Review of the Mechanical Properties and Numerical Simulation of Composite Solid Propellants
Abstract
:1. Introduction
2. Mechanical Property Characterization of Composite Solid Propellants
2.1. Quasi-Static Mechanical Properties
2.2. Dynamic Mechanical Properties
3. Macroscopic Constitutive Model of Composite Solid Propellant
4. Mesoscopic Mechanical Model of Composite Solid Propellant
4.1. Mesoscopic Constitutive Model
4.2. Interface Cohesion Model
4.3. Mesoscopic Finite Element Model
5. Microscopic Molecular Model of Composite Solid Propellant
6. Conclusions and Prospect
- Although a macroscopic constitutive model can describe the nonlinear stress–strain relationship of a composite solid propellant well, it cannot explain the mechanism of microstructure change during the loading condition.
- A macroscopic constitutive model with additional particle structure parameters (particle size, shape) and high strain rate (greater than 103 s−1) needs further investigation.
- Mesoscopic mechanical models can explain the mechanism of the microstructure evolution of composite solid propellants, but most of the models are based on various algorithms and describe the local microstructure of composite solid propellants, which is greatly affected by random factors.
- Further research is needed on how to construct a real and effective mesoscopic structure model of composite solid propellants, ensure the stability of the algorithm and reduce the cost.
- The deformation mode and failure mechanism of composite solid propellants under explosion load and ultra-high strain rate, as well as the design structure and performance optimization of additive manufacturing [124,125,126,127,128,129], are the key points for the future research of composite solid propellants.
- The constitutive model of a composite solid propellant needs to be suitable for various complex loads.
- Based on the molecular ratio of the material, the precise parameters of all aspects of the structure are determined, and the nano- micro-, meso- and macroscale calculation of the composite solid propellant needs to be developed, as in Figure 10.
- 3.
- There is a need to improve additive manufacturing technology, develop excellent formulas, optimize process parameters and scale up the process, and realize integrated printing of solid propellants.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruan, C.; Liu, M. Design and Research of Solid Rocket Motor (Upper and Lower); Aerospace Press: Beijing, China, 1993. [Google Scholar]
- Fang, D.; Zhang, W.; Yang, T. Internal Ballistics of Solid Rocket Motor; NUDT Press: Changsha, China, 1997. [Google Scholar]
- Chen, P.; Huang, F. Damage Theory and Application of Energetic Materials; Beijing Institute of Technology Press: Beijing, China, 2006. [Google Scholar]
- Sheng, L. Mechanical Performance Prediction and Design Method of Composite Solid Propellant Based on VCFEM. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2018. [Google Scholar]
- Pierre, J.; Forterre, Y.; Olivier, P. A constitutive law for dense granular flows. Nature 2006, 441, 727–730. [Google Scholar]
- Cisse, C.; Zaki, W.; Zineb, T.B. A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast. 2016, 76, 244–284. [Google Scholar] [CrossRef]
- Steinmetza, D.R. Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Mater. 2013, 61, 494–510. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, R.; Deng, K.; Yang, L.; Guo, X. Research on status and development tendency of constitutive model of solid propellant. Tactical Missile Technol. 2019, 3, 94–100. [Google Scholar]
