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Abstract: In order to solve the problem of difficult sintering and high brittleness of B4C-based
ceramics, B4C@ZrB2-TiB2 composite powder was synthesized by molten salt method, and B4C–(Zr,
Ti)B2 composite ceramics were successfully prepared by spark plasma sintering. The effects of
different raw material ratios on the composition, microstructure, and mechanical properties of the
prepared composite ceramics were characterized by XRD, XPS, SEM, and TEM. The results show
that ZrB2 and TiB2 were grown on the surface of B4C by template mechanism to form a dense
nanocrystalline coating, and the original surface of B4C was exposed gradually with the decrease of
the ratio of metal powder. When the composite powders were sintered at 1700 ◦C, ZrB2 and TiB2

formed a solid solution, which can refine grains and improve strength. When the raw material ratio
is n(B4C): n(Zr): n(Ti) = 12:1:1, the composite ceramics have excellent comprehensive properties, the
Vickers hardness reaches 41.2 GPa.

Keywords: molten salt method; Nano (Zr, Ti)B2; coating; B4C–(Zr, Ti)B2 composite ceramics

1. Introduction

Given the higher grinding requirements of rough wafers grinding in the integrated
circuit field, it is urgent to develop ultra-hard ceramics with excellent mechanical properties
to meet the new growth requirements. The hardness of boron carbide ceramics is third only
to diamond and cubic boron nitride, and the lower cost makes it have great application
potential. Boron carbide has the characteristics of high hardness, high melting point, high
modulus of elasticity, low thermal expansion coefficient and good chemical stability [1,2],
and is widely used in mechanical equipment, abrasive abrasives, microwave absorption,
and refractory antioxidants and other fields [3–5]. Zamora et al. [6] prepared dense boron
carbide composites at low temperatures and they showed good wear resistance with
only slight wear after linear sliding over long distances. However, the lower sintering
temperature and the introduction of more low-hardness phases make it difficult to meet the
grinding needs of rough wafers. The mechanisms of porosity elimination, grain boundaries,
and volume diffusion of ceramics only play a role when the sintering temperature reaches
more than 2000 ◦C This ultimately makes it difficult to achieve the sintering densification of
B4C ceramics with poor plasticity (KIC is about 2 MPa·m1/2), and its ultra-hard properties
are difficult to fully achieve [7,8].

In order to achieve the densification and sintering of B4C-based ceramics, various
sintering aids and second phases were introduced to reduce the sintering temperature.
It has been found that carbides and borides such as SiC, TiC, HfC, TaB2, TiB2, and ZrB2
benefit the performance improvement of composite ceramics [9–11]. Chen et al. [12] found
that ZrB2–ZrC–B4C composites have been successfully fabricated by SPRS from B4C and
different content of Zr, while the flexure strength and hardness decrease first and then
increase with increasing Zr content. It is found that boron carbide containing 66% Zr has
the highest fracture toughness (5.83 MPa·m1/2) and flexure strength (386.45 MPa) due
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to the uniform distribution of ZrB2 and ZrC. Sha et al. [13] explored the effect of carbon
content on the mechanical properties of reaction-sintered B4C composite ceramics. When
the carbon content is 10%, the composite ceramics have the highest bending strength
(444 MPa) and elastic modulus (329 GPa). After adding an appropriate proportion of
carbon and silicon in the preparation of B4C/TiB2 composite ceramics, Zhu et al. [14] found
that layered graphite appeared at the grain boundary of B4C and it could react with B2O3
to cause volume shrinkage, which significantly improved the mechanical properties of the
material. Yan et al. [15] introduced TiSiC2 additive to prepare B4C-TiB2 composite ceramics.
Compared with the pure B4C ceramics prepared by the same method, the hardness of the
composite ceramics decreased, but the flexural strength and fracture toughness increased
significantly. Ren et al. [16,17] used NaCl–KCl as a molten salt medium to prepare the
composite powder with Al3BC and TiB2 coating uniformly on the surface of B4C particles.
Due to the conductivity of boride coating, the material transportation is dynamically
enhanced through SPS sintering.

Spark plasma sintering (SPS) is a new rapid densification technology that uses high-
frequency and high currents through the sample to heat the sample and apply mechanical
pressure [18–21]. Yavas et al. [22] found that SPS sintering has higher surface energy than
B4C powder with small particle size (HS) at heating rate of 75, 150 and 225 ◦C·min−1,
which improves the sintering driving force and enables the sintering of B4C ceramics to
be completed at 1590 ◦C. Moshtaghioun et al. [23] combined high-energy ball milling,
annealing treatment and SPS to provide sinterability for ultrafine B4C powder, and the
optimal sintering conditions were 100 ◦C·min−1 temperature to 1700 ◦C for 3 min, which
could prepare B4C ceramics with ultra-fine grains with a relative density of more than
98.5%. At the same time, due to the significant decrease of grain size and the increase
of transcrystalline fracture mode, the ceramic has an ultra-high hardness of 38 GPa with-
out corresponding ductile loss (~3 MPa·m1/2). Experiments show that the two-step SPS
treatment enables B4C powder to be densified while retaining nanoscale particles, with
ultra-high hardness and good toughness [24].

