Prolonging the Durability of Maritime Constructions through a Sustainable and Salt-Resistant Cement Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Characterization
2.2. Specimen Preparation
2.3. Test Procedure
3. Results and Discussion
3.1. Chemically—Combined Water Content (CWC)
3.2. Free Lime Content (FLC)
3.3. Bulk Density (BD)
3.4. Total Porosity (ϕ)
3.5. Total Sulfate Content
3.6. Total Chloride Content
3.7. Compressive Strength (CS)
3.8. FT-IR Spectroscopy
3.9. Thermal Analysis of Cement Pastes Immersed in Seawater
3.10. X-ray Diffraction (XRD) Analysis
4. Conclusions
- The water content in all cement pastes demonstrated an incremental rise as the duration of immersion progressed.
- These findings indicate a gradual decrease in the (FLC%) of GGBFS blends during up to one year of seawater exposure.
- The BD and compressive strength of hardened blends demonstrate a progressive rise in value as both the curing time and slag content increased.
- Drawing upon these findings, one can deduce that A2 (comprising 60% GGBFS and 40% OPC) represents the optimal pozzolanic cement, achieving a compressive strength of 85.7 MPa after one year of seawater immersion.
- The outcomes derived from DTA, FT-IR, and XRD methodologies align well with each other, as well as with the observed chemical and physico-mechanical properties, indicating a strong consistency in these findings.
- Regarding resistance against aggressive water attacks, it is evident that blended slag cement containing 60 wt. % GGBFS can effectively withstand durability threats.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ragoug, R.; Metalssi, O.O.; Barberon, F.; Torrenti, J.-M.; Roussel, N.; Divet, L.; de Lacaillerie, J.-B.d.E. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cem. Concr. Res. 2019, 116, 134–145. [Google Scholar] [CrossRef]
- Wang, K.; Guo, J.; Yang, L.; Zhang, P.; Xu, H. Multiphysical damage characteristics of concrete exposed to external sulfate attack: Elucidating effect of drying–wetting cycles. Constr. Build. Mater. 2022, 329, 127143. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, Y.; Zhu, X. Investigation of the durability of eco-friendly concrete material incorporating artificial lightweight fine aggregate and pozzolanic minerals under dual sulfate attack. J. Clean. Prod. 2022, 331, 130022. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Ren, Q.; Zhao, Y.; Jiang, Z. Degradation mechanism of blended cement pastes in sulfate-bearing environments under applied electric fields: Sulfate attack vs. decalcification. Compos. Part B Eng. 2022, 246, 110255. [Google Scholar] [CrossRef]
- Yin, Y.; Hu, S.; Lian, J.; Liu, R. Fracture properties of concrete exposed to different sulfate solutions under drying-wetting cycles. Eng. Fract. Mech. 2022, 266, 108406. [Google Scholar] [CrossRef]
- Dezhampanah, S.; Nikbin, I.; Charkhtab, S.; Fakhimi, F.; Bazkiaei, S.M.; Mohebbi, R. Environmental performance and durability of concrete incorporating waste tire rubber and steel fiber subjected to acid attack. J. Clean. Prod. 2020, 268, 122216. [Google Scholar] [CrossRef]
- Lothenbach, B.; Bary, B.; Le Bescop, P.; Schmidt, T.; Leterrier, N. Sulfate ingress in Portland cement. Cem. Concr. Res. 2010, 40, 1211–1225. [Google Scholar] [CrossRef]
- Monteiro, J.; Roesler, J.; Kurtis, K.E.; Harvey, J. Accelerated Test for Measuring Sulfate Resistance of Hydraulic Cements for Caltrans LLPRS Program. 2000. Available online: https://rosap.ntl.bts.gov/view/dot/15367 (accessed on 22 October 2023).