- Francis, E.C.; Carlton, C.H. Some aspects of nonlinear mechanical behavior of a composite propellant. J. Spacecr. Rockets 1969, 6, 65–69. [Google Scholar] [CrossRef]
- Lai, J.; Chang, X.; Long, B.; Zhang, Y.; Fang, P. Effects of low temperature and strain rate on compressive mechanical properties of HTPB propellant. J. Solid Rocket Technol. 2012, 35, 792–798. [Google Scholar]
- Landsem, E.; Jensen, T.L.; Hansen, F.K.; Unneberg, E.; Kristensen, T.E. Mechanical properties of smokeless composite rocket propellants based on prilled ammonium dinitramide. Propellants Explos. Pyrotech. 2012, 37, 691–698. [Google Scholar] [CrossRef]
- Hu, S.; Ju, Y.; Meng, H.; Zhou, C. Effects of strain rate on mechanical properties of double-base propellants (DBP) under uniaxial compression condition. J. Ballist. 2011, 23, 75–79. [Google Scholar]
- Landsem, E.; Jensen, T.L.; Hansen, F.K. Neutral polymeric bonding agents (NPBA) and their use in smokeless composite rocket propellants based on HMXGAP-BuNENA. Propellants Explos. Pyrotech. 2012, 37, 581–591. [Google Scholar] [CrossRef]
- Shekhar, H. Effect of temperature on mechanical properties of solid rocket propellants. Def. Sci. J. 2011, 61, 529–533. [Google Scholar] [CrossRef]
- Hou, L. Composite Solid Propellant; Aerospace Press: Beijing, China, 1994; pp. 276–278. [Google Scholar]
- Yang, F.; Pang, A.; Zhang, X. An analysis on the stress-strain curves of composite solid propellant. J. Solid Rocket Technol. 2001, 24, 54–57. [Google Scholar]
- Wang, Z.; Qiang, H.; Wang, G.; Chang, X. Review on the Mechanical Properties and Constitutive Models of Solid Propellants. Chin. J. Energetic Mater. 2016, 24, 403–416. [Google Scholar] [CrossRef]
- Bills, K.W.; Wiegan, J.H. Relation of mechanical properties to solid rocket motor failure. AIAA J. 1963, 9, 2116–2123. [Google Scholar] [CrossRef]
- Wang, Z. Stress analysis of the solid propellant Biaxial strip under constant-rate tensile test. J. Solid Rocket Technol. 1995, 18, 54–59. [Google Scholar]
- Israr, U.D.; Tu, S.; Hao, P.; Panier, S.; Khan, K.A.; Umer, R.; Shah, S.Z.H.; Franz, G.; Aamir, M. Sequential damage study induced in fiber reinforced composites by shear and tensile stress using a newly developed Arcan fixture. J. Mater. Res. Technol. 2020, 9, 13352–13364. [Google Scholar]
- Zhang, L.; Cai, J. Preliminary study on Biaxial tensile test of solid Propellant. Acta Armamentarii 1995, 16, 20–22. [Google Scholar]
- Jia, Y.; Zhang, W.; Zhang, W. Optimal design and examination study of biaxial tensile specimens for solid propellant. J. Propuls. Technol. 2011, 32, 737–740. [Google Scholar]
- Jalocha, D.; Constantinescu, A.; Nevière, R. Prestrained biaxial DMA investigation of viscoelastic nonlinearities in highly filled elastomers. Polym. Test 2015, 42, 37–44. [Google Scholar] [CrossRef]
- Lindsey, G.H.; Schapery, R.A.; Williams, M.L.; Zak, A.R. The Triaxial Tension Failure of Viscoelastic Materials; AD0419128; California Institute of Technology: Pasadena, CA, USA, 1963. [Google Scholar]
- Jones, J.W.; Knauss, W.G. Propellant failure criteria. In Proceedings of the 6th Solid Propellant Rocket Conference, Washington, DC, USA, 1–3 February 1965; pp. 65–157. [Google Scholar]
- Kumar, V.S. Thermoviscoelastic characterization of a composite solid propellant using tubular test. J. Propuls. Power 2003, 19, 397–404. [Google Scholar] [CrossRef]
- Liu, C.T.; Wickham, D.; Smith, G. Effects of Confining Pressure on the Crack Growth Behavior in a Filled Elastomer Subjected to a Constant Strain Rate; ADA423471; Defense Technical Information Center: Fort Belvoir, VA, USA, 2004.
