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Abstract: New results on the effect of TiO2 on Pd/La2O3-CeO2-Al2O3 systems for catalytic oxidation
of methane in the presence of H2O and SO2 have been received. Low-temperature N2-adsorption,
XRD, SEM, HRTEM, XPS, EPR and FTIR techniques were used to characterize the catalyst. The
presence of Ce3+ on the catalytic surface and in the volume near the lantana was revealed by EPR and
XPS. After aging, the following changes are observed: (i) agglomeration of the Pd-clusters (from 8 nm
to 12 nm); (ii) transformation of part of the TiO2 from anatase to larger particles of rutile; and (iii)—the
increase in PdO/Pd—ratio above its optimum. The modification by Ti of the La2O3-CeO2-Al2O3

system leads to higher resistance towards the presence of SO2 most likely due to the prevailing
formation of unstable surface sulfites instead of thermally stable sulfates. Based on kinetic model
calculations, the reaction pathway over the Pd/La2O3-CeO2-TiO2-Al2O3 catalyst follows the Mars–
van Krevelen mechanism. For evaluation of the possible practical application of the obtained material,
a sample of Pd/La2O3-CeO2-TiO2-Al2O3, supported on rolled aluminum-containing stainless steel
(Aluchrom VDM®), was prepared and tested. Methane oxidation in an industrial-scale monolithic
reactor was simulated using a two-dimensional heterogeneous reactor model.

Keywords: methane oxidation; Pd/La2O3-CeO2-TiO2-Al2O3; deactivation; sulfur poisoning; catalyst
regeneration; TiO2

1. Introduction

Methane is the main component of natural gas and recent investigations indicate that
it has an even more significant impact on global warming than previously thought [1,2].
The sources of pollution by methane are agriculture landfills and the combustion of coal
and natural gas [3]. Recently, the need for methane incineration is also due to problems
arising from the production of electricity and the great concern regarding the protection of
the environment [4–8].

A very effective technology for reducing methane emissions is catalytic combustion;
however, its major drawback is connected with the deactivation of the catalysts (mainly
based on palladium). Among the catalysts used for complete oxidation, palladium sup-
ported on γ-Al2O3 stands out due to its large surface area and cost-effectiveness [9–11]. It
is known that PdO/Al2O3 catalysts are unstable at high temperatures, resulting in reduced
alumina surface area and the transformation of palladium oxide into Pd0 [12,13]. Deactiva-
tion is also accelerated by palladium sintering at elevated temperatures and the presence in
the gases of sulfur compounds and water vapor at high concentrations. Therefore, there is
a pressing need to develop catalysts that not only exhibit high activity but also demonstrate
excellent thermal stability and resistance to water and sulfur compounds. To enhance the
properties of palladium-based catalysts, various additives have been explored.
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Lanthanum, for instance, has been commonly used to prevent the deactivation of
catalysts by retarding the conversion of palladium oxide into palladium and improving
stability against alumina surface area loss [5,9].

As reported by Ozawa et al. [14], adding La2O3 stabilizes the surface area of alumina
and further modification by CeO2 prevents the transformation of palladium oxide to
palladium. It was suggested that the addition of La into CeO2 decreases the particle size
and, as a result, inhibits the sintering of CeO2. In general, Ce–La-based compounds exhibit
excellent catalytic performance due to the remarkable oxygen storage capacity; however at
elevated temperatures (above 1000 ◦C), CeO2 sinters result in catalyst deactivation [11]. In
our previous study [15], we demonstrated the high activity and thermal stability of the Pd/
La2O3-CeO2-Al2O3 catalyst; however, its resistance to sulfur dioxide can be considered
unsatisfactory.

The modification by TiO2 is based on the fact that TiO2 is only weakly and reversibly
sulfated in the presence of SO2 and oxygen [16]. To enhance the sulfur resistance of
catalysts, TiO2 as a material has been introduced into exhaust gas catalysts [17,18]. The use
of TiO2 aims to promote sulfur desorption and significant progress in sulfur tolerance is
observed [18]. Its employment as a catalytic support is associated with increased activity
due to phase–support interactions [19].

TiO2 can increase the mobility of oxygen by creating oxygen vacancies through a
more efficient reduction process (from Ti4+ to Ti3+), supplying the Lewis acid sites for the
adsorption and dissociation of molecules [20].

The three crystalline forms of TiO2 (anatase, rutile, and brookite) possess different
properties, thus providing the possibility for the TiO2-supported catalysts to perform differ-
ent catalytic behavior [21,22]. It should be pointed out that for environmental applications,
anatase is the most frequently used [23]. The combination of TiO2, which acts as a scav-
enger for SO2 and H2O, along with inert SiO2, which facilitates the removal of poisoning
compounds after exposure to SO2 and H2O, has proven effective in improving resistance to
poisoning and the catalyst’s regenerative potential. This behavior reveals the Pd—TiO2-
based catalyst could be an attractive material for further practical implementation [24].

Based on existing research, an effective catalyst for methane combustion should pri-
marily consist of (i) γ—Al2O3 as a carrier matrix; (ii) Pd as a catalytically active component;
(iii) La2O3 for thermal stabilization of γ—Al2O3; (iv) CeO2 to improve oxygen exchange
to keep the optimal ratio between Pd and PdO; and (v) TiO2—for improving poisoning
tolerance and catalyst regeneration. Regarding the choice of synthesis methods, it can
be pointed out that the sol–gel method offers an advanced way to create solids with a
high specific area, well-defined porosity, and high resistance to deactivation in a single
step [25]. This technique permits the physical and chemical properties of the final solid to
be controlled throughout the synthesis steps; thus, the method allows the incorporation of
the catalytic active component during the gelation step and ensures effective metal–support
interaction [26].

