Bismuth-Nanoparticles-Embedded Porous Carbon Derived from Seed Husks as High-Performance for Anode Energy Electrode
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Biomass-Derived Carbon
2.2. Preparation of Composite Bi@C
2.3. Structural Characterization
2.4. Electrochemical Characterization
3. Results and Discussion
3.1. Structure of Bi@C and Biomass Carbon
3.2. Physical Structure Characterization
3.3. Electrochemical Properties of Biomass Carbon, Pure Bi and Bi@C
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodenough, J.B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xu, Y.; Yang, S.; Zhang, D.; Pei, C.; Ni, S. Al-based materials for advanced lithium rechargeable batteries: Recent progress and prospects. Mater. Chem. Front. 2023, 7, 2554–2569. [Google Scholar] [CrossRef]
- Frith, J.T.; Lacey, M.J.; Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 2023, 14, 420. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ma, W.; Zhang, Y.; Dong, S.; Yang, C.; Liu, L. Hybrid nanotubes constructed by confining Ti0.95Nb0.95O4 quantum dots in porous bamboo-like CNTs: Superior anode materials for boosting lithium storage. Dalton Trans. 2023, 52, 13662–13669. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zheng, G.; Seh, Z.W.; Liu, N.; Wang, S.; Sun, J.; Lee, H.R.; Cui, Y. Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries. Chem 2016, 1, 287–297. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Y.; Liu, X.; Cao, Y.; Liu, Y.; Zhang, X.; Mao, Y.; Liu, B. Criteria and design guidance for lithium-ion battery safety from a material perspective. J. Mater. Chem. A 2022, 10, 6538–6550. [Google Scholar] [CrossRef]
- Kim, M.-K.; Kim, M.-S.; Park, J.-H.; Kim, J.; Ahn, C.-Y.; Jin, A.; Mun, J.; Sung, Y.-E. Bi-MOF derived micro/meso-porous Bi@C nanoplates for high performance lithium-ion batteries. Nanoscale 2020, 12, 15214–15221. [Google Scholar] [CrossRef]
- Hu, C.; Hou, X.; Bai, Z.; Yun, L.; Zhang, X.; Wang, N.; Yang, J. Promises and Challenges of Sn-Based Anodes for Sodium-Ion Batteries. Chin. J. Chem. 2021, 39, 2931–2942. [Google Scholar] [CrossRef]
- Ur Rehman, W.; Xu, Y.; Du, X.; Sun, X.; Ullah, I.; Zhang, Y.; Jin, Y.; Zhang, B.; Li, X. Alumina-coated and manganese monoxide embedded 3D carbon derived from avocado as high-performance anode for lithium-ion batteries. Appl. Surf. Sci. 2018, 445, 359–367. [Google Scholar] [CrossRef]
- Zhao, Y.; Manthiram, A. High-Capacity, High-Rate Bi–Sb Alloy Anodes for Lithium-Ion and Sodium-Ion Batteries. Chem. Mater. 2015, 27, 3096–3101. [Google Scholar] [CrossRef]
- Wang, N.; Bai, Z.; Qian, Y.; Yang, J. Double-Walled Sb@TiO2−x Nanotubes as a Superior High-Rate and Ultralong-Lifespan Anode Material for Na-Ion and Li-Ion Batteries. Adv. Mater. 2016, 28, 4126–4133. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ni, J.; Savilov, S.V.; Li, L. Materials Based on Antimony and Bismuth for Sodium Storage. Chem.-Eur. J. 2018, 24, 13719–13727. [Google Scholar] [CrossRef]
- Wu, M.; Xu, B.; Zhang, Y.; Qi, S.; Ni, W.; Hu, J.; Ma, J. Perspectives in emerging bismuth electrochemistry. Chem. Eng. J. 2020, 381, 122558. [Google Scholar] [CrossRef]
- Chai, W.; Yin, W.; Wang, K.; Ye, W.; Tang, B.; Rui, Y. Carbon-coated bismuth nanospheres derived from Bi-BTC as a promising anode material for lithium storage. Electrochim. Acta 2019, 325, 134927. [Google Scholar] [CrossRef]