- Zhang, Y. Experimental and Theoretical Study on Failure Criterion of HTPB Composite Solid Propellant; Second Artillery Engineering University: Xi’an, China, 2010. [Google Scholar]
- Zhang, J.; Ju, Y.; Zhou, C. Experimental research on cohesion and internal friction angle of the double-base propellant. Propellants Explos. Pyrotech. 2013, 38, 351–357. [Google Scholar] [CrossRef]
- Liu, C.T. Evaluation of damage fields near crack tips in a composite solid propellant. J. Spacecr. Rocket 1991, 28, 64–70. [Google Scholar] [CrossRef]
- Liu, C.T.; Smith, W.G. Near-tip behavior in a particulate material under constant strain rate including temperate and thickness effects. In Proceedings of the ICF10, Honolulu, HI, USA, 14 October 2001. [Google Scholar]
- Liu, C.T. Monitoring Microstructural Evolution, Crack formation, and damage characteristics near crack tip in a highly filled elastomer-using digital radiography X-ray techniques. Exp. Mech. 2007, 47, 79–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiang, H.; Yang, Y. Fracture Behavior of HTPB Composite Propellant in I-II Mixed Mode Crack. Chin. J. Energ. Mater. 2007, 15, 359–362. [Google Scholar]
- Long, B.; Chang, X.; Liu, W.; Zhang, Y. Experimental Study on Low Temperature Fracture Properties of HTPB Propellant. J. Propuls. Technol. 2014, 35, 1278–1282. [Google Scholar]
- Sun, C.; Xu, J.; Chen, X.; Zheng, J.; Zheng, Y.; Wang, W. Strain rate and temperature dependence of the compressive behavior of a composite modified double-base propellant. Mech. Mater. 2015, 89, 35–46. [Google Scholar] [CrossRef]
- Balzer, J.E.; Siviour, C.R.; Walley, S.M.; Proud, W.G.; Field, J.E. Behaviour of ammonium perchlorate-based propellants and a polymer-bonded explosive under impact loading. Proc. R. Soc. 2004, 460, 781–806. [Google Scholar] [CrossRef]
- Ho, S.Y. High strain-rate constitutive models for solid rocket propellants. J. Propuls. Power 2002, 18, 1106–1111. [Google Scholar] [CrossRef]
- Cady, C.M.; Blumenthal, W.R.; Lii, G.T.G.; Idar, D.J. Mechanical properties of plastic-bonded explosive binder materials as a function of strain-rate and temperature. Polym. Eng. Sci. 2006, 23, 812–819. [Google Scholar] [CrossRef]
- Jordan, J.L.; Montaigne, D.; Gould, P.; Neel, C.; Sunny, G.; Molek, C. High strain rate and shock properties of hydroxyl-terminated polybutadiene (HTPB) with varying amounts of plasticizer. J. Dyn. Behav. Mater. 2016, 2, 91–100. [Google Scholar] [CrossRef]
- Field, J.E.; Proud, W.G.; Siviour, C.R.; Walley, S.M.; Grantham, S.G. Dynamic Deformation Properties of Energetic Composite Materials; SP: Cambridge, UK, 2005; p. 1154. [Google Scholar]
- Pang, A.; Zheng, J. Prospect of the research and development of high energy solid propellant technology. J. Solid Rocket Technol. 2004, 27, 289–293. [Google Scholar]
- Murri, W.G.; Gupta, Y.M.; Curran, D.R. Fracture and Fragmentation of High Energy Propellant; UCRL-15160; SRI International: Menlo Park, CA, USA, 1979. [Google Scholar]
- Huang, F.; Wang, Z.; Ding, J. Dynamic fracture of composite solid propellant. Acta Armamentarii 1995, 16, 47–50. [Google Scholar]
- Long, B.; Chang, X.; Zhang, Y.; Ma, R.; Sun, X. Study on Dynamic Fracture Properties of HTPB Propellant Under High Strain Rate. J. Propuls. Technol. 2015, 36, 471–475. [Google Scholar]
