Ecoflex 00-20 Agarose gel—Agarose Electran Polydimethylsiloxane (PDMS) | 3Z Pro, Solidscape (high precision 3d printing)—inner wax mould Objet 260 Connex 3 (Polyjet)—external cast Manual casting | Kidney | Presurgical planning Simulated operation Endoscopy training |
8 | H. Lee et al. [45] | 2018 | Urology | Photopolymer | Objet 260 Connex 3 (Polyjet) | Kidney Tumour | Presurgical planning Students’ education |
9 | H. Riedle et al. [11] | 2020 | Cardiology | ACEO® Silicone GP Shore A 20 | ACEO® Technology (drop-on-demand 3D printing) | Heart Aorta | Simulated operation |
10 | S. R. de Galarreta [12] | 2013 | Cardiology | Full-cure 720 Silicone rubber—SLM VTX 950 WA–70 wax Resin—SLM PUR | Objet Eden 330 (Polyjet)—master model Manual casting MCP 4/01 Vacuum Casting Machine | Abdominal Aortic Aneurysm | Validation deformation and optical methods |
11 | I. O. Torres et al. [46] | 2017 | Cardiology | Polyjet Material Rubber FLX930 Polyjet Material Standard Plastic RGD810 Polyjet Digital Material Tango Plus + Vero Clear Shoe 60 Flexible Photopolymer Resin for Form1+ MakerBot Tough PLA | Objet 350 Connex 3 (Polyjet) Formlabs Form1+ (SLA) Makerbot (FFF) | Abdominal Aortic Aneurysm | Simulated operations Training models |
12 | T. Mashiko et al. [38] | 2015 | Neurology | ABS M8012 from Asahi Kasei-Wacker Silicone (moulding silicone) | UP!Plus 3D Printer (FFF) Manual coating | Cerebral aneurysm | Surgical training Simulated operation |
13 | J. Ryan et al. [47] | 2015 | Neurology | Gypsum powder ABS Casting silicone—The Smooth-On Mould-Max 60 Hydrogel (gelatine + agar gel powder) | zPrinter 350 (Inkjet Printing) Stratasys Dimension 1200es (FFF) Manual casting | Skull Anterior horns Brain | Surgical training Students’ education |
14 | J.P. Thawani et al. [48] | 2016 | Neurology | Polycarbonate-like photoreactive polymer | ProJet 6000 3D Printer (SLA) | Arteriovenous Malformation | Presurgical planning Surgical training Education |
15 | J. R. Ryan et al. [49] | 2016 | Neurology | Photopolymer Shore A 27 ABS Silicone rubber—The SmoothOn Mold Star Silicone Rubber—DragonSkin + Slacker Tactile Mutator (The SmothOn) Composite Material | Objet 500 Connex 3 (Polyjet) Stratasys Dimension 1200 (FFF) zPrinter 650 (Inkjet Printing) | Vascular Brain Skull | Surgical training Presurgical planning |
16 | W. Mussi et al. [27] | 2020 | Neurology | PLA PLA wood-loaded Silicone rubber—The SmoothOn EcoFlex 00-50 Silicone rubber—DragonSkin 10 | MakerBot Replicator 2X (FFF) Manual casting | Skull Brain Tumour Tentorium Flax | Simulated operations Training models |
17 | S. Bustamante et al. [39] | 2014 | Pulmonology | Photosensitive flexible liquid resin | Object 350 Connex3 (Polyjet) | Tracheobronchial tree | Anaesthesia education |
18 | S.N. Kurenov et al. [50] | 2015 | Pulmonology | TangoPlus (Thermoplastic elastomer) | PolyJet Eden 260 V (Polyjet) Objet 500 Connex 3 (Polyjet) | Pulmonary arteries | Presurgical planning Device development Anatomy study |
19 | J. T. Lichtenstein et al. [51] | 2016 | Ophthalmology | PA2200 Silicone mixture—VTV 800 (SLM Solution) + VTN 4500 (The SmoothOn) | Selective Laser Sintering (bone + moulds) Manual casting | Globe Nerve Muscles Lids Bone | Surgical training Education |
20 | R. Javan et al. [52] | 2016 | Orthopaedics | Rubber-like material Platinum-cure silicone gel -Ecoflex 00- 50; Smooth-On High-detail polyamide Highly concentrated gelatine solution | Zcorp 3D printer (Inkjet Printing) Manual casting | Spinal cord Nerve roots Intervertebral discs | Surgical training Students’ education |
S. No | Authors | Year | Discipline | Materials | Technology | Organ | Use |
1 | M.D. Tam et al. [53] | 2012 | Orthopaedics | Plaster powder | zPrinter 450 (Inkjet Printing) | Scapular osteochondroma | Presurgical planning |
2 | Y.Gan et al. [54] | 2015 | Orthopaedics | Acrylate resin—Somos 14120 | Stereolithography (SLA) | Surgical guiders: tibia and femur | Intraoperative navigation |
3 | D. Pacione et al. [4] | 2016 | Orthopaedics | VeroWhite, VeroMagenta VeroBlack | Objet260 Dental Selection (Polyjet) | Skull Vertebras Vessels Metal parts | Presurgical planning |
4 | R. Javan et al. [52] | 2016 | Orthopaedics | Gypsum (contains calcium) | Zcorp 3D printer (Inkjet Printing) | Vertebras (lumbar region) | Surgical training Students’ education |