- Schmidt, T.; Lothenbach, B.; Romer, M.; Neuenschwander, J.; Scrivener, K. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem. Concr. Res. 2009, 39, 1111–1121. [Google Scholar] [CrossRef]
- Ai, H.; Li, G.; Wang, B.; Panesar, D.K.; He, X. Degradation mechanism of cement-based materials under the effects of stray current, chloride and sulfate. Eng. Fail. Anal. 2022, 142, 106746. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, Y.; Tang, Z.; Wang, K.; Li, Y.; Li, W. Deterioration of concrete under coupled aggressive actions associated with load, temperature and chemical attacks: A comprehensive review. Constr. Build. Mater. 2022, 322, 126466. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Q.; Li, Y. Deterioration of concrete under the coupling effects of freeze–thaw cycles and other actions: A review. Constr. Build. Mater. 2022, 319, 126045. [Google Scholar] [CrossRef]
- Müllauer, W.; Beddoe, R.E.; Heinz, D. Sulfate attack expansion mechanisms. Cem. Concr. Res. 2013, 52, 208–215. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; De Belie, N.; Hooton, R.D. Test methods for resistance of concrete to sulfate attack—A critical review. In Performance of Cement-Based Materials in Aggressive Aqueous Environments: State-of-the-Art Report, RILEM TC 211-PAE; Springer: Dordrecht, The Netherlands, 2013; pp. 251–288. [Google Scholar]
- Hansen, W. Attack on portland cement concrete by alkali soils and waters—A critical review. Highw. Res. Rec. 1966, 1–32. [Google Scholar]
- Aguayo, F.M., Jr. External Sulfate Attack of Concrete: An Accelerated Test Method, Mechanisms, and Mitigation Techniques. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2016. [Google Scholar]
- Wang, Q.; Long, J.; Xu, L.; Zhang, Z.; Lv, Y.; Yang, Z.; Wu, K. Experimental and modelling study on the deterioration of stabilized soft soil subjected to sulfate attack. Constr. Build. Mater. 2022, 346, 128436. [Google Scholar] [CrossRef]
- Hou, W.; Liu, J.; Liu, Z.; He, F.; Zhu, J.; Cui, Y.; Jinyang, W. Calcium transfer process of cement paste for ettringite formation under different sulfate concentrations. Constr. Build. Mater. 2022, 348, 128706. [Google Scholar] [CrossRef]
- Gu, Y.; Dangla, P.; Martin, R.-P.; Metalssi, O.O.; Fen-Chong, T. Modeling the sulfate attack induced expansion of cementitious materials based on interface-controlled crystal growth mechanisms. Cem. Concr. Res. 2022, 152, 106676. [Google Scholar] [CrossRef]
- Gu, Y.; Martin, R.-P.; Metalssi, O.O.; Fen-Chong, T.; Dangla, P. Pore size analyses of cement paste exposed to external sulfate attack and delayed ettringite formation. Cem. Concr. Res. 2019, 123, 105766. [Google Scholar] [CrossRef]
- Castillo, M.; Hernández, K.; Rodriguez, J.; Eyzaguirre, C. Low permeability concrete for buildings located in marine atmosphere zone using clay brick powder. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 16–17 September 2020; p. 012093. [Google Scholar]
- Zhou, Y.; Li, W.; Peng, Y.; Tang, S.; Wang, L.; Shi, Y.; Li, Y.; Wang, Y.; Geng, Z.; Wu, K. Hydration and Fractal Analysis on Low-Heat Portland Cement Pastes Using Thermodynamics-Based Methods. Fractal Fract. 2023, 7, 606. [Google Scholar] [CrossRef]
- Ali, T.; Buller, A.S.; Abro, F.u.R.; Ahmed, Z.; Shabbir, S.; Lashari, A.R.; Hussain, G. Investigation on mechanical and durability properties of concrete mixed with silica fume as cementitious material and coal bottom ash as fine aggregate replacement material. Buildings 2022, 12, 44. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, X.; Meng, Y.; Chen, Z. Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Constr. Build. Mater. 2017, 147, 398–406. [Google Scholar] [CrossRef]