- Long, B.; Chang, X.; Hu, K.; Hong, Z. Effects of temperature and strain rate on the dynamic fracture properties of HTPB propellant. Propellants Explos. Pyrotech. 2015, 40, 479–483. [Google Scholar] [CrossRef]
- Leaderman, H. Large longitudinal retarted elastic deformation of rubber like network polymer. Trans. Soc. Rheol. 1962, 59, 361–382. [Google Scholar] [CrossRef]
- Schapery, R.A. A theory of nonlinear thermoviseo-elastioity based on irreversible thermo-dynamics. In Proceedings of the Fifth U. S. National Congress of Applied Mechanics; ASME: New York, NY, USA, 1966; pp. 511–530. [Google Scholar]
- Schapery, R.A. On a Thermodynamics Constitutive Theory and Its Application to Various Nonlinear; Springer: Berlin/Heidelberg, Germany, 1968; pp. 259–285. [Google Scholar]
- Schapery, R. Nonlinear Viscoelastic and Viscoplastic Constitutive Equations Based on Thermodynamics. Mech. Time-Depend. Mat. 1997, 1, 209–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, G.; Yang, J.; Qiang, H. Non-linear constitutive equation of HTPB composite solid propellant. J. Propuls. Technol. 2000, 21, 69–72. [Google Scholar]
- Swanson, S.R.; Christensen, L.W. A Constitutive Formulation for High-Elongation Propellants. J. Spacecr. Rocket 2012, 20, 559–566. [Google Scholar] [CrossRef]
- Yang, J.; Yu, M.; Hou, G.; Wang, Y.; Lv, Q. Research on the constitutive equations of HTPB composite solid propellant with damage and aging. J. Propuls. Technol. 2002, 23, 509–512. [Google Scholar]
- Peng, W.; Zheng, J.; Bai, H.; Liu, Y.; Yang, J. Study on micro-cracking damage constitutive model of HTPB composite solid propellant. J. Solid Rocket Technol. 2003, 26, 33–37. [Google Scholar]
- Xu, F.; Aravas, N.; Sofronis, P. Constitutive modeling of solid propellant materials with evolving microstructural damage. J. Mech. Phys. Solids. 2008, 56, 2050–2073. [Google Scholar] [CrossRef]
- Tscharnuter, D.; Jerabek, M.; Major, Z.; Pinter, G. Irreversible deformation of isotactic polypropylene in the pre-yield regime. Eur. Polym. J. 2011, 47, 989–996. [Google Scholar] [CrossRef]
- Zhang, J. Study on Yield Criteria and Visco-Elastoplastic Constitutive Model of the Double-Base Propellant. Ph.D. Thesis, Nanjing University of Science and Technology, Nanjing, China, 2013. [Google Scholar]
- Wang, H.; Xu, J.; Chen, X.; Zhou, C. Viscoelastic-viscoplastic constitutive model of modified double-base propellant. Aeronaut. Astronaut. Sin. 2017, 38, 137–144. [Google Scholar]
- Tang, Z.; Tian, L.; Zhu, Z. Mechanical properties of epoxy resins at high strain rates. In Proceedings of the Second National Conference on Explosive Mechanics, Yangzhou, China, 27–29 October 1981; Volume 4, pp. 1–2. [Google Scholar]
- Wang, P.; Wang, Z.; Ju, Y.; Sun, C.; Xu, J. Experimental research on rate dependent constitutive relation of double-base propellant under impact load. J. Solid Rocket Technol. 2012, 35, 69–72. [Google Scholar]
- Pouriayevali, H.; Guoa, Y.B.; Shima, V.P.W. A viscohyperelastic constitutive description of elastomer behavior at high strain rates. Procedia Eng. 2011, 10, 2274–2279. [Google Scholar] [CrossRef]
- Yildinm, H.C.; Oezupek, S. Structural assessment of a solid propellant rocket motor: Effects of aging and damage. Aerosp. Sci. Technol. 2011, 15, 635–641. [Google Scholar]
- Chang, X.; Lai, J.; Zhang, X.; Hu, K.; Qi, W. High Strain Rate Viscoelastic Constitutive Model of HTPB Propellant. J. Propuls. Technol. 2014, 35, 123–127. [Google Scholar]