5 | J. P. Guenette et al. [55] | 2016 | Orthopaedics | Objet RGD525 High Temperature Vero White | Objet 500 Connex3 (Polyjet) | Vertebras | Presurgical planning |
6 | M. Putzier et al. [56] | 2017 | Orthopaedics | PA2200 | EOS Eosint P395 (SLS) | Vertebra Guider for pedicle screw placement | Presurgical planning Intraoperative navigation |
7 | L. Weigelt et al. [57] | 2017 | Orthopaedics | PA2200 | Selective Laser Sintering (SLS) | Surgical guiders for bones: tibia/fibula | Presurgical planning Surgical guiders |
8 | H. J. Park [58] | 2018 | Orthopaedics | Polypropylene | Stratasys Objet30Pro (Polyjet) | Spine (lumbar vertebrae) | Surgical training Students’ education |
9 | L. Piles et al. [59] | 2019 | Orthopaedics | Sakarat ABS-E | XYZPrinting DaVinci 1.0 (FFF) | Scapula Humorous | Presurgical planning |
10 | L. Frizziero et al. [60] | 2019 | Orthopaedics | PLA | EZT3D Delta (FFF) | Bone (femur) | Presurgical planning Preoperative diagnosis |
11 | W. Clifton et al. [61] | 2019 | Orthopaedics | PLA Melted 10% ballistics gel | Ultimaker S5 (FFF) | Vertebras | Surgical training Students’ education |
12 | A. Mishra et al. [62] | 2019 | Orthopaedics | PLA | FFF | Pelvis Hip Spine Knee Shoulder Elbow Wrist joint | Presurgical planning |
13 | T. P. Farias et al. [63] | 2013 | Cranio-Maxillofacial Surgery | Composite of gypsum, cyanoacrylate, and ZP150 | Z510 (Inkjet Printing) | Mandibular Iliac crest Fibula | Presurgical planning Simulated operation |
14 | A. Masaki et al. [64] | 2014 | Cranio-Maxillofacial Surgery | Plaster powder | zPrinter 310+ (Inkjet Printing) | Mandibular | Presurgical planning |
15 | S. K. Malyala et al. [7] | 2016 | Cranio-Maxillofacial Surgery | PLA | MakerPi M14 (FFF) | Maxilla Mandibular Preliminary ver. of the implant | Presurgical planning Simulated operation |
16 | L. Ganry et al. [6] | 2017 | Cranio-Maxillofacial Surgery | Polyamide 12 (poly-lauroctam) | Selective Laser Sintering (SLS) | Mandibular | Surgical guides for free flap mandibular reconstruction Model of reconstructed mandibular |
17 | S.M. Werz et al. [40] | 2018 | Cranio-Maxillofacial Surgery | ABS (MakerBot Industries) PLA(MakerBot Industries) Silicone rubber (NEUKASIL RTV 23/Crossliker A7 | MakerBot Replicator 5th Generation (FFF) Manual applied silicone with syringe | Upper jaw Lower jaw | Training models for oral and maxillofacial surgery |
18 | F. Górski et al. [8] | 2019 | Cranio-Maxillofacial Surgery | ABS | Stratasys Dimension 1200 (FFF) MakerBot Replicator 2X (FFF) | Lower jaw | Presurgical planning |
19 | S. Chen et al. [5] | 2017 | Anatomy | PLA | Ultimaker 2 (FFF) | Skull | Students’ education |
20 | C.S. Favero et al. [9] | 2017 | Orthodontics | Photopolymer resin FLGPGR02 | Form 2 printer (SLA), Juell 3D (DLP), Objet Eden260V Dental Advantage (Polyjet), large-frame Vector 3SP (3SP), Perfactory Desktop Vida(DLP) | Maxillary arch | Assessment of the accuracy of orthodontic models |
Model Features | Shape and Dimensional Accuracy | Transparency | Tissue Imitation | |
---|---|---|---|---|
Application | ||||
Education | necessary | necessary | not necessary | |
Presurgical planning | necessary | added value | not necessary | |
Simulated operation | necessary | added value | necessary | |
Surgical training | added value | added value | added value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żukowska, M.; Rad, M.A.; Górski, F. Additive Manufacturing of 3D Anatomical Models—Review of Processes, Materials and Applications. Materials 2023, 16, 880. https://doi.org/10.3390/ma16020880
Żukowska M, Rad MA, Górski F. Additive Manufacturing of 3D Anatomical Models—Review of Processes, Materials and Applications. Materials. 2023; 16(2):880. https://doi.org/10.3390/ma16020880
Chicago/Turabian StyleŻukowska, Magdalena, Maryam Alsadat Rad, and Filip Górski. 2023. "Additive Manufacturing of 3D Anatomical Models—Review of Processes, Materials and Applications" Materials 16, no. 2: 880. https://doi.org/10.3390/ma16020880
APA StyleŻukowska, M., Rad, M. A., & Górski, F. (2023). Additive Manufacturing of 3D Anatomical Models—Review of Processes, Materials and Applications. Materials, 16(2), 880. https://doi.org/10.3390/ma16020880