The current study aims to investigate a Pd/La2O3-CeO2-TiO2-Al2O3 model system
prepared using the sol–gel method evaluation on catalytic activity, thermal stability, water
vapor effect, sulfur resistance, and the possibility of use of the synthesized material as an
active component for creating monolithic catalysts for application in reduction of methane
emissions.

2. Materials and Methods
2.1. Catalysts Synthesis

The La2O3-CeO2-TiO2-Al2O3 support was synthesized via the sol–gel method by the
procedure reported elsewhere [27]. The powdered Al[OCH(CH3)2]3 (≥98%, Sigma-Aldrich,
St. Louis, MO, USA) was dissolved in water, and after that, amounts of 1M HNO3, cerium
(III) nitrate hexahydrate (99%, Sigma-Aldrich, St. Louis, MO, USA), lanthanum(III) nitrate
hexahydrate (≥99.9%, Sigma-Aldrich) and titanium(IV) isopropoxide (97%, Sigma-Aldrich,
St. Louis, MO, USA) were included to produce a mixture containing 80 wt.% aluminum
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oxide, 8 wt.% cerium (IV) oxide, 4 wt.% lanthnum(III) oxide and 8% titanium dioxide.
The prepared mixture was homogenized at 373 K, then refluxed for 72 h and the obtained
gel was dried at ambient temperature before heat treatment in air for 4 h at 500 ◦C. The
synthesized catalytic support was impregnated with an aqueous solution of palladium(II)
nitrate hydrate (99.8%, Thermo Scientific Chemicals, Waltham, MA, USA) and treated for
2 h in 0.1 vol.% CH4 in N2 gas mixture at 450 ◦C (in the absence of O2) to produce a catalyst
with a nominal palladium content of 2.0% (w/w).

In order to obtain data approaching the operation of the catalyst in the form of a mono-
lithic catalytic element, experiments with Aluchrome VDM® (VDM Metals International
GmbH, Werdohl, Germany) were performed. The preparation of a single monolithic chan-
nel (D = 3.5 mm, L = 118 mm, thickness of 0.2 mm) involves the following stages: (i) thermal
treatment of the alloy at 920 ◦C during 25 h, aiming at the formation of α-Al2O3 whiskers
on the steel surface; (ii) application of a primary bonding layer of γ-Al2O3; (iii) coating
with a sol containig La2O3-CeO2-TiO2-Al2O3; and (iv) impregnation with palladium (II)
nitrate dihydrate.

In the present study, the catalyst was denoted as Pd/La2O3-CeO2-TiO2-Al2O3.

2.2. Characterization Techniques

The physical nitrogen adsorption/desorption isotherms were examined at 77 K using
a NOVA 1200e Surface & Pore Analyzer (Quantachrome, Boynton Beach, FL, USA). The
Brunauer–Emmett–Teller (BET) equation was applied for a specific surface area estima-
tion [28], the total pore volume being determined at a relative pressure of 0.99. The pore size
distributions were determined using the desorption branch of the isotherms, employing
the Barrett–Joyner–Halenda (BJH) method [29]. The volume of the micropores was derived
by the V-t-method [30].

The X-ray diffraction (XRD) diffractograms of pure support as well as fresh, used, after
sulfur poisoning and thermally aged catalysts were determined within the 2Θ range 10–80◦

on a Bruker D8 Advance diffractometer (Cu Kα radiation, LynxEye detector, Karlsruhe,
Germany). The determination of phase composition was carried out using the EVA software
package, which utilized the ICDD-PDF2(2014) database. To quantify and determine the
average crystallite size, the Topas-4.2 program (Karlsruhe, Germany) was employed.

The surface morphology and elemental composition of the catalysts were examined
on a scanning electron microscope SEM/FIB LYRA I XMU, TESCAN (Brno—Kohoutovice,
Czech Republic) connected with an energy dispersive spectroscope (EDS) (QUANTAX 200,
Bruker, Germany).

Transmission electron micrographs (TEM) were performed on a JEOL JEM 2100 mi-
croscope (JEOL Ltd., Tokyo, Japan) operating at 200 kV. The catalyst specimens were sus-
pended in ethanol via an ultrasonic bath and subsequently placed onto holey C/Cu grids.

The catalysts’ composition and electronic structure were examined using X-ray photo-
electron spectroscopy (XPS). The chemical composition of the samples was measured by
monitoring the areas and binding energies of C1s, O1s, La3d, Ce3d, Al2p, Pd3d, Ti2p, and
S2p photoelectron peaks. The photoelectron peaks measurements have been carried out on
the ESCALAB MkII (VG Scientific, now Thermo Scientific, Waltham, MA, USA) electron
spectrometer. More about the setup of the spectrometer and data processing can be found
in [31].

The Electron paramagnetic resonance (EPR) spectra were recorded by the JEOL JES-FA
100 EPR spectrometer. The spectrometer is equipped with a cylindrical resonator (TE011)
and operates at X–band frequency (9.5 GHz). The catalysts were put in special quartz
tubes and positioned in the cavity center. The EPR measurements were performed at
temperatures from 123 to 323 K using a Varied Temperature Controller ES-DVT4 (JEOL
Ltd., Tokyo, Japan). The low temperatures can be easily obtained by sending liquid nitrogen
to the sample area. The following conditions were used: modulation frequency—100 kHz,
microwave power 1 mW, modulation amplitude 0.2 mT, sweep 500 mT, time constant 0.3 s,
and sweep time 2 min.
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Fourier transform infrared spectroscopy (FTIR) was performed using a Nicolet 6700
FTIR spectrometer (Thermo Electron Corporation, Madison, WI, USA). The measurements
were carried out in transmission mode, and the spectral resolution was set at 4 cm−1.