- Ghaur, A.; Peschel, C.; Dienwiebel, I.; Haneke, L.; Du, L.; Profanter, L.; Gomez-Martin, A.; Winter, M.; Nowak, S.; Placke, T. Effective SEI Formation via Phosphazene-Based Electrolyte Additives for Stabilizing Silicon-Based Lithium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2203503. [Google Scholar] [CrossRef]
- Selvaraj, B.; Huang, S.-S.; Wu, C.-E.; Lin, Y.-H.; Wang, C.-C.; Song, Y.-F.; Lu, M.-L.; Sheu, H.-S.; Wu, N.-L. Micrometer-Sized Nanoporous Sb/C Anode with High Volumetric Capacity and Fast Charging Performance for Sodium-Ion Batteries. ACS Appl. Energy Mater. 2018, 1, 2317–2325. [Google Scholar] [CrossRef]
- PNzereogu, U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Anode materials for lithium-ion batteries: A review. Appl. Surf. Sci. Adv. 2022, 9, 100233. [Google Scholar] [CrossRef]
- Cheng, H.; Shapter, J.G.; Li, Y.; Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 2021, 57, 451–468. [Google Scholar] [CrossRef]
- Li, H.; Yamaguchi, T.; Matsumoto, S.; Hoshikawa, H.; Kumagai, T.; Okamoto, N.L.; Ichitsubo, T. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat. Commun. 2020, 11, 1584. [Google Scholar] [CrossRef]
- Corsi, J.S.; Welborn, S.S.; Stach, E.A.; Detsi, E. Insights into the Degradation Mechanism of Nanoporous Alloy-Type Li-Ion Battery Anodes. ACS Energy Lett. 2021, 6, 1749–1756. [Google Scholar] [CrossRef]
- Saini, S.; Chand, P.; Joshi, A. Biomass derived carbon for supercapacitor applications: Review. J. Energy Storage 2021, 39, 102646. [Google Scholar] [CrossRef]
- Bi, Z.; Kong, Q.; Cao, Y.; Sun, G.; Su, F.; Wei, X.; Li, X.; Ahmad, A.; Xie, L.; Chen, C.-M. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review. J. Mater. Chem. A 2019, 7, 16028–16045. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, X.-L.; Yang, Y.-L.; Suo, G.; Zhang, L.; Lu, S.; Chen, Z.-G. Biomass-Derived Carbon for High-Performance Batteries: From Structure to Properties. Adv. Funct. Mater. 2022, 32, 2201584. [Google Scholar] [CrossRef]
- Huang, S.; Qiu, X.-Q.; Wang, C.-W.; Zhong, L.; Zhang, Z.-H.; Yang, S.-S.; Sun, S.-R.; Yang, D.-J.; Zhang, W.-L. Biomass-derived carbon anodes for sodium-ion batteries. New Carbon Mater. 2023, 38, 40–66. [Google Scholar] [CrossRef]
- Yin, H.; Li, Q.; Cao, M.; Zhang, W.; Zhao, H.; Li, C.; Huo, K.; Zhu, M. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167. [Google Scholar] [CrossRef]
- Park, C.-M.; Yoon, S.; Lee, S.-I.; Sohn, H.-J. Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J. Power Source 2009, 186, 206–210. [Google Scholar] [CrossRef]
- Yue, L.; Zhang, W.; Yang, J.; Zhang, L. Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries. Electrochim. Acta 2014, 125, 206–217. [Google Scholar] [CrossRef]
- Grey, C.P.; Hall, D.S. Prospects for lithium-ion batteries and beyond—A 2030 vision. Nat. Commun. 2020, 11, 6279. [Google Scholar] [CrossRef]
- Rantitsch, G. Graphite thermometry by interactive fitting of Raman spectra. Int. J. Coal Geol. 2023, 271, 104232. [Google Scholar] [CrossRef]
- Yuan, H.; Jin, Y.; Chen, X.; Lan, J.; Yu, Y.; Yang, X. Large-Scale Fabrication of Egg-Carton-Inspired Bi/C Composite toward High Volumetric Capacity and Long-Life Lithium Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 6033–6042. [Google Scholar] [CrossRef]