- Wu, L.; Noels, L.; Adam, L.; Doghri, I. A multiscale mean-field homogenization method for fiber-reinforced composites with gradient-enhanced damage models. Comput. Method. Appl. Mech. Eng. 2012, 233–236, 164–179. [Google Scholar] [CrossRef]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1957, 241, 376–396. [Google Scholar]
- Bruggeman, D.A.G. Berechnung der elastischen moduln für die verschiedenen texturen der regul ren metalle. Z. Phys. 1934, 92, 561–588. [Google Scholar] [CrossRef]
- Christensen, R.M.; Lo, K.H. Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids. 1979, 27, 315–330. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Roscoe, R. The viscosity of suspensions of rind spheres. J. Appl. Phys. 1952, 3, 267–274. [Google Scholar]
- Chen, J.K.; Huang, Z.P.; Mai, Y.W. Constitutive relation of particulate-reinforced viscoelastic composite materials with debonded microvoids. Acta Mater. 2003, 51, 3375–3384. [Google Scholar] [CrossRef]
- Gui, D.; Liu, J.; Tian, D.; Pang, A.; Zhang, X. Modeling mechanical properties of NEPE high energetic propellants. J. Propuls. Technol. 2010, 31, 444–451. [Google Scholar]
- Burke, M.A. Noliner viscoelastic costitutive model for soild propellent. J. Propuls. Power 1992, 8, 586–591. [Google Scholar] [CrossRef]
- Peng, W.; Ren, J.; Zhou, J. Micromechanics analysis on the viscoelastics constitutive law of composite solid propellant(II)reinforce effects of non spherical particles. J. Propuls. Technol. 2000, 1, 76–79. [Google Scholar]
- Pang, A. Mechanical Model of mesophase in composite solid propellants. J. Propuls. Technol. 1998, 19, 97–102. [Google Scholar]
- Peng, W. Meso-Mechanical Study on Viscoelastic Damage Constitutive Model of Composite Solid Propellant. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2001. [Google Scholar]
- Tan, H.; Huang, Y.; Liu, C.; Geubelle, P.H. The Mori-Tanaka method for composite materials with nonlinear interface debonding. Int. J. Plast. 2005, 21, 1890–1918. [Google Scholar] [CrossRef]
- Tan, H.; Huang, Y.; Liu, C.; Geubelle, P.H. Effect of nonlinear interface debonding on the constitutive model of composite materials. Int. J. Multiscale Com. 2006, 4, 147–167. [Google Scholar] [CrossRef]
- Tan, H.; Huang, Y.; Liu, C.; Ravichandran, G.; Inglis, H.M.; Geubelle, P.H. The uniaxial tension of particulate composite materials with nonlinear interface debonding. Int. J. Solids. Struct. 2007, 44, 1809–1822. [Google Scholar] [CrossRef]
- Tan, H.; Huang, Y.; Liu, C. The viscoelastic composite with interface debonding. Compos. Sci. Technol. 2008, 68, 3145–3149. [Google Scholar] [CrossRef]
- Qu, K.; Zhang, X.; Li, G. Research on Mechanics Performance of Composite Propellant with Nonlinear Interface Debonding. J. Proj. Rocket Missiles Guid. 2010, 30, 114–118. [Google Scholar]
- Dugdale, D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids. 1960, 8, 100–104. [Google Scholar] [CrossRef]
- Barenblatt, G.I. The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 1962, 7, 55–129. [Google Scholar]
- Bo, H.; Ju, Y.; Zhou, C. Simulation of crack propagation in HTPB propellant using cohesive zone model. Eng. Fail. Anal. 2012, 26, 304–317. [Google Scholar]