Although many studies have improved the performance of B4C ceramics to varying
degrees, there are still problems such as high sintering temperature, poor fracture toughness
and lower hardness. In this paper, B4C–(Zr, Ti)B2 composite ceramic with high hardness
was prepared using the SPS and using (Zr, Ti)B2–coated B4C powder prepared by molten
salt as raw materials. The effects of the ratio of raw materials on the phase composition
and microstructure of composite powders and ceramics were discussed, and the hardness
of the ceramics was compared.

2. Materials and Methods
2.1. Materials

The composite powder for preparing composite ceramics was synthesized by molten
salt method using B4C (Mudanjiang Diamond Co., Ltd., W1.5, Mudanjiang, China), ZrH2
(ST-NANO, 0.5 µm, Shanghai, China), TiH2 (ST-NANO, 0.5 µm, Shanghai, China) as raw
materials, and NaCl (Sinopharm Chemical ReagentCo., Ltd, AR, Shanghai, China), KCl
(Macklin, AR, Shanghai, China) as a molten salt medium. First, mixed the raw materials
in the mortar for about 25 min (according to the mass ratio of m (mixed salt):m (mixed
powders) = 7:3 and m (NaCl):m (KCl) = 3:2. ZrH2 and TiH2 will decompose and precipitate
H2 at low temperatures to obtain metal Zr and Ti [25]. The actual reaction occurs between
Zr/Ti and B4C. Due to the extremely low H content and the low addition of raw materials
in each group of mixed powders, the ratio was calculated according to the molar mass of Zr
and Ti. The molar ratio of B4C to Zr/Ti are 8:1:1, 12:1:1 and 16:1:1, named ZT8, ZT12, and
ZT16, respectively. Put the mixture into the alumina crucible with a lid, then the crucible
containing the mixture was placed in an atmosphere furnace and held to 1100 ◦C for 2 h
under Ar atmosphere. The solid obtained after heat treatment was washed with deionized
water after ultrasonic cleaning of 15 min in a water bath at 45 ◦C (these operations should
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be repeated three times). Lastly, put the products at 110 ◦C and dried for 12 h to obtain
composite powder.

Accurately weighed composite powder was placed in a special cylindrical graphite
crucible (Φ20 mm), and the crucible containing the powder was placed in an SPS sintering
furnace for sintering (the inner wall of the crucible, and the composite powder were isolated
with clean graphite paper, and the powder was compacted and sealed with a graphite
plunger at the upper and lower ports). The sintering system of this experiment was: holding
at 1400 ◦C for 3 min, holding at 1700 ◦C for 6 min, the heating rate was 100 ◦C/min, and
the sintering pressure was 50 MPa. Pressure was increased gradually during heating and
reached maximum pressure before maximum temperature. After the heat preservation, the
pressure was gradually removed and the samples demoulded.

After removing the graphite paper from the ceramic samples, the ceramic samples
were ground, polished, then characterized and tested for the performance of the samples.

2.2. Characterization and Testing

The phase composition and microstructure of the composite powders and the compos-
ite ceramics were characterized using the X-ray diffractometer (XRD, X’Pert Pro, Philips,
The Netherlands), field emission scanning electron microscope (SEM, Nova nano 400, FEI,
Hillsboro, OR, USA) equipped with an energy dispersive spectrometer (EDS, IE350 Penta
FET X-3, Oxford, UK) and high resolution transmission electron microscope (TEM, JEM2100,
JEOL, Tokyo, Japan). The element composition and chemical bond bonding state on the
surface of the composite powder was analyzed by an X-ray photoelectron spectrometer
(XPS, AXIS SUPRA+, Shimadzu-Kratos, Hadano, Kanagawa, Japan). The Vickers hardness
of the ceramic samples was measured by an automatic micro/macro hardness tester, the
applied load was 0.5 kg and the loading time was 15 s. The indentation diagram is shown
in Figure 1.
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Figure 1. Indentation diagram.