- Wang, L.; Guo, F.; Yang, H.; Wang, Y.; Tang, S. Comparison of fly ash, PVA fiber, MgO and shrinkage-reducing admixture on the frost resistance of face slab concrete via pore structural and fractal analysis. Fractals 2021, 29, 2140002. [Google Scholar] [CrossRef]
- Tang, S.; Cai, R.; He, Z.; Cai, X.; Shao, H.; Li, Z.; Yang, H.; Chen, E. Continuous microstructural correlation of slag/superplasticizer cement pastes by heat and impedance methods via fractal analysis. Fractals 2017, 25, 1740003. [Google Scholar] [CrossRef]
- Karthick, M.; Nirmalkumar, K. Durability Properties of High Strength Self Compacting Concrete Using Silica Fume and Quarry Dust. Int. J. Sci. Eng. Appl. Sci 2016, 2, 389–395. [Google Scholar]
- Ahmed, A.; Nadir, H. Comparative evaluation of potential impacts of agricultural and industrial waste pozzolanic binders on strengths of concrete. J. Mater. Sci. Manuf. Res. 2021, 2, 1–8. [Google Scholar]
- Salvia, M.; Reckien, D.; Pietrapertosa, F.; Eckersley, P.; Spyridaki, N.-A.; Krook-Riekkola, A.; Olazabal, M.; Hurtado, S.D.G.; Simoes, S.G.; Geneletti, D. Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renew. Sustain. Energy Rev. 2021, 135, 110253. [Google Scholar] [CrossRef]
- Li, Y.; Lan, S.; Ryberg, M.; Pérez-Ramírez, J.; Wang, X. A quantitative roadmap for China towards carbon neutrality in 2060 using methanol and ammonia as energy carriers. Iscience 2021, 24, 102513. [Google Scholar] [CrossRef]
- He, Z.; Wang, S.; Mahoutian, M.; Shao, Y. Flue gas carbonation of cement-based building products. J. CO2 Util. 2020, 37, 309–319. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, T.; Guo, R. Sustainable building material from CO2 mineralization slag: Aggregate for concretes and effect of CO2 curing. J. CO2 Util. 2020, 40, 101196. [Google Scholar] [CrossRef]
- Xiao, J.; Xiao, Y.; Liu, Y.; Ding, T. Carbon emission analyses of concretes made with recycled materials considering CO2 uptake through carbonation absorption. Struct. Concr. 2021, 22, E58–E73. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Zhao, Y.; Zheng, C. CO2 Sequestration from flue gas by direct aqueous mineral carbonation of wollastonite. Sci. China Technol. Sci. 2013, 56, 2219–2227. [Google Scholar] [CrossRef]
- ASTM C595/C595M-19; Standard Specification for Blended Hydraulic Cements: ASTM International: West Conshohocken, PA, USA, 2019.
- Mehta, P.K. Pozzolanic and cementitious byproducts as mineral admixtures for concrete—A critical review. Spec. Publ. 1983, 79, 1–46. [Google Scholar]
- Mehta, P.; Gjørv, O. Properties of portland cement concrete containing fly ash and condensed silica-fume. Cem. Concr. Res. 1982, 12, 587–595. [Google Scholar] [CrossRef]
- Aydın, S.; Baradan, B. Effect of activator type and content on properties of alkali-activated slag mortars. Compos. Part B Eng. 2014, 57, 166–172. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sivapullaiah, P. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils Found. 2016, 56, 205–212. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Lee, H.-S. Modeling the hydration of concrete incorporating fly ash or slag. Cem. Concr. Res. 2010, 40, 984–996. [Google Scholar] [CrossRef]
- Skalny, J.; Marchand, J.; Odler, I. Sulfate Attack on Concrete; Taylor Francis Group: Abingdon, UK, 2003. [Google Scholar]
- Thomas, M. The durability of concrete for marine construction: Materials and properties. In Marine Concrete Structures; Elsevier: Amsterdam, The Netherlands, 2016; pp. 151–170. [Google Scholar]
- ASTM 204; Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. ASTM International: West Conshohocken, PA, USA, 2007.
