Reliability Analysis of PAUT Based on the Round-Robin Test for Pipe Welds with Thermal Fatigue Cracks
Abstract
:1. Introduction
2. Experimental Set-Up and Data Acquisition
2.1. Fabrication of Thermal Fatigue Crack Specimens
2.2. PAUT Inspection System and Procedure
2.3. Round-Robin Test for Data Acquisition
3. Reliability Analysis of PAUT Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bieniussa, K.W.; Reck, H. Piping specific analysis of stresses due to thermal stratification. Nucl. Eng. Des. 1999, 190, 239–249. [Google Scholar] [CrossRef]
- Min, K.-D.; Hong, S.; Kim, D.-W.; Lee, B.-S.; Kim, S.-J. Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless steel under operating conditions of a pressurized water reactor. Nucl. Eng. Technol. 2017, 49, 752–759. [Google Scholar] [CrossRef]
- Jhung, M.J. Assessment of thermal fatigue in mixing tee by FSI analysis. Nucl. Eng. Technol. 2013, 45, 99–106. [Google Scholar] [CrossRef]
- Muhammad, N.; Wang, M.; Tian, W.; Su, G.; Qiu, S. LES study on the turbulent thermal stratification and thermo-mechanical fatigue analysis for NPP surge line. Int. J. Therm. Sci. 2022, 178, 107608. [Google Scholar] [CrossRef]
- Kumar, R.; Jadhav, P.A.; Gupta, S.K.; Gaikwad, A.J. Studies of thermal stratification stresses and its impact on fatigue design of NPP piping. Int. J. Press. Vessel. Pip. 2022, 199, 104716. [Google Scholar] [CrossRef]
- Qiao, S.; Gu, H.; Wang, H.; Luo, Y.; Wang, D.; Liu, P.; Wang, Q.; Mao, Q. Experimental investigation of thermal stratification in a pressurizer surge line. Ann. Nucl. Energy 2014, 73, 211–217. [Google Scholar] [CrossRef]
- Park, J.S.; Choi, Y.H. Application of piping failure database to nuclear safety issues in Korea. Int. J. Press. Vessel. Pip. 2012, 90, 56–60. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M.; Soni, A. Advances and researches on non destructive testing: A review. Mater. Today Proc. 2018, 5, 3690–3698. [Google Scholar] [CrossRef]
- Moran, T.L.; Ramuhalli, P.; Pardini, A.F.; Anderson, M.T.; Doctor, S.R. Replacement of Radiography with Ultrasonics for the Nondestructive Inspection of Welds-Evaluation of Technical Gaps-An Interim Report; PNNL-19086; US Department of Energy: Washington, DC, USA, 2010. [Google Scholar]
- Moran, T.L.; Prowant, M.S.; Nove, C.A.; Pardini, A.F.; Crawford, S.L.; Cinson, A.D.; Anderson, M.T. Applying Ultrasonic Testing in Lieu of Radiography for Volumetric Examination of Carbon Steel Piping; US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research: Rockville, MD, USA, 2015. [Google Scholar]
- Song, S.-J.; Shin, H.J.; Jang, Y.H. Development of an ultra sonic phased array system for nondestructive tests of nuclear power plant components. Nucl. Eng. Des. 2002, 214, 151–161. [Google Scholar] [CrossRef]
- Koskinen, A.; Leskelä, E. Differences in indications of different artificially produced flaws in non-destructive examination. In Proceedings of the 10th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components, Cannes, France, 1–3 October 2013. [Google Scholar]
- Yi, W.G.; Lee, M.R.; Lee, J.H.; Choi, S.W.; Lee, B.Y. A Study on Ultrasonic Testing for Nondestructive Evaluation of Thermal Fatigue Crack in Pipelines. Key Eng. Mater. 2006, 321–323, 747. [Google Scholar]
- Wang, J.; Yusa, N.; Pan, H.; Kemppainen, M.; Virkkunen, I.; Hashizume, H. Modeling of Thermal Fatigue Crack for Enhancement of Electromagnetic Nondestructive Evaluation of Nuclear Power Plant. In Proceedings of the 21st International Conference on Nuclear Engineering, Chengdu, China, 29 July–2 August 2013. [Google Scholar]
- Wang, J.; Yusa, N.; Pan, H.; Kemppainen, M.; Virkkunen, I.; Hashizume, H. Discussion on modeling of thermal fatigue cracks in numerical simulation based on eddy current signals. NDT E Int. 2013, 55, 96–101. [Google Scholar] [CrossRef]
