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Abstract: After the atmospheric hydrochloric acid leaching method is used to treat laterite ore and
initially purify it, the extract that results often contains a significant amount of Fe2+ impurities. A
novel metallurgical process has been proposed that utilizes microbubble aeration to oxidize Fe2+

ions in laterite hydrochloric acid lixivium, facilitating subsequent separation and capitalizing on the
benefits of microbubble technology, including its expansive specific surface area, negatively charged
surface attributes, prolonged stagnation duration, and its capacity to produce active oxygen. The
study examined the impacts of aeration aperture, stirring speed, oxygen flow rate, pH value, and
reaction temperature. Under optimized experimental conditions, which included an aeration aperture
of 0.45 µm, stirring at 500 rpm, a bubbling flow rate of 0.4 L/min, pH level maintained at 3.5, and
a temperature range of 75–85 ◦C, the oxidation efficiency of Fe2+ surpassed 99%. An analysis of
the mass transfer process revealed that microbubble aeration markedly enhances the oxygen mass
transfer coefficient, measured at 0.051 s−1. The study also confirmed the self-catalytic properties
of Fe2+ oxidation and conducted kinetic studies to determine an apparent activation energy of
399 kJ/mol. At pH values below 3.5, the reaction is solely governed by chemical reactions; however,
at higher pH values (>3.5), both chemical reactions and oxygen dissolution jointly control the reaction.

Keywords: laterite; microbubble; hydrochloric acid lixivium; oxidation of Fe2+; oxygen mass transfer

1. Introduction

Nickel and cobalt are often associated with iron in laterite, a principal nickeliferous
laterite mineral [1]. The extraction of valuable metals from this mineral involves methods
such as reduction roasting–ammonia leaching [2,3], high-pressure acid leaching (AL) [4,5],
and atmospheric AL [6–8]. Among these methods, atmospheric hydrochloric-acid-based
AL is attracting increasing attention as an effective metal extraction process. In the AL
process, iron is simultaneously extracted into the solution along with nickel and cobalt
from the laterite ore. Fe3+ can be precipitated and separated from nickel–cobalt solutions
by neutralization [9]. However, the separation of Fe2+ from nickel–cobalt solutions has
proven difficult because of the phenomenon of coprecipitation upon neutralization. Before
proceeding with additional processes like mixed hydroxide precipitation and the solvent
extraction of nickel and cobalt, it is necessary to first oxidize and precipitate Fe2+ [10].
Nevertheless, when it comes to hydrometallurgy, the limited reactivity at low temperatures
and the low solubility of atmospheric oxygen in aqueous solutions have constrained its
direct utilization as an oxidizing agent in numerous applications.

Previous studies have reported an iron removal rate of 98.28% when iron was oxidized
and removed from wastewater under specific conditions, which included a pH level of 6.92,
an air flow rate of 500 mL/min, and a reaction time of 2.5 h [11]. However, it is important
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to note that in the context of laterite nickel ore leaching solutions, maintaining a pH level as
high as 6.92 has been associated with significant losses of valuable elements such as nickel
and cobalt, and the reaction kinetics have been observed to be relatively slow.

Under specific controlled conditions, SO2/O2 mixtures produce peroxymonosulfate
(PMS) free radicals in solution, and these are a strong oxidant. The practical approaches
necessary for enhancing the oxidation of Fe2+ using SO2/O2 at 75 ◦C were explored within
the context of a process aimed at eliminating iron in the form of Fe3+ oxides from a simulated
high-pressure acid leach solution of nickel laterite, maintained at a pH of around two [10].
However, the reaction product, SO4

2−, is considered an impurity in chloride systems.
The simultaneous removal of Fe2+ (2.0–4.2 mg/L) from groundwater was achieved

through the application of PMS-assisted in situ oxidation/coagulation in combination with
a ceramic ultrafiltration process [12]. Although this method has been reported to be capable
of oxidizing Fe2+, it also has a few shortcomings. For instance, the oxidant is expensive,
making this method more suitable for systems with a low iron content.