3. Results and Discussion
3.1. B4C@ZrB2–TiB2 Composite Powder

Figure 2 shows the XRD patterns of the composite powder prepared at 1100 ◦C. It
can be seen from Figure 2 that the main phase of the composite powder is composed of
B4C, ZrB2, and a small amount of ZrO2. The oxidation of metal zirconium powder and
the reaction of B2O3 on the surface of B4C with Zr powder may cause the diffraction peak
of ZrO2. Meanwhile, only a weak diffraction peak of TiB2 was detected in the composite
powder, which might be the dissolution of TiB2 in ZrB2 [26], and the significant atomic
number of Zr leads to the reduction of X–ray scattering factor of TiB2 [27].

Figure 3 shows the SEM images of the composite powder prepared at 1100 ◦C. Fig-
ure 3a,b show the morphology of the ZT8 composite powder and its elemental mapping
analysis. On the one hand, it confirms the generation of TiB2 and ZrB2 on the surface of B4C
particles after heat treatment at 1100 ◦C in molten salt. On the other hand, it illustrates the
homogeneous encapsulation of the two phases on the B4C particles. Figure 3c,d show the
ZT12 and ZT16 composite powder morphology. The composite powder particles maintain
the original shape of the irregular polyhedra of the B4C particles, and the original surface
is gradually exposed with a decrease in the proportion of metal powders.
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To further verify the formation of ZrB2 and TiB2 on the surface of B4C particles, the
chemical composition of ZT8 composite powder was analyzed by XPS. Figure 4a shows
the pattern of B1s, which is divided into two peaks at 187.45 eV and 192.55 eV. Since the
energies of the B–Zr bond [28,29] of ZrB2 and the B–Ti bond [30] of TiB2 are similar, the
superposition of peaks may occur at 187.45 eV. The 192.55 eV corresponds to the B–O bond
of B2O3 [31], which is the oxidation on the surface of the composite powder. The pattern of
Ti2p is divided into four peaks, which are two peaks generated by the energy level splitting
of the Ti–B bond and Ti–O bond in Figure 4b. The Ti2p3/2 sub–peak at 454.38 eV and the
Ti2p1/2 sub–peak at 458.95 eV correspond to the Ti–B bond of TiB2 [32], which proves the
existence of TiB2 and the coating of the surface of B4C particle. The Ti2p3/2 sub–peak at
459.67 eV and Ti2p1/2 sub–peak at 464.86 eV correspond to the Ti–O bond in TiO2 [33], due
to the oxidation on the surface of the composite powder.
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3.2. B4C–(Zr, Ti)B2 Composite Ceramics

Figure 5 shows the XRD patterns of the composite ceramics sintering at 1700 ◦C. It can
be seen from the picture that the primary phases are B4C (PDF #86-1024), (Zr, Ti)B2(PDF
#89-3924), and C(PDF #26-1079). The diffraction peaks of ZrB2 (PDF #34-0423) shifts to
high-angle azimuth (Figure 5b). As a result of the small size of Ti atoms, the solid solution
replaces the Zr atoms into the lattice of ZrB2, causing distortion and compressive stress,
resulting in the reduction of cell parameters (0.3100 nm) [27]. The diffraction peaks of
ZrO2 disappear after high–temperature sintering. The lowest temperatures required for the
complete conversion of Zr and Ti oxides into diborides were 1620 ◦C and 1690 ◦C under
0.8 CO ambient pressure. Furthermore, excessive B4C and lower CO partial pressure will
further reduce the reaction temperature [34]. Asl et al. [35] found that ZrO2 will react with
B4C to form a delicate ZrB2 connecting phase until it completely reacts in the subsequent
heating process at 1281 ◦C.
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Figure 6 shows the ternary phase diagram of the B4C–Zr–Ti system at 1700 ◦C obtained
by FactSage calculations. When the B4C content is high, the region above the phase line L is
a stable four–phase composition of B4C, ZrB2, TiB2, and C at 1700 ◦C. Combined with XRD
analysis, ZrB2 and TiB2 will generate (Zr, Ti)B2 solid solution after sintering at 1700 ◦C.
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Figure 7 shows the BSE images of the B4C–(Zr, Ti)B2 composite ceramics with different
raw material ratios. Due to the larger atomic number of Zr and Ti atoms show a brighter
white lining in the backscattering mode compared to B and C atoms. Combining the XRD
analysis in Figure 5 and the EDS analysis (in Figure 7b,c), it can be found that the bright
white phases in Figure 7 are (Zr, Ti)B2. Figure 7a,b show the BSE image of the ZT8 sample
and mapping analysis of the rectangular area. Zr and Ti elements are concentrated and
evenly distributed in the bright white area. Furthermore, the same distribution interval
of Zr and Ti elements and the shift of the XRD diffraction peak (Figure 5) confirms the
generation of the solid solution of ZrB2 and TiB2. Figure 7c,d are the BSE plots of ZT12 and
ZT16 samples, respectively. With the decrease of the additional amount of Zr and Ti, the
distribution of (Zr, Ti)B2 in the B4C matrix was gradually sparse and dispersed.
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Figure 8 shows the TEM image of ZT8 composite ceramic at 1700 ◦C. Figure 8b shows
the elemental mapping analysis of Figure 8a. The surface of the ceramic sample shows the
aggregation of B, Zr and Ti. Further illustration of (Zr, Ti)B2 solid solution formation and
good bonding with B4C grains. The segregation of the C elements in the grain is mainly
due to the influence of carbon supporting film.
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Figure 9 shows the Vickers hardness and the indentation morphology of B4C–(Zr,
Ti)B2 composite ceramics. It can be seen from Figure 9a that the Vickers hardness of the
sample increases at first and then decreases, when n(B4C):n(Zr):n(Ti) = 12:1:1, the Vickers
hardness reaches 41.2 GPa. The clear diamond-shaped indentations and extension cracks
can be observed in Figure 9b. Combined with the BSE images (Figure 7), when the amount
of Zr/Ti is reduced, the generation of (Zr, Ti)B2 is diminished, weakening the pinning
effect on the B4C matrix—resulting in the coarsening of B4C grains, the reduction of the
grain boundaries, and the reduction of the ability to resist local deformation. Ti2+ solid
solution into the ZrB2 lattice will generate compression stress to enhance the internal
energy. The active (Zr, Ti)B2 grains formation will block the movement of the crystal world
in the sintered process of the SPS, reducing the grain size, which plays the role of good
crystal reinforcement, because internal stress will be generated around the grains when the
solid solution is formed. Compared with the mechanical properties data of B4C composite
ceramics reported in references (Listed in Table 1), such as higher temperature and longer
holding time, this work realizes the preparation of high hardness B4C ceramics at low
temperatures. The Vickers hardness is better than the data reported in the references due to
the solution strengthening effect of ZrB2 and TiB2.
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Table 1. Mechanical properties data of B4C ceramics reported in references.