- Hou, Y.; Xu, J.; Chen, X.; Zhou, C.; Zhu, L. Microscopic damage analysis of composite solid propellants considering the particle shape. J. Solid Rocket Technol. 2019, 42, 440–446. [Google Scholar]
- Xu, C.; Siegmund, T.; Ramani, K. Rate-dependent crack growth in adhesives II. Experiments and analysis. Int. J. Adhes. Adhes. 2003, 23, 15–22. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Q.H.; Kang, Y.L.; Li, X.Q.; Rong, Q.Q. Viscoelastic adhesive interfacial model and experimental characterization for interfacial parameters. Mech. Mater. 2010, 42, 537–547. [Google Scholar] [CrossRef]
- Musto, M.; Alfano, G. A fractional rate-dependent cohesivezone model. Int. J. Numer. Meth. Eng. 2015, 103, 313–341. [Google Scholar] [CrossRef]
- Chen, X.; Niu, R.; Zheng, J.; Jia, D. Rate-dependent cohesive zone model of the interface between HTPB propellant and insulation. J. Aerosp. Power 2015, 30, 235–241. [Google Scholar]
- Chen, Y.; Yong, M.; Fei, P.; Wang, S. Research progress in multiscale mechanics of composite materials. Chin. J. Solid Mech. 2018, 39, 1–68. [Google Scholar]
- Yang, S.; Liu, L.; Zheng, J.; Guo, X.; Song, H.; Zhang, Q. Design of Mechanics Response Prediction System for High Energy Solid Propellants. J. Wuhan Univ. Technol. 2009, 31, 1–4. [Google Scholar]
- Matous, K. Finite element formulation for modeling particle debonding in reinforced elastomers subjected to finite deformations. Comput. Method. Appl. Mech. Eng. 2006, 196, 620–633. [Google Scholar] [CrossRef]
- KMA, C.; HMI, A.; XG, A.; DR, B.; TLJ, A.; PHG, C. Multiscale modeling of solid propellants: From particle packing to failure- ScienceDirect. Compos. Sci. Technol. 2007, 67, 1694–1708. [Google Scholar]
- Toulemonde, P.A.; Diani, J.; Gilormini, P.; Desgardin, N. On the account of a cohesive interface for modeling the behavior until break of highly filled elastomers. Mech. Mater. 2016, 93, 124–133. [Google Scholar] [CrossRef]
- Xu, X. A Mechanical model of uniaxial extension of composite solid Propellants. J. Astronaut. 1995, 16, 20–25. [Google Scholar]
- Ud Din, I.; Hao, P.; Franz, G.; Panier, S. Elastoplastic CDM model based on Puck’s theory for the prediction of mechanical behavior of Fiber Reinforced Polymer (FRP) composites. Compos. Struct. 2018, 201, 291–302. [Google Scholar] [CrossRef]
- Fang, D.; Yu, Q. Three-dimensional numerical analysis of effective properties of particle reinforced Composites. Chin. J. Theor. Appl. Mech. 1996, 28, 92–99. [Google Scholar]
- Peng, W.; Zhou, J.; Zhao, W.; Meng, S. A finite-element analysis of microscopic stress distribution and microdamage growth in composite solid propellant. J. Solid Rocket Technol. 2002, 1, 12–15. [Google Scholar]
- Marur, P.R. Estimation of effective elastic properties and interface stress concentrations in particulate composites by unit cell methods. Acta Mater. 2004, 52, 1263–1270. [Google Scholar] [CrossRef]
- Yuan, S.; Tang, W.; Li, G. Analysis on micro-mechanical failure mechanisms of composite propellant. J. Solid Rocket Technol. 2006, 29, 48–51. [Google Scholar]
- Zhou, H.; Yuan, J.; Lai, J.; Yuan, S. Research on microstructural damage simulation of solid propellant at low temperature. J. Solid Rocket Technol. 2017, 40, 736–740. [Google Scholar]
- Feng, T.; Zheng, J.; Xu, J.; Han, L.; Kang, N. Mesoscopic structure modeling and numerical simulation of debonding process of composite solid propellants. J. Aerosp. Power 2018, 33, 223–231. [Google Scholar]