- Ann, H.K.; Hwang, W.G.; Kim, J.S.; Park, I.K. Accuracy and Usefulness Evaluation of the Phased Array Ultrasonic Testing for Thermal Fatigue Cracks. J. Korean Soc. Nondestruct. Test. 2019, 39, 238–244. [Google Scholar] [CrossRef]
- Cipière, M.F.; Le Duff, J.A. Thermal Fatigue Experience in French Piping: Influence of Surface Condition and Weld Local Geometry. Weld. World 2002, 46, 23–27. [Google Scholar] [CrossRef]
- Kim, K.C.; Kim, J.G.; Kang, S.S.; Jhung, M.J. Korean Round-Robin Tests Result for New International Program to Assess the Reliability of Emerging Nondestructive Techniques. Nucl. Eng. Technol. 2017, 49.3, 651–661. [Google Scholar] [CrossRef]
- Falcetelli, F.; Yue, N.; Di Sante, R.; Zarouchas, D. Probability of detection, localization, and sizing: The evolution of reliability metrics in Structural Health Monitoring. Struct. Health Monit. 2022, 21, 2990–3017. [Google Scholar] [CrossRef]
- Virkkunen, I.; Koskinen, T.; Papula, S.; Sarikka, T.; Hänninen, H. Comparison of â versus a and Hit/Miss POD-Estimation methods: A European viewpoint. J. Nondestruct. Eval. 2019, 38, 89. [Google Scholar]
- Annis, C. MIL-HDBK-1823A, Nondestructive Evaluation System Reliability Assessment; Department of Defense: Washington, DC, USA, 2009. [Google Scholar]
- Kurz, J.H.; Jüngert, A.; Dugan, S.; Dobmann, G. Probability of Detection (POD) determination using ultrasound phased array for considering NDT in probabilistic damage assessments. In Proceedings of the 18th World Conference on Nondestructive Testing, Durban, South Africa, 16–20 April 2012. [Google Scholar]
- Keya Rani Das, A.H.M.; Imon, R. A Brief Review of Tests for Normality. Am. J. Theor. Appl. Stat. 2016, 5, 5–12. [Google Scholar] [CrossRef]
- Georgiou, G.A. Probability of Detection (POD) Curves: Derivation, Applications and Limitations; Jacobi Consulting Limited Health and Safety Executive Research Report: London, UK, 2006; p. 454. [Google Scholar]
- Kurz, J.H.; Jüngert, A.; Dugan, S.; Dobmann, G.; Boller, C. Reliability considerations of NDT by probability of detection (POD) determination using ultrasound phased array. Eng. Fail. Anal. 2013, 35, 609–617. [Google Scholar]
Parameter | Value |
---|---|
Probe Type | 1D-Array |
Wave Type | Shear wave |
Law Configure | Sectorial |
Focus Type | True depth |
Aperture Area [] | Min. 8 × 10 |
Sweep Angle [°] | 40~70 |
Angle Resolution [°] | 1.0 |
Focal Depth | Bottom |
Team No. | a80 | a80/90 |
---|---|---|
Total | 4.21 | 6.66 |
Team 1 | 3.14 | 5.27 |
Team 2 | 5.05 | 10.48 |
Team 3 | 4.62 | 9.97 |
Team No. | a80 | a80/90 |
---|---|---|
Total | 1.40 | 1.89 |
Team 1 | 1.38 | 1.60 |
Team 2 | 1.41 | 2.12 |
Team 3 | 1.36 | 3.64 |
Parameter | POD | RMSE | ||
---|---|---|---|---|
Acceptance Criteria | RRT Results | Acceptance Criteria | RRT Results | |
Length | 6.4 mm | 4.21 mm | 19 mm | 5.65 mm |
Depth | 1.51 mm | 1.40 mm | 3 mm | 1.69 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Choi, Y.M.; Lee, D.M.; Kim, J.B.; Kim, Y.K.; Park, T.S.; Park, I.K. Reliability Analysis of PAUT Based on the Round-Robin Test for Pipe Welds with Thermal Fatigue Cracks. Materials 2023, 16, 6908. https://doi.org/10.3390/ma16216908
Kang D, Choi YM, Lee DM, Kim JB, Kim YK, Park TS, Park IK. Reliability Analysis of PAUT Based on the Round-Robin Test for Pipe Welds with Thermal Fatigue Cracks. Materials. 2023; 16(21):6908. https://doi.org/10.3390/ma16216908
Chicago/Turabian StyleKang, Dongchan, Yu Min Choi, Dong Min Lee, Jung Bin Kim, Yong Kwon Kim, Tae Sung Park, and Ik Keun Park. 2023. "Reliability Analysis of PAUT Based on the Round-Robin Test for Pipe Welds with Thermal Fatigue Cracks" Materials 16, no. 21: 6908. https://doi.org/10.3390/ma16216908
APA StyleKang, D., Choi, Y. M., Lee, D. M., Kim, J. B., Kim, Y. K., Park, T. S., & Park, I. K. (2023). Reliability Analysis of PAUT Based on the Round-Robin Test for Pipe Welds with Thermal Fatigue Cracks. Materials, 16(21), 6908. https://doi.org/10.3390/ma16216908