2.3. Catalytic Tests

The catalytic activity study was performed by using a flow reactor under the following
specified conditions: catalyst volume of 0.7 cm3 (0.5 cm3 catalyst sample and 0.2 cm3

quartz–glass particles with the same size as the catalyst), irregular shaped particles with
a diameter of 0.45 ± 0.15 mm. The inner reactor diameter is 6.0 mm. The gaseous hourly
space velocity (GHSVSTP) was 60,000 h−1. The inlet concentrations of reagents were varied
as follows: CH4 concentrations: 5 × 10−2, 1.0 × 10−1 and 2.7 × 10−1 vol.%, O2 on levels
of 0.9, 5.0 and 20.0 vol.%, additional H2O on levels of 0, 1.2 and 2.2 vol.%, and balance
to 100 vol.% by N2 (4.6). The standard deviation of the experimental data was estimated
based on six repeated measurements. Gas analysis was carried out by using of an on-line
gas-analyzers for CO/CO2/O2 (Maihak-Sick Mod. S 710, V.1.31, Hamburg, Germany ),
THC-FID (analyzer for total organic content in gas phase, Thermo FID-TG, SK Elektronik
GmbH, Leverkusen, Germany) and for SO2 measurement (MultiGas FTIR Gas Analyzer
2030G, MKS Instruments Inc., Andover, MA, USA).

3. Results and Discussion
3.1. Catalytic Experiments

The data from the tests on total methane oxidation in the absence and presence of
water vapor are shown in Figure 1. As can be seen, the light-off temperature (T50) in dry
gas feed is about 328 ◦C, while in humid gas feed, the effect of the water leads to an increase
of about 40 ◦C.
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Figure 1. Catalytic activity of the Pd/La2O3-CeO2-TiO2-Al2O3 catalyst during the reaction of total
methane oxidation in dry and humid gas feed, sulfur dioxide and after thermal aging (A) and tests
on the Pd/La2O3-CeO2-TiO2-Al2O3 catalyst, prepared as single monolithic channel (B).

For possible practical application, two identical samples of the obtained catalyst were
subjected to treatment in air as follows: (i) 170 h in the air at 500 ◦C in the absence and
presence of 1.2 vol.% H2O (denoted thermally aged) and (ii) in the presence of sulfur dioxide
(0.0021 vol.%) performed in the catalytic reactor for 48 h at 450 ◦C. It can be observed that
after the thermal aging, the activity measured in dry gas feed shows a shift in T50 to higher
temperatures of about 20 ◦C, while in the presence of 1.2 vol.% H2O it leads to further
increase by another 40 ◦C. Data on the catalytic activity of La2O3-CeO2-TiO2-Al2O3 support
in dry and humid gas feed are also represented for comparative analysis. It is evident
that the pure support exhibits notably low catalytic activity. However, it is important to
emphasize that its contribution should not be neglegted.
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The difference between the measured T50 for the fresh and for the corresponding sta-
bility tested Pd/La2O3-CeO2-Al2O3 and Pd/La2O3-CeO2-TiO2-Al2O3 samples are shown
in Figure 2.
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and sulfur dioxide resistance.

It is seen (Figure 2) that in humid gas feed, the effect of the water vapor in the
Pd/La2O3-CeO2-TiO2-Al2O3 fresh sample is negligible when compared with the effect
of the water on the Pd/La2O3-CeO2-Al2O3 sample. However, after the thermal aging,
the activity of the Ti-containing sample in the humid gas has been improved, while in
the dry gas its the activity is slightly lower as compared with the sample without Ti.
Regarding sulfur deactivation, an increase in the temperatures (after the reaction in the
presence of SO2) in T50 (apprx. 100–110 ◦C) was observed. Further testing without sulfur
dioxide in the gas shows that the samples restore part of their initial activity, i.e., the
Pd/La2O3-CeO2-TiO2-Al2O3 poses higher resistance to sulfur poisoning as compared with
the Pd/La2O3-CeO2-Al2O3 sample.

Furthermore, the characterization of the catalyst was performed using a variety of
methods.

3.2. Low-Temperature Nitrogen Adsorption

The adsorption/desorption isotherm and pore size distribution (PSD) of the synthe-
sized La2O3-CeO2-TiO2-Al2O3 support and the fresh, used, after sulfur poisoning and
thermally aged catalysts prepared by the sol–gel method are presented in Figure 3A,B.

The obtained data indicate that all of the samples displayed similar characteristics,
corresponding to a typical isotherm of type IV according to the IUPAC classification [32].
The prepared material is mesoporous of type H1 hysteresis, featuring clearly defined
cylindrical-like pore channels or clusters of compact, nearly uniform spheres.

According to the BJH method from the desorption branch of the isotherms, the PSD
was calculated (Figure 3B). All samples showed a bimodal structure. It was reported
that support with a distinct bimodal pore structure shows significant benefits in catalytic
reactions. This is attributed to the fact that the presence of large pores facilitates the
molecular transport pathway, while the small pores offer a substantial surface area for
supporting the active phase, as indicated in reference [33]. The samples exhibit a mesopore
volume of approximately 0.2 cm3/g, with an average pore diameter ranging from 4.9 nm
to 8.1 nm, depending on the applied test conditions (Table 1). The specific surface area is



Materials 2023, 16, 6784 6 of 23

significantly decreased and the average pore diameter is increased as a result of the Pd
deposition.
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Table 1. Specific surface areas and pore properties of La2O3-CeO2-TiO2-Al2O3 support and Pd/La2O3-
CeO2-TiO2-Al2O3 catalysts.