Sintering Process Vickers Hardness (GPa) References

Pressureless–sintered, 2100 ◦C, 60 min 30.2 [36]
Pressureless–sintered, 2100 ◦C, 60 min 34.2 [37]
Pressureless–sintered, 2150 ◦C, 60 min 33.2 [12]

HP, 1950 ◦C, 30 MPa, 60 min 34.6 [38]
HP, 1950 ◦C, 30 MPa, 60 min – [39]
HP, 1950 ◦C, 30 MPa, 30 min 35.22 [9]
HP, 2000 ◦C, 30 MPa, 60 min 33 [4]
SPS, 1700 ◦C, 32 MPa, 10 min 31.28 [5]
SPS, 2000 ◦C, 30 MPa, 3 min 32.33 [40]
SPS, 1700 ◦C, 50 MPa, 6 min 41.2 This work

Through the XRD phase analysis and microstructure of the composite powder and
composite ceramics, and the ternary phase diagram of the B4C–Zr–Ti system at 1700 ◦C, the
reaction mechanism of composite powder and ceramic was been studied: The mass transfer
of Zr and Ti could be promoted because of the existence of a molten salt medium, Zr and Ti
would react with B4C to form ZrB2 and TiB2 at high temperature and the product would coat
the B4C surface. Thus, the composite powder exhibited a core–shell structure. When the
composite powder was sintered by high temperature and pulse activation into composite
ceramics, ZrB2 and TiB2 of the powder surface would produce a solid solution (Zr, Ti)B2).
These (Zr, Ti)B2 solid solutions would prevent the movement of crystal boundaries during
SPS sintering, thereby reducing the grain size of the composite ceramics. The reaction
mechanism is shown in Figure 10.
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4. Conclusions

B4C–(Zr, Ti)B2 composite ceramics were obtained by SPS sintering of the composite
powder synthesized by the molten salt method, and its microstructure and mechanical
properties were studied. The following conclusions were drawn.

(1) Thermodynamic calculation and phase analysis revealed that Zr and Ti reacted with
B4C to form ZrB2 and TiB2 in a B4C-rich environment. Thanks to the heat and mass
transfer of molten salt medium, the product is uniformly coated on the surface of
B4C particles.

(2) When the powder is sintered by SPS at 1700 °C, ZrB2 and TiB2 form solid solution
(Zr, Ti)B2 at high temperature, the primary phases of composite ceramics are B4C, (Zr,
Ti)B2, and C.
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(3) Due to the synergistic effect of solid solution strengthening and particle toughening,
better comprehensive properties can be obtained. When n(B4C):n(Zr):n(Ti) = 12:1:1,
the Vickers hardness reach 41.2 GPa.
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