- El-Didamony, H.; Heikal, M.; Moselhy, H.; Ali, M. Utilization of GBFS in the preparation of low cost cement. Egypt. J. Chem. 2016, 59, 623–636. [Google Scholar]
- ASTM C191; Standard test method for normal consistency and setting time of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2008; pp. 172–174.
- Abd-El-Aziz, M.A.; Heikal, M. Characteristics and durability of cements containing fly ash and limestone subjected to Caron’s Lake water. Adv. Cem. Res. 2009, 21, 91–99. [Google Scholar] [CrossRef]
- Aziz, M.A.E.; Aleem, S.A.E.; Heikal, M.; Didamony, H.E. Hydration and durability of sulphate-resisting and slag cement blends in Caron’s Lake water. Cem. Concr. Res. 2005, 35, 1592–1600. [Google Scholar] [CrossRef]
- Assal, H. Some studies on the possibility utilization of calcareous shale/clay deposits in building bricks industry. Ph.D. Thesis, Faculty of Science, Zagazig University, Zagazig, Egypt, 1995. [Google Scholar]
- ASTM C109-93; Standard Specification for Compressive Strength of Mortars. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2007.
- Aziz, M.A.-E.; Aleem, S.A.E.; Heikal, M. Physico-chemical and mechanical characteristics of pozzolanic cement pastes and mortars hydrated at different curing temperatures. Constr. Build. Mater. 2012, 26, 310–316. [Google Scholar] [CrossRef]
- Aleem, S.A.E.; Heikal, M.; Morsi, W. Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Constr. Build. Mater. 2014, 59, 151–160. [Google Scholar] [CrossRef]
- Abd El-Aleem, S.; Abd-El-Aziz, M.; Heikal, M.; El Didamony, H. Effect of cement kiln dust substitution on chemical and physical properties and compressive strength of Portland and slag cements. Arab. J. Sci. Eng. 2005, 30, 264. [Google Scholar]
- El-Alfi, E.; Radwan, A.; Abed El-Aleem, S. Effect of limestone fillers and silica fume pozzolana on the characteristics of sulfate resistant cement pastes. Ceramics Silikaty 2004, 48, 29–33. [Google Scholar]
- Mohamed, S.A.E.-A.; Ragab, A.E.-R. Physico-mechanical properties and microstructure of blended cement incorporating nano-silica. Int. J. Eng. Res. Technol. 2014, 3, 339–358. [Google Scholar]
- Ramachandran, V.S.; Beaudoin, J.J. Handbook of Analytical Techniques in Concrete Science and Technology: Principles, Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Amer, A. Thermal analysis of hydrated fly ash-lime pastes. J. Therm. Anal. Calorim. 1998, 54, 837–843. [Google Scholar] [CrossRef]
- Errington, R.J. Advanced Practical Inorganic and Metalorganic Chemistry; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Aziz, M.A.E.; Aleem, S.A.E.; Heikal, M.; Didamony, H.E. Effect of polycarboxylate on rice husk ash pozzolanic cement. Sil. Ind 2004, 69, 9–10. [Google Scholar]
- Ogirigbo, O.R.; Black, L. Chloride binding and diffusion in slag blends: Influence of slag composition and temperature. Constr. Build. Mater. 2017, 149, 816–825. [Google Scholar] [CrossRef]
- Thomas, M.; Hooton, R.; Scott, A.; Zibara, H. The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cem. Concr. Res. 2012, 42, 1–7. [Google Scholar] [CrossRef]
- Kayali, O.; Khan, M.; Ahmed, M.S. The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag. Cem. Concr. Compos. 2012, 34, 936–945. [Google Scholar] [CrossRef]