Sample SBET
m2/g

Sext
m2/g

Smicro
m2/g

Vmicro
cm3/g

Total Pore
Volume
cm3/g

Average Pore
Diameter

nm

La2O3-CeO2-TiO2-Al2O3-support 210 134 76 0.04 0.26 4.9
Pd/La2O3-CeO2-TiO2-Al2O3-fresh 106 103 3 0.02 0.19 7.4
Pd/La2O3-CeO2-TiO2-Al2O3-used,

after sulfur poisoning 100 - - - 0.22 8.6

Pd/La2O3-CeO2-TiO2-Al2O3-
thermally

aged
82 - - - 0.16 8.1

For evaluation of the possible extent of micropores, the V-t method has been applied.
The external surface area, denoted as a Sext of the microporous samples, was determined
through the slope of the t-plot. Consequently, the micropore surface area (Smicro) was
calculated using the formula Smicro = SBET − Sext. The obtained results show no significant
presence of micropores for the used, after sulfur poisoning and thermally aged catalysts.
Therefore, the reported data are based on the assumption that the total (BET) surface area
is practically equal to the external surface (V-t method).

3.3. Powder X-ray Diffraction

The data from the XRD patterns of the obtained support, fresh, used, after sulfur
poisoning and thermally aged catalysts are presented in Figure 4. The diffraction pattern of
the support is broad, indicating a relatively low degree of the crystallinity of the phases.
In this material, the two phases AlO(OH) (Bohemite)(ICDD PDF 83-2384) together with
γ-Al2O3 (ICDD-PDF- 70-9085) are identified.

The pattern of fresh catalyst demonstrates the presence of the AlO(OH), γ-Al2O3, and
PdO (ICDD-PDF 41-1107). The basic diffraction peak of palladium oxide is very small and
broad, suggesting a significant degree of dispersion of the palladium across the catalytic
surface. After catalytic tests, the phase composition of the support is changed. AlO(OH) is
transformed to γ-Al2O3, which remains the primary component of the support along with
the introduction of a CeO2-type phase (ICDD-PDF-81-792).
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Figure 4. XRD patterns of La2O3-CeO2-TiO2-Al2O3 support (A) Pd/La2O3-CeO2-TiO2-Al2O3-fresh
(B); Pd/La2O3-CeO2-TiO2-Al2O3-used, after sulfur poisoning (C) and Pd/La2O3-CeO2-TiO2-Al2O3-
thermally aged (D).

The PdO phase remains in the used, largely unchanged sample. Nevertheless, a
novel, highly crystalline metal Pd phase (ICDD-PDF-46-1043) appears after the catalytic
experiments. After the thermal aging at 500 ◦C for 170 h, the cubic metal palladium phase
is not detectable by XRD. The calculated crystallite size of the deposited palladium oxide
phase and palladium are provided in Table 2.

Table 2. Phase composition and average crystallite size.

Sample Phase Composition
According to XRD

Phase Composition
According to HRTEM PdO (nm) a Pd (nm) a

Mean
Crystalline
Size (nm) b

La2O3-CeO2-TiO2-Al2O3-
support AlO(OH), γ-Al2O3, - - -

Pd/La2O3-CeO2-TiO2-Al2O3-
fresh AlO(OH), γ-Al2O3, PdO AlO(OH), γ-Al2O3, PdO,

Pd, CeO2, TiO2-anatase 12 - 8

Pd/La2O3-CeO2-TiO2-Al2O3-
used, after sulfur
poisoning

γ-Al2O3, CeO2,PdO, Pd AlO(OH), γ-Al2O3, PdO,
Pd, CeO2, TiO2-rutile 11 40 8

Pd/La2O3-CeO2-TiO2-Al2O3-
thermally
aged

AlO(OH), γ-Al2O3, PdO AlO(OH), γ-Al2O3, PdO,
Pd, CeO2, TiO2-rutile 19 - 12

a Crystallite size calculated by the size-strain analysis tool implemented in the Topas 4.2 program. b Determinate
from TEM.

Observation reveals that in the fresh and used samples after the sulfur poisoning, the
crystalline size of PdO is around 11–12 nm, while after thermal aging, it becomes 19 nm.

3.4. Scanning Electron Microscopy

Figure S1 represents the SEM photographs of the studied catalysts. SEM analysis
of fresh Pd/La2O3-CeO2-TiO2-Al2O3 reveals an inhomogeneous grainy structure, which
after the catalytic test becomes homogeneous. The chemical composition of fresh and used
catalytic samples after sulfur poisoning was examined by EDX. The data are presented in
Table S1.

The obtained results are in agreement with the applied nominal ratio for the used
elements. In the used, after sulfur poisoning of the catalyst, sulfur was detected, which
is evidence of the formation of some sulfate or sulfite compounds on the surface of the
catalyst after prolonged exposure to SO2 and H2O.
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3.5. Transmission Electron Microscopy

The morphology and phase composition of Pd/La2O3-CeO2-TiO2-Al2O3 were exam-
ined by high resolution transmission electron microscopy (HRTEM). The catalysts exhibit
uniform dispersion of palladium, appearing as dark spots across all samples (as depicted in
Figure 5). The mean particle size, determined by analyzing 200 randomly chosen nanopar-
ticles in a fresh prepared catalyst, was found to be 8 nm.
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Figure 5. TEM images and corresponding particle size distribution histograms of Pd/La2O3-CeO2-
TiO2-Al2O3-fresh (A); Pd/La2O3-CeO2-TiO2-Al2O3-used, after sulfur poisoning (B) and Pd/La2O3-
CeO2-TiO2-Al2O3-thermally aged (C).

After catalytic tests, the average size in Pd/La2O3-CeO2-TiO2-Al2O3 remains the same,
which can be evidence of high dispersion, and, therefore, of the thermal stability of Pd
particles. After thermal aging, the enlargement of Pd particle size and some agglomerates
is observed (Figure 5C). The main crystallite size has increased to 12 nm. Certain research
findings [34] have indicated that alteration in the Pd catalyst morphology during the
reaction can be impacted by changes in the support materials, potentially leading to an
influence on the overall performance of the catalyst.