- Knott, G.M.; Jackson, T.L.; Buckmaster, J. Random packing of heterogeneous propellants. AIAA J. 2001, 39, 678–686. [Google Scholar] [CrossRef]
- Lv, X.; Xu, Y.; Shen, Z.; Li, X. A stepwise equivalent meso-prediction method for viscoelastic Poisson’s ratio of solid propellants. Eng. J. Wuhan Univ. 2021, 54, 149–157. [Google Scholar]
- Shen, L.; Li, H.; Shen, Z. Prediction method of effective relaxation modulus of composite solid propellants based on viscoelastic VCFEM. J. Solid Rocket Technol. 2019, 42, 365–371. [Google Scholar]
- Shen, L.; Shen, Z.; Li, J.; Li, H. VCFEM microscopic method for evaluating effective mechanical properties of composite solid propellants. J. Natl. Univ. Def. Technol. 2018, 40, 53–58. [Google Scholar]
- Zhi, S.J.; Sun, B.; Zhang, J.W. Multiscale modeling of heterogeneous propellants from particle packing to grain failure using a surface-based cohesive approach. Acta Mech. Sin. 2012, 28, 746–759. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Q.; Wu, W. Mesostructure Numeric Modeling and Debonding Procedure Simulation of Composite Solid Propellant/Liner Bonding Interface. Sci. Technol. Eng. 2012, 20, 7972–7979. [Google Scholar]
- Li, G.; Jiang, A.; Huang, W.; Wang, C.; Wang, Y.; Liu, T. Meso-experiment and Numerical Simulation of Deformation and Failure Adhesive Interface for Solid Rocket Motor. Chin. J. Explos. Propellants 2018, 41, 314–318. [Google Scholar]
- Zhang, Z.; Dai, K.; Chen, J. Numerical Simulation of Debonding of Solid Propellant/Liner Bonding Interface. Sci. Technol. Eng. 2020, 20, 11421–11427. [Google Scholar]
- Kohno, Y.; Ueda, K.; Imamura, A. Molecular dynamics simulation of initial decomposition processes on the unique N-N bond innitramines in the crystalline state. J. Phys. Chem. C 1996, 100, 4701–4712. [Google Scholar] [CrossRef]
- Manaa, M.R.; Fried, L.E.; Melius, C.F.; Elstner, M.; Frauenheim, T. Decomposition of HMX at extreme conditions: A molecular dynamics simulation. J. Chem. Phys. A 2002, 106, 9024–9029. [Google Scholar] [CrossRef]
- Xiao, J.J.; Fang, G.Y.; Ji, G.F. Simulation investigations in the binding energy and mechanical properties of HMXbased polymer-bonded explosives. Chin. Sci. Bull. 2005, 50, 21–26. [Google Scholar] [CrossRef]
- Lubachevsky, B.D.; Stillinger, F.H. Geometric properties of random disk packings. J. Stat. Phys. 1990, 60, 561–583. [Google Scholar] [CrossRef]
- Kansal, A.R.; Torquato, S.; Stillinger, F.H. Computer generation of dense polydisperse sphere packings. J. Chem. Phys. 2002, 117, 8212–8218. [Google Scholar] [CrossRef]
- Kochevets, S.V. Random Sphere Packing Model of Heterogeneous Propellants. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2002. [Google Scholar]
- Ghossein, E.; Lévesque, M. Random generation of periodic hard ellipsoids based on molecular dynamics: A computationally-efficient algorithm. J. Comput. Phys. 2013, 253, 471–490. [Google Scholar] [CrossRef]
- Stafford, D.S.; Jackson, T.L. Using level sets for creating virtual random packs of non-spherical convex shapes. J. Comput. Phys. 2010, 229, 3295–3315. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, W.; Xiao, J.; Guo, X.; Xiao, H. Molecular Dynamics Simulation of Binding Energies and Mechanical Properties of Energetic Systems with Four Components. Acta Chim. Sin. 2010, 68, 1181–1187. [Google Scholar]