Fe2+ oxidation by O2 has been studied intensively by several researchers [13–18]. The
rate of oxidation of Fe2+ was studied as a function of the pH, temperature, and ionic
strength [16]. Furthermore, in prior research regarding the oxidation of neutral ferrous
sulfate solutions, the rate equation was formulated in the following manner:

d[Fe2+]/dt = −k[Fe2+][OH−]2PO2 (1)

for the reaction
Fe2+ +

1
4

O2 + 2OH− +
1
2

H2O = Fe(OH)3 (2)

where [OH−] = Kw*/[H+], Kw* is the stoichiometric dissociation constant for water [19].
The oxygenation of Fe2+ in neutral solutions is accelerated by the reaction product, iron
hydroxide, and by the addition of iron hydroxide [20,21]. However, there have been few
studies on the oxidation of ferrous ions in weakly acidic solutions (pH range of 3.3–4.7),
despite the importance of this reaction with respect to preferential precipitation during
hydrometallurgical processes.

Microbubbles are defined as bubbles with a diameter less than 50 µm and are valuable
in various technical applications due to their characteristic behavior of reducing in size
and collapsing when submerged in water [22]. Furthermore, they possess an extensive
specific surface area, a surface with negative charge, prolonged stagnation capabilities, and
a high efficiency in transferring oxygen [23]. Moreover, the collapse of microbubbles can
generate free radicals, even without the presence of dynamic stimuli [22,24]. Therefore, the
collapsing of air microbubbles results in the decomposition of substances like phenol and
methyl orange [25,26]. Microbubbles have been recognized as suitable for a wide array of
applications due to their exceptionally high bioactivity and efficiency in mass transfer. The
concept of nucleating small bubbles as potential microbubbles through the compression of
a gas stream for dissolution into a liquid and subsequent release via a specially designed
nozzle system is based on the principles of cavitation [27]. The size of these microbubbles
can be controlled by adjusting the pore size of the membrane employed [28].

In this study, a novel method of O2 microbubble-enhanced oxidation of Fe2+ was
employed. Using the atmospheric pressure hydrochloric acid lixivium of laterite ore
obtained from our team’s previous research as the raw material, the oxidation behavior of
Fe2+ at lower pH values (approximately 3.3–4.7) was investigated, providing theoretical
guidance for the subsequent one-step iron removal combined with the goethite method.
The objectives of this study were to: (1) study the enhancement effect of microbubbles on
the oxygen mass transfer process; (2) evaluate the ability of Fe2+ to undergo oxidation under
different conditions; (3) and explore the kinetics of the reactions, including the sequential
stages of oxygen dissolution and oxidation within the solution, with consideration given to
the catalytic effects of ferric hydroxide.
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2. Experimental
2.1. Samples and Methods Used

The experiments were carried out within a 1 L glass reactor with multiple necks, placed
in a temperature-controlled water bath accurate to within ±1 ◦C. The reactor was loaded
with 500 mL of a simulated solution of hydrochloric acid solution of laterite, containing
1 g/L of Fe2+, 0.048 g/L of Ni, 0.007 g/L of Co, 0.03 g/L of Mn, 0.097 g/L of Al, 0.045 g/L
of Cr, and 6 g/L of Mg, and heated to the predetermined temperature. Pure compressed
oxygen or air from a cylinder (Huanyujinghui, China) was introduced externally and
directed through titanium microporous filters (Tianjian, China) into the solution. The
pH of the solution was kept constant through automated titration using NaOH, while
DO (dissolved oxygen) levels were continuously monitored throughout the experiment.
To halt the oxidation reaction, liquid samples were promptly subjected to acidification.
Subsequently, the solution was rapidly cooled, and ferrous ion analysis was performed.

To investigate the kinetics of oxygen mass transfer, a simulated acid solution devoid
of Fe2+ was created. Nitrogen (N2) was bubbled into the solution to eliminate dissolved
oxygen. Subsequently, external oxygen (O2) was introduced and passed through tita-
nium microporous filters into the solution. The dissolved oxygen (DO) content was then
monitored over a specified duration.