Within all samples (fresh, used, after sulfur poisoning, and thermally aged) the selected
area electron diffraction (SAED) patterns show the presence of PdO (PDF-41-1107), Pd
(PDF-46-1043), γ-Al2O3 (PDF-70-9085), AlO(OH) (PDF-83-2384) and CeO2 (PDF-81-0792),
(Figures 6B, 7B and 8B). Additionally, in the Pd/La2O3-CeO2-TiO2-Al2O3-fresh sample
the formation of TiO2—anatase (PDF-83-2243) was confirmed by the HRTEM and SAED
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analyses (Figure 6B,D), while in used, after sulfur poisoning and thermally aged samples,
the TiO2—rutile (PDF-88-1175) and (PDF-87-0920) was detected (Figures 7B,D and 8B).
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3.6. X-ray Photoelectron Spectroscopy

The XPS results are shown in Table 3, Figures 9 and 10. The binding energies for all
investigated catalysts are distinguished as follows: in the interval of 335.7–335.1, BE is
attributed to Pd0 species from metal palladium particles, while in the interval of 337.1–
336.3 eV, they are assigned to palladium oxide [35].

Table 3. Surface atomic concentration, at.%.

Sample O1s Al2p La3d Ce3d Pd3d Ti2p S2p

S2Pd/La2O3-CeO2-TiO2-Al2O3-fresh 56.48% 36.14% 0.53% 1.45% 4.15% 1.24% -
Pd/La2O3-CeO2-TiO2-Al2O3-used, after sulfur

poisoning 58.40% 31.63% 0.53% 1.38% 6.43% 1.33% 0.30%

Pd/La2O3-CeO2-TiO2-Al2O3-thermally aged 60.00% 30.02% 0.49% 1.41% 6.68% 1.41% -

As can be seen from Figure 9B, the concentration of Pd2+ slightly increases in the
used and thermally treated samples. A similar phenomenon was observed in our previous
studies [36,37], and this effect is explained by the oxidation of Pd to PdO. In the case of the
studied system Pd/La2O3-CeO2-TiO2-Al2O3, the variation of the surface concentration of
Pd2+ is insignificant, which supports the stability of the catalysis.

According to published data, the 3.5 eV splitting between the primary peak and the
satellite of La3d5/2 is typical for La(OH)3, and the splitting of 4.5 eV is characteristic for
La2O3 (Figure 9A). These results imply that both La2O3 and La(OH)3 are present on the
surfaces of both the fresh and used catalysts, after sulfur poisoning catalysts. It is likely that
the La2O3 is covered with La(OH)3, as previous research [38] has suggested that lanthanum
oxide tends to spontaneously react with water vapor at ambient temperature, resulting in
the formation of La(OH)3 [39]. In the case of the aged sample, La(OH)3 is the only species
on the surface.

The XPS spectra in the Ce3d region are presented in Figure 9C. A well-known fact
is that some Ce-containing samples are sensitive to X-rays in a vacuum, which leads to a
change of the oxidation state of Ce. This complicates quantitative XPS analysis and defining
the oxidation state of ceria and eventually the ratio Ce3+/Ce4+. In our experimental data,
we have provided a careful measurement and each scan was recorded separately. After
a comparative analysis of the shape of the recorded curves and binding energies, we did
not observe any changes between scans. To increase the signal-to-noise ratio, we have
performed summation of separate scans. The curve fitting procedure was applied to the
obtained spectra to determine their composition and to estimate the quantitative ratio
between Ce3+ and Ce4+ [40]. The curve-fitted XPS spectra of Ce3d are shown in Figure 9C.
It can be seen that the concentration of Ce3+ increases after aging and after testing with SO2.
The presence of Ce3+ has been proven through EPR spectroscopy (see discussion below).
The obtained binding energies for Ti 2p peak for the fresh sample and after the catalytic test
in the presence of SO2 is at 460 eV. This binding energy is ascribed to Ti4+ in TiO2 particles.
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Figure 9. X-ray photoelectron spectra of La3d (A), Pd3d (B), Ce3d (C) and Ti2p (D) for Pd/La2O3-
CeO2-TiO2-Al2O3-fresh, Pd/La2O3-CeO2-TiO2-Al2O3-used, after sulfur poisoning and Pd/La2O3-
CeO2-TiO2-Al2O3-thermally aged. (A) The open circles represents experimental data both oxidation
states are in green (Pd0) and blue (Pd2+). The red line is used for resulting curve of curve fitting
procedure to be compared with experimental data. (B) The open circles represents experimental
data. La(OH)3 is shown in green, whereas, the blue line is used for La2O3. The red line is used for
resulting curve of curve fitting procedure to be compared with experimental data. (C) The open
circles represents experimental data both oxidation states are in green (Ce4+) and blue (Ce3+). The
red line is used for resulting curve of curve fitting procedure to be compared with experimental data.
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Figure 10. X–ray photoelectron spectra of S2p for Pd/La2O3-CeO2-TiO2-Al2O3-used, after sulfur
poisoning catalyst. The open circles represents experimental data both oxidation states are in green
(S2−) and blue (S6+). Because we are measuring 2p core level of sulfur it is doublet peak representing
the standard spectra of each oxidation state. The red line is used for resulting curve of curve fitting
procedure to be compared with experimental data.

S2p spectra (Figure 10) show two peaks at ~169.8 eV and ~161.7 eV. The bands with
the same positions have been observed in publication [41] when Pt/Al2O3 reacts with the
sulfur dioxide + oxygen mixture and have been attributed to the simultaneous formation
of the sulfate species and the sulfide species. In our case, aluminum oxide predominates in
the support, and we can attribute the band at ~169.8 eV and ~161.7 eV to the formation
of sulfates and the sulfide species as well. The S 2p3/2 binding energy typically ranges
from 160 eV to 164 eV in metal sulfides [42]. The presence of sulfates is also confirmed by
FTIR spectroscopy. Taking the references mentioned above, we can assume that sulfides
are formed on the surface of palladium in our case as well.