- Khan, M.; Kayali, O.; Troitzsch, U. Chloride binding capacity of hydrotalcite and the competition with carbonates in ground granulated blast furnace slag concrete. Mater. Struct. 2016, 49, 4609–4619. [Google Scholar] [CrossRef]
- Ogirigbo, O.; Black, L. Chloride binding of GGBS concrete: Influence of aluminium content, added sulphate and temperature. In Proceedings of the Ibausil International Conference on Building Materials, Weimar, Germany, 12–15 September 2015; pp. 16–18. [Google Scholar]
- Florea, M.; Brouwers, H. Modelling of chloride binding related to hydration products in slag-blended cements. Constr. Build. Mater. 2014, 64, 421–430. [Google Scholar] [CrossRef]
- Dhir, R.; El-Mohr, M.; Dyer, T. Chloride binding in GGBS concrete. Cem. Concr. Res. 1996, 26, 1767–1773. [Google Scholar] [CrossRef]
- Amin, A.; Ali, A.; El Didamony, H. Durability of some Portland cement pastes in various chloride solutions. ZKG Int. 1997, 50, 172–177. [Google Scholar]
- Ramachandran, V.S. Calcium Chloride in Concrete: Science and Technology; Applied Science Publishers: London, UK, 1976. [Google Scholar]
- El-Didamony, H.; Amer, A.A.; El-Hoseny, S. Recycling of low-grade aluminosilicate refractory brick waste product in blended cement. J. Therm. Anal. Calorim. 2016, 125, 23–33. [Google Scholar] [CrossRef]
- Wilburn, F. Handbook of Thermal Analysis of Construction Materials-VS Ramachandran; Ramachandran, V.S., Paroli, R.M., Beaudoin, J.J., Delgado, A.H., Eds.; William Andrew: London, UK, 2002; 702p, ISBN 0-8155-1487-5. [Google Scholar]
Constituents | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | LOI | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
Initial materials | GGBFS | 34.35 | 10.08 | 1.65 | 41.80 | 6.95 | 0.48 | 0.67 | 2.31 | 0.06 | 98.35 |
OPC | 20.51 | 5.07 | 4.39 | 62.21 | 2.00 | 0.23 | 0.29 | 2.25 | 2.40 | 99.35 |
Blend ID | GGBFS, % | OPC, % | W/C, % |
---|---|---|---|
A1 | 70 | 30 | 25 |
A2 | 60 | 40 | 26.5 |
A4 | 40 | 60 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heikal, M.; Ali, M.A.; Ghernaout, D.; Elboughdiri, N.; Ghernaout, B.; Bendary, H.I. Prolonging the Durability of Maritime Constructions through a Sustainable and Salt-Resistant Cement Composite. Materials 2023, 16, 6876. https://doi.org/10.3390/ma16216876
Heikal M, Ali MA, Ghernaout D, Elboughdiri N, Ghernaout B, Bendary HI. Prolonging the Durability of Maritime Constructions through a Sustainable and Salt-Resistant Cement Composite. Materials. 2023; 16(21):6876. https://doi.org/10.3390/ma16216876
Chicago/Turabian StyleHeikal, Mohamed, Mohamed A. Ali, Djamel Ghernaout, Noureddine Elboughdiri, Badia Ghernaout, and Hazem I. Bendary. 2023. "Prolonging the Durability of Maritime Constructions through a Sustainable and Salt-Resistant Cement Composite" Materials 16, no. 21: 6876. https://doi.org/10.3390/ma16216876
APA StyleHeikal, M., Ali, M. A., Ghernaout, D., Elboughdiri, N., Ghernaout, B., & Bendary, H. I. (2023). Prolonging the Durability of Maritime Constructions through a Sustainable and Salt-Resistant Cement Composite. Materials, 16(21), 6876. https://doi.org/10.3390/ma16216876