All the reagents used were obtained from various suppliers and employed without
further purification. The water used was deionized to minimize the traces of the dissolved
metal ions and salts. All the experiments were repeated thrice, and the data shown are the
means.

2.2. Analytical Method

The concentration of Fe2+ was assessed through titration, utilizing a standard K2Cr2O7
solution with Na-diphenylamine-sulfonic acid as an indicator [29]. The Fe3+ concentration
was calculated by subtracting the Fe2+ concentration from the total iron concentration,
determined using inductively coupled plasma optical emission spectrometry [30]. Dis-
solved oxygen (DO) levels were measured employing a DO meter (Seven2Go, Mettler,
Switzerland).

3. Results and Discussion
3.1. Effect of Oxygen Mass Transfer by Microbubble Aeration

Figure 1 depicts the changes in dissolved oxygen (DO) concentration in the simulated
acid lixivium lacking Fe2+ over time at different aeration capacities. Initially, DO concentra-
tions increased rapidly due to significant driving forces facilitating oxygen mass transfer,
ultimately reaching a saturation point at 20.45 mg/L. It is worth noting that this saturation
concentration is slightly lower than that observed in deionized water (22.17 mg/L). This
discrepancy is attributed to the presence of electrolytes in the laterite hydrochloric acid
solution, leading to a salting-out effect that diminishes oxygen solubility [31]. Subsequently,
DO concentration exhibited a gradual increase during aeration with larger bubbles.

The relationship shown in Figure 1 fits the basic mass transfer equation

ln([O2]s − [O2]) = −KLat + ln([O2]s − [O2]0) (3)

where [O2]s is the oxygen concentration at saturation, [O2] is the oxygen concentration
in the medium, [O2]0 is the oxygen concentration at time t = 0, KLa is the oxygen transfer
coefficient, and t is the time.

The model’s plot takes the form of a linear graph, with the slope representing the
oxygen transfer coefficient. Figure 2 illustrates the relationship between ln([O2]s–[O2]) and
time in both macrobubble and microbubble scenarios. Notably, the oxygen mass transfer
coefficient for microbubbles (0.051 s−1) surpassed that of macrobubbles (0.006 s−1) by
a factor of 8.5. This remarkable difference can be attributed to the negatively charged
surface properties of microbubbles, which hinder their aggregation [32] and enable them to
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maintain a substantial specific surface area. According to the Yang–Laplace equation [23],
the small diameter of microbubbles results in a significant internal pressure. All these factors
collectively enhance the rate of mass transfer from the bubbles into the aqueous phase,
leading to a higher concentration of dissolved gas in the aqueous phase. Consequently, a
higher oxygen mass transfer rate significantly enhances the efficiency of Fe2+ oxidation.
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3.2. Effects of Experimental Conditions on Fe2+ Oxidation
3.2.1. Effect of Aeration Aperture

The effect of the aeration aperture on the enhanced oxidation of Fe2+ from the lat-
erite hydrochloric acid lixivium was examined. The experimental results are shown in
Figure 3. It can be seen that in the case of pure oxygen, the efficiency of oxidation using a
0.45 µm aeration head was very high, and the oxidation process was completed within
8 min. However, as the aperture of the aeration head was increased, the oxidation efficiency
decreased gradually and was the lowest at 3 mm. This is due to the increase in the diameter
of the aeration head, which led to an increase in the diameter of the bubbles generated [28].
This caused more bubbles to rise to the liquid level and then disappear. In addition, the
mass transfer inside the liquid phase was reduced [33], and the production of active oxygen
also decreased indirectly [22].