3.7. Electron Paramagnetic Resonance

The EPR spectra of Pd/La2O3-CeO2-TiO2-Al2O3 catalysts at temperature 123 K are
shown in Figure 11.

The EPR spectra are complex and are composed of superposition of several overlap-
ping EPR lines. In all spectra, a line with a g value of 4.23 is recorded. This line is related
to Fe3+, which very often is contained as an impurity in the starting substances, and it is
recorded because of the very high sensitivity of EPR spectroscopy. In the fresh sample
(Figure 11a), the EPR lines located at g = 2.4294, 2.1757 and 2.051 are due to the presence
of paramagnetic palladium particles, which can be Pd+ or Pd3+. The g values are slightly
different from those reported in the literature probably because of different conditions and
the environment of the palladium in the present work [43]. It should be pointed out that the
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palladium species in the higher than +2 oxidation state were detected by XPS, as reported
in our previous investigation [15]. The fact that in this study they were observed only with
EPR spectroscopy gives us reason to suggest that they are localized in volume.
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Figure 11. EPR spectra of: (a) Pd/La2O3-CeO2-TiO2-Al2O3-fresh (a); Pd/La2O3-CeO2-TiO2-Al2O3-
used, after sulfur poisoning (b) and Pd/La2O3-CeO2-TiO2-Al2O3-thermally aged (c).

The EPR lines with g values 1.9771 and 1.949 are assigned to Ce3+ or Ti3+. Both ions
have similar EPR parameters and the simultaneous presence in the system makes their
separation difficult. Two narrow signals with practically the same g values (g⊥ = 1.967
and gII = 1.944) are attributed to Ce3+ ions associated with an anion vacancy or electrons
trapped at anion vacancies partially delocalized onto orbitals of cerium ion [44].

It should be pointed out that similar EPR parameters were reported for Ti3+ in
anatase [45]. The XPS data show the presence of Ce3+. From the XPS data, it can be
argued unambiguously that the presence of Ti3+ is due to the very low intensity signal
in the Ti2p region. Taking into account that the anatase is established by SAED analysis
in the fresh sample and EPR is a highly sensitive technique that allows investigation of
paramagnetic species [46]; thus, we cannot exclude the presence of Ti3+.

The EPR lines due to Ce3+ or Ti3+ in the fresh sample, in the EPR spectra after thermal
aging are maintained and positioned at g factor 1.9796 (Figure 11c). This shows that the
paramagnetic ions, which are responsible for it are located in the volume. In addition, a
weak signal with g = 1.81 is detected, which, according to the literature data, is connected
with Ce3+ in close range to La [47]. Ce3+, as a 4f1 ion, is characterized by strong spin-orbital
coupling leading to large deviations from the g factor of free electron (2.0023). Moreover,
due to the short relaxation times, it is detectable usually at low temperatures. The EPR line
with g = 1.81 disappears after thermal aging, which proves that these Ce ions are on the
surface of La2O3.

After catalytic tests, the EPR spectra do not change significantly. Again, signals for
palladium paramagnetic ions are observed, but this time the temperature dependence of
the signal with g 2.4244 shows the presence of the superparamagnetic palladium particles.
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This is because, with the decrease of the recording temperature, the EPR line is
broadening and is moved to the lower magnetic field (Figure 12). This behavior is typical
for superparamagnetic particles. Nonlinear behavior shows that the particles have various
sizes but the superparamagnetic state remains. In addition, a line with a g value of 4.51 is
recorded, which is due to Ce3+. This fact, together with the increase in the intensity of the
EPR signal with g = 1.9794, shows that during the reaction, a reduction of the cerium ions
is taking place.
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3.8. FTIR Spectroscopy

FTIR spectra of a fresh Pd/La2O3-CeO2-TiO2-Al2O3 sample and after the catalytic test
with sulfur dioxide are presented in Figure 13. Low-resolved bands centred at 1150 cm−1

and 1070 cm−1 are visible in the IR spectra. The band centred at 1150 cm−1 is ascribed to
the sulphates in bulk according to data in the literature [48]. There is no evidence of the
presence of aluminium sulfate, either X-ray or TEM, which can be considered as evidence
that the formed sulphates are amorphous.

The band at 1070 cm−1 is very weak and strongly overlaps with the band of the
support. According to Schoonheydt [49], the vibration at 1070 cm−l is assigned to a SO3

2−

species coordinated through its sulfur.
In this investigation, as in the previous publication [15], no band was observed at

1435 cm−1 for sulphate groups formed on the palladium particles. The adsorption bands at
595 cm−1 and 669 cm−1 most likely are the result of PdO [50,51].
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3.9. Reaction Kinetics

To extend further the analysis of the studied catalysts, an investigation on the kinetics
and mechanism of the reaction has been carried out. The kinetics parameters calcula-
tions were performed by multivariate analysis. For these calculations, data from the
temperature-conversion curves were used for direct integration of the reaction rates. To
fit the experimentally measured rates with kinetics parameters, a special computation
program for a numerical (nonlinear) optimization was used. The minimized residual sum
of squares between the measured experimental points and the corresponding predictions of
the model (RSS) and the squared correlation coefficient (R2) were selected as optimization
criteria for the model’s consistency. Details on the calculation procedure were published
earlier [52,53].

The values for the calculated reaction order towards the oxygen lead to the suggestion
of a significant role of the oxygen chemisorption (Table 4, Power law kinetics model). The
reaction order towards the water vapor (−0.33) reveals a very significant inhibition effect.

Table 4. Kinetics parameters based on power law model.