- Xia, L.; Xiao, J.; Fan, J.; Zhu, W.; Xiao, H. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for Nitrate Plasticizer. Acta Chim. Sin. 2008, 66, 874–878. [Google Scholar]
- Lan, Y.; Li, D.; Zhai, J.; Yang, R. Molecular dynamics simulation on the binder of ethylene oxide-tetrahydrofuran copolyether cross-linked with N100. J. Ind. Eng. Chem. 2015, 54, 3563–3569. [Google Scholar] [CrossRef]
- Zhao, S.; Fu, Y.; Liang, X.; Liao, L.; Yao, W.; Ning, S.; Zhao, G.; Liu, Y. Mesoscale Dynamic Simulation on HTPB/Plasticizers Blends. Polym. Mater. Sci. Eng. 2011, 27, 186–190. [Google Scholar]
- Lan, Y.; Liu, Y.; Fu, Y.; Xie, J. Molecular Dynamics Simulation on PEG and Al Particle Models of High Energy NEPE Propellant Ingredient. Chem. Propell. Polym. Mater. 2009, 7, 49–54. [Google Scholar]
- Qu, B.; Tang, Q.; Li, J.; Fan, X.; Zhang, Z. Interaction of CL-20 with solid propellant components by molecular dynamics simulation and thermal analysis method. J. Solid Rocket Technol. 2017, 40, 476–483. [Google Scholar]
- Zhou, J.; Lu, Y. Constitutive relationship of viscoelastic materials based on deformation dynamics model. Chin. J. Theor. Appl. Mech. 1993, 25, 375–378. [Google Scholar]
- Chandru, R.A.; Balasubramanian, N.; Oommen, C.; Raghunandan, B.N. Additive manufacturing of solid rocket propellant grains. J. Propuls. Power 2018, 34, 1090–1093. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Jürgen, S.; Gurr, M.; Rolf, M. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef]
- McClain, M.S.; Gunduz, I.E.; Son, S.F. Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings. Proc. Combust. Inst. 2019, 37, 3135–3142. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Yu, Y.; Niu, C.; Zhu, Z. Research progress of solid propellants prepared by 3D printing technique. Chem. Propell. Polym. Mater. 2020, 18, 24–29. [Google Scholar]
- Fan, X.; Zheng, B.; Peng, C.; Ren, X.; Qin, J. Review on the development of solid propellant additive manufacturing technology abroad. Winged Missiles J. 2020, 1, 92–96. [Google Scholar]
- Mcclain, M.S.; Afriat, A.; Rhoads, J.F.; Gunduz, I.E.; Son, S.F. Development and characterization of a photopolymeric binder for additively manufactured composite solid propellant using vibration assisted printing. Propellants Explos. Pyrotech. 2020, 45, 853–863. [Google Scholar] [CrossRef]
Model | Features | Weaknesses |
---|---|---|
Macroscopic constitutive model |
|
|
Mesoscopic mechanical model |
|
|
Microscopic molecular model |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cao, P.; Wang, X. Review of the Mechanical Properties and Numerical Simulation of Composite Solid Propellants. Materials 2023, 16, 6875. https://doi.org/10.3390/ma16216875
Wang J, Cao P, Wang X. Review of the Mechanical Properties and Numerical Simulation of Composite Solid Propellants. Materials. 2023; 16(21):6875. https://doi.org/10.3390/ma16216875
Chicago/Turabian StyleWang, Jianru, Peng Cao, and Xiaoxu Wang. 2023. "Review of the Mechanical Properties and Numerical Simulation of Composite Solid Propellants" Materials 16, no. 21: 6875. https://doi.org/10.3390/ma16216875
APA StyleWang, J., Cao, P., & Wang, X. (2023). Review of the Mechanical Properties and Numerical Simulation of Composite Solid Propellants. Materials, 16(21), 6875. https://doi.org/10.3390/ma16216875