- Wang, A.; Hong, W.; Li, L.; Guo, R.; Xiang, Y.; Ye, Y.; Zou, G.; Hou, H.; Ji, X. Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction. Energy Storage Mater. 2022, 44, 145–155. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, J.; Pang, W.K.; Zheng, T.; Sencadas, V.; Chen, Y.; Liu, Y.; Guo, Z. Boosting the Potassium Storage Performance of Alloy-Based Anode Materials via Electrolyte Salt Chemistry. Adv. Energy Mater. 2018, 8, 1703288. [Google Scholar] [CrossRef]
- Qiu, C.; Jiang, L.; Gao, Y.; Sheng, L. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Mater. Des. 2023, 230, 111952. [Google Scholar] [CrossRef]
- Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 2018, 4, 15. [Google Scholar] [CrossRef]
- Baek, M.; Kim, J.; Jin, J.; Choi, J.W. Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries. Nat. Commun. 2021, 12, 6807. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-J.; Yao, N.; Xu, X.-Q.; Jiang, F.-N.; Chen, X.; Liu, H.; Yuan, H.; Huang, J.-Q.; Cheng, X.-B. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. J. Mater. Chem. A 2021, 9, 19664–19668. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Piper, L.F.J.; Whittingham, M.S.; Zhou, G. Oxygen Loss in Layered Oxide Cathodes for Li-Ion Batteries: Mechanisms, Effects, and Mitigation. Chem. Rev. 2022, 122, 5641–5681. [Google Scholar] [CrossRef]
- Hong, W.; Ge, P.; Jiang, Y.; Yang, L.; Tian, Y.; Zou, G.; Cao, X.; Hou, H.; Ji, X. Yolk-Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity. ACS Appl. Mater. Interfaces 2019, 11, 10829–10840. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ihsan-Ul-Haq, M.; Chen, Y.; Kim, J.-K. Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations. Nano Energy 2021, 89, 106489. [Google Scholar] [CrossRef]
- Zeng, L.; Wu, T.; Ye, T.; Mo, T.; Qiao, R.; Feng, G. Modeling galvanostatic charge–discharge of nanoporous supercapacitors. Nat. Comput. Sci. 2021, 1, 725–731. [Google Scholar] [CrossRef]
- Lin, F.; Markus, I.M.; Doeff, M.M.; Xin, H.L. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam. Sci. Rep. 2014, 4, 5694. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Qu, Z.G.; Ren, G.F. Collective enhancement in hydrophobicity and electrical conductivity of gas diffusion layer and the electrochemical performance of PEMFCs. J. Power Source 2023, 575, 233077. [Google Scholar] [CrossRef]
Sample | Rs (Ω) | Rct (Ω) |
---|---|---|
Biomass-derived carbon | 2.612 | 67.31 |
Bi@C | 2.976 | 116.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, W.u.; Farooq, U.; Yousaf, M.Z.; Altalbe, A. Bismuth-Nanoparticles-Embedded Porous Carbon Derived from Seed Husks as High-Performance for Anode Energy Electrode. Materials 2023, 16, 6628. https://doi.org/10.3390/ma16206628
Rehman Wu, Farooq U, Yousaf MZ, Altalbe A. Bismuth-Nanoparticles-Embedded Porous Carbon Derived from Seed Husks as High-Performance for Anode Energy Electrode. Materials. 2023; 16(20):6628. https://doi.org/10.3390/ma16206628
Chicago/Turabian StyleRehman, Wasif ur, Umar Farooq, Muhammad Zain Yousaf, and Ali Altalbe. 2023. "Bismuth-Nanoparticles-Embedded Porous Carbon Derived from Seed Husks as High-Performance for Anode Energy Electrode" Materials 16, no. 20: 6628. https://doi.org/10.3390/ma16206628
APA StyleRehman, W. u., Farooq, U., Yousaf, M. Z., & Altalbe, A. (2023). Bismuth-Nanoparticles-Embedded Porous Carbon Derived from Seed Husks as High-Performance for Anode Energy Electrode. Materials, 16(20), 6628. https://doi.org/10.3390/ma16206628