PWL
r = kCm

vocCn
oxCp

water

Ea ko m (CH4) n (O2) p (H2O) RSS R2

Pd/La2O3-CeO2-TiO2-Al2O3 108.0 3.65 × 109 0.94 0.02 −0.33 10.6 1.00

Eai, kJ/mol; koi, mol.s−1.m−3; koi,pwl, mol.s−1−[1−(m+n+p)]; Eai, kJ/mol.

The relevance of the mechanistic models used for the kinetic calculations towards
the experimental data set is presented in Figure 14 and the calculated results are given
in Tables 5 and 6. One could see that the lowest values for RSS criteria and the highest
correlation between the model and experiment are obtained for the Mars–van Kerevelen
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model with the assumption that the water adsorbs on oxidized and reduced sites and
slow desorption of products occur (MVK-SDP). Therefore, this mechanism should be
considered as more consistent with the experimental results than the alternative Langmuir–
Hinshelwood mechanism, where the water competes with oxygen and methane.
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Table 5. Reaction rate expressions and kinetics parameters for applied MVK-SDP model.

Model: MVK-SDP, (Water Adsorbs on Oxidized and Reduced Sites, Slow Desorption of Products)
r = kredkoxCvocCox

γkredCvoc(1+Kwater−voc .Cwater−voc)+koxCox(1+Kwater−ox .Cwater−ox)+(kredkox/kdes)CvocCox
γ = 2

Ea.ox ko.ox Ea.red ko.red −∆Hw.ox
ko.water.

ox
∆Hw.red ko.w, red Ea.des ko.des RSS R2

Pd/La2O3-
CeO2-
TiO2-
Al2O3

124.1 4.49 ×
1011 51.3 1.02 ×

106 94.8 3.01 ×
10−7 74.6 1.89 ×

10−7 95.8 1.56 ×
108 3.8 1.00

Eai, kJ/mol; ∆Hi. kJ/mol; koi, m3/mol; k = ko. exp(−Ea/RT); Ki(voc,ox, w) = ko(voc,ox, w). exp(−∆Hi,voc,ox, w/RT);
−∆Hi =Edes − Eads.

Table 6. Reaction rate expressions and kinetics parameters for applied Langmuir−Hinshelwood
model.

LH-DS-D: water compete with oxygen and methane

r = kKvocCvocK1/2
ox C1/2

ox
(1+KvocCvoc+Kwater−vocCwater)(1+K1/2

ox C1/2
ox +Kwater−oxCwater)

Ea ko −∆Hvoc ko.voc −∆Hox ko.ox ∆Hwater ko.water ∆Hwater.red
ko.water.

red
RSS R2

Pd/La2O3-
CeO2-
TiO2-
Al2O3

136.6 6.60 ×
1011 169.2 1.22 ×

103 77.4 5.23 ×
10−6 79.5 7.96 ×

10−1 75.8 8.08 ×
10−6 4.8 0.98

Eai, kJ/mol; ∆Hi. kJ/mol; koi, m3/mol; k = ko. exp(−Ea/RT); Ki(voc,ox, w) = ko(voc,ox, w). exp(−∆Hi,voc,ox, w/RT);
−∆Hi = Edes − Eads, RSS—squared sum of residuals. R2—squared correlation coefficient.

Summarizing, the deposition of Pd to the La2O3- CeO2- TiO2-Al2O3 system leads
to a decrease in the specific surface area, accompanied by an increase in the average
pore diameter from 4.9 nm to about 8 nm, the pore-size distribution being transformed
from a mono- to bimodal structure. Based on the literature data [37], this morphological
structure offers significant benefits when these materials are used as catalytic support.
More specifically, the small pores ensure a large surface area for better dispersion of the
supported active phase (noble metal, for instance). The larger pores provide conditions for
improved internal mass transfer within the catalyst.

As reported [54], catalyst thermal deactivation can occur due to several factors: (i) re-
duction in the active surface area due to the enlargement of palladium particles, (ii) pore
collapse of the active phase; (iii) decrease in the catalytic support area; and (iv) alterations
in the chemical composition of active catalytic phases into less active phases.

Typically, the sintering occurs at high temperatures (>500 ◦C) and is accelerated in
the presence of water vapor [55], the driving force being the minimization of the surface
energy, reduced by the transport and increase in the particles [56]. Within our study,
the thermal deactivation behavior of the catalyst may be explained by phase changes of
TiO2. It is known that anatase irreversibly transforms to rutile at elevated temperatures.
This transformation does not have a fixed temperature. Pure bulk anatase is transformed
irreversibly to rutile in air at 600 ◦C; however, the reported transition temperatures vary in
the range 400–1200 ◦C [57–59], owing to the use of different methods of determining the
transition temperatures, raw materials, and processing methods.

During the heat treatment part of TiO2, anatase may be transformed to rutile and the
rutile grains coarsen at the expense of neighbouring anatase until the large rutile grains
begin to impinge on each other [60,61]. This increase in grain size leads to a decrease in
surface area and a further decrease in activity [62–64]. Additionally, it is reported that
calcination above 465 ◦C has always resulted in the phase rutile [65]. The phase transition is
associated with increased crystal size, resulting in a significant decrease in specific surface
area [66].

In our case, the concentration of TiO2 (8 wt.%) is not sufficient for reliable XRD analysis,
and the obtained XPS data show low intensity broad peaks, the only possible determination
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of the changes was made by HRTEM. Within the present study, the results from HRTEM
analysis reveal that the decrease in the specific surface is connected with the transformation
of part of the anatase to larger particles of rutile (whose process is reported to proceed at
temperatures above 465 ◦C [65].

In parallel, the deactivation could be related to the growth of the palladium particles
from 8 nm to 12 nm and the increased PdO/Pd ratio, more specifically, this ratio is higher
than its optimal value for the applied reaction conditions. As reported by Su at all [67],
small palladium particles enhance the activity of PdO in methane combustion by facilitating
the dissociation of CH4 without being oxidized under the given reaction conditions. It
should be pointed out that the presence of metallic Pd in contact with PdO facilitates the
reduction of PdO by CH4, i.e., methane activation proceeds more on metallic palladium
than palladium oxide [15]. Pd plays a crucial role in dissociating CH4 more effectively
when compared with PdO, with the resulting reaction products diffusing towards the
Pd—PdO interface, where PdO is converted into metallic Pd.

At the same time, the modification with TiO2 of the La2O3-CeO2-Al2O3 system results
in higher resistance towards the presence of SO2 due to prevailed formation of unstable
surface sulfites instead of the thermally stable sulfates, as observed with the system without
TiO2.

3.10. Monolithic Reactor Tests and Modeling

The methane combustion processes were described using a two-dimensional heteroge-
neous model of a monolithic channel. The conversion degree at the outlet of the monolithic
channel was calculated by using the method of mixing-cup average concentration. It
consists of multiplying the concentrations of the laminar streamlines by the corresponding
volumetric flows and summing up over all the streamlines and dividing this sum by the
total volumetric flow. The reported results are for calculated conversion degree and temper-
ature profiles inside the monolithic channel using the obtained data for reactions in cases
of isothermal (experiment) conditions and then the behavior of the reactor at adiabatic
reactor operation is based on simulation by using the reactor model. The heat transfer
within the entire monolithic element ocurrs by conduction trough the channels in the radial
direction and by fluid convection in the axial direction. The catalytic element is modeled
by assuming that the heat is transferred trough a thin thermal boundary layer with a
driving force, proportional to the difference between the temperature in the first to the wall
channel and the temperature of the reactor wall. Of course, in the theoretical case, one
could suppose complete thermal insulation and the behavior of the monolithic reactor is
fully adiabatic. However, in most of the applications, one should expect some extent of heat
exchange with the ambient environment and therefore, the effect of the wall temperature
has been taken into account. For convenience, the temperature and concentration profiles
are colored according to the calculated values, i.e., from blue color for low temperatures
or conversions towards the red color for their high values (passing through mixed colors
within the intermedia values). A second-order approximation is used for the numerical
solution; further details are provided in the literature [68–73].

The simulation results (Figure 15) demonstrate the possibilities for the abatement
of 2400 Nm3/h methane-containing gas (CH4: 0.25 vol.%, H2O: 2.2 vol.%, 9 vol.% O2).
The model prediction shows that the required dimensions of the monolith for achieving
99% conversion are the following: D = 1.0 m and L = 0.6 m. Therefore, for effective
neutralization of methane in presence of water, the reactor should operate adiabatically at
GHSV of 5100 h−1.
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Figure 15. Experimentally measured conversion degrees and temperature profiles in a single mono-
lithic channel at isothermal conditions (A); simulated conversion degrees and temperature profiles
within a single adiabatic channel for ensuring of 99% methane conversion (B); pilot-scale simulation
of methane combustion using the kinetic data, obtained at isothermal conditions (C); and full-scale
reactor model for methane combustion accouning for the heat loss at the reactor wall (D).

The practical significance of these results is closely tied to challenges arising from mo-
bile sources of pollution, specifically stemming from the release of unburned hydrocarbons
in the exhaust emissions of internal combustion engines utilizing natural gas (primarily
composed of approximately 95% methane) as their fuel source. Consequently, there exists a
notable interest in the development of novel catalytic converter materials that can ensure
highly efficient reduction of methane emissions.

4. Conclusions

The deposition of palladium to the La2O3-CeO2-TiO2-Al2O3 system leads to a decrease
in the specific surface area, accompanied by an increase in the average pore diameter, with
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the pore-size distribution transforming from a mono- to bimodal structure. The methane
complete oxidation reaction occurs at temperatures exceeding 220 ◦C. T50 in the absence
of water vapor is 328 ◦C. However, in the presence of 1.2% water vapor (with 5% oxygen
content and GHSVSTP of 60,000 h−1), T50 increases to 370 ◦C.

Most likely, the reaction of complete oxidation of methane follows the Mars−van
Krevelen mechanism, where the water molecules adsorb on both oxidized and reduced
sites. A slow desorption of the products (CO2, H2O) is also suggested and implemented
into the rate equation.

The thermal aging at 500 ◦C leads to lowering the catalytic activity, which is due to the
(i) agglomeration of the Pd-clusters (from 8 nm to 12 nm); (ii) transformation of part of the
TiO2 from anatase to larger particles of rutile, resulting in a decreased specific surface area;
and (iii) increased ratio PdO/Pd above its optimal value, which is specific for the applied
reaction conditions. The presence of Ce3+ on the catalytic surface and in the volume was
revealed by EPR and XPS. Most likely, the Ce3+ ions on the surface are near lantana.

The modification with Ti leads to improved activity in the presence of water vapor
after thermal aging and a slightly decrease in the dry gas mixture. The effect of water vapor
in terms of calculated reaction order is −0.33.

The simultaneous formation of sulfats, sulfites, and sulfides in the studied system is
suggested. The benefit of the modification with TiO2 of the La2O3-CeO2-Al2O3 system
is the higher resistance towards the presence of SO2, most likely due to the prevailing
formation of unstable surface sulfites instead of the thermally stable sulfates, as observed
with the system without TiO2.

The results from the kinetic model calculation show that the reaction pathway over the
Pd/La2O3-CeO2-TiO2-Al2O3 catalyst follows the Mars–van Krevelen mechanism. A sample
of Pd/La2O3-CeO2-TiO2-Al2O3, supported on rolled stainless steel with aluminum content
(Aluchrom VDM®), was produced and tested to assess the potential practical applications
of the obtained material. A two-dimensional heterogeneous model of a monolithic channel
was employed to simulate methane oxidation within an industrial scale monolithic reactor.
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