Materials 2023, 16, 6951 5 of 12

Materials 2023, 16, x FOR PEER REVIEW 5 of 13 
 

 

3.2. Effects of Experimental Conditions on Fe2+ Oxidation 
3.2.1. Effect of Aeration Aperture 

The effect of the aeration aperture on the enhanced oxidation of Fe2+ from the laterite 
hydrochloric acid lixivium was examined. The experimental results are shown in Figure 
3. It can be seen that in the case of pure oxygen, the efficiency of oxidation using a 0.45 µm 
aeration head was very high, and the oxidation process was completed within 8 min. 
However, as the aperture of the aeration head was increased, the oxidation efficiency 
decreased gradually and was the lowest at 3 mm. This is due to the increase in the 
diameter of the aeration head, which led to an increase in the diameter of the bubbles 
generated [29]. This caused more bubbles to rise to the liquid level and then disappear. In 
addition, the mass transfer inside the liquid phase was reduced [34], and the production 
of active oxygen also decreased indirectly [23]. 

As shown in Figure 3, the efficiency of oxidation with pure oxygen and air was also 
compared. The oxygen concentration also affects the efficiency of oxidation of Fe2+; the 
higher the oxygen concentration, the faster the reaction rate. There are two possible 
reasons for this. On the one hand, the partial pressure of oxygen in the case of pure oxygen 
is greater than that in air, which enhances the mass transfer process. On the other hand, 
oxygen facilitates the formation of ‧OH radicals, and consequently accelerates the 
oxidation process [26]. It has also been reported that reactive oxygen species, such as 
superoxide anion radicals, H2O2, and ‧OH radicals, are generated during the reduction 
of molecular oxygen to water through the acceptance of four electrons [35]. 

 
Figure 3. Oxidation efficiency of Fe2+ for different oxidation methods. Experimental conditions: 
oxidation time = 8 min, temperature = 75 °C, bubbling flow = 0.4 L/min, pH = 3.5, stirring speed = 
500 rpm. 

3.2.2. Effect of Stirring Speed 
Figure 4 illustrates the impact of stirring speed on the enhanced oxidation of Fe2+. 

Following an 8 min oxidation period, it was observed that the efficiency of Fe2+ oxidation 
was notably higher when the stirring speed exceeded 500 rpm. This phenomenon can be 
attributed to the primary processes involved in bubble formation from the pores, which 
include bubble growth and detachment. When gas was introduced, microbubbles 
initiated their growth phase. Once the separation force generated by the water phase flow 
exceeded the retaining force, bubbles detached from the pore opening. Vigorous stirring 
amplified the separation force, resulting in smaller diameter bubbles [36]. Another valid 
reason is definitely the decrease in the thickness of diffusion mass transfer boundary 

Figure 3. Oxidation efficiency of Fe2+ for different oxidation methods. Experimental conditions: oxidation
time = 8 min, temperature = 75 ◦C, bubbling flow = 0.4 L/min, pH = 3.5, stirring speed = 500 rpm.

As shown in Figure 3, the efficiency of oxidation with pure oxygen and air was also
compared. The oxygen concentration also affects the efficiency of oxidation of Fe2+; the
higher the oxygen concentration, the faster the reaction rate. There are two possible reasons
for this. On the one hand, the partial pressure of oxygen in the case of pure oxygen is
greater than that in air, which enhances the mass transfer process. On the other hand,
oxygen facilitates the formation of ·OH radicals, and consequently accelerates the oxidation
process [25]. It has also been reported that reactive oxygen species, such as superoxide
anion radicals, H2O2, and ·OH radicals, are generated during the reduction of molecular
oxygen to water through the acceptance of four electrons [34].

3.2.2. Effect of Stirring Speed

Figure 4 illustrates the impact of stirring speed on the enhanced oxidation of Fe2+.
Following an 8 min oxidation period, it was observed that the efficiency of Fe2+ oxidation
was notably higher when the stirring speed exceeded 500 rpm. This phenomenon can be
attributed to the primary processes involved in bubble formation from the pores, which
include bubble growth and detachment. When gas was introduced, microbubbles initiated
their growth phase. Once the separation force generated by the water phase flow exceeded
the retaining force, bubbles detached from the pore opening. Vigorous stirring amplified
the separation force, resulting in smaller diameter bubbles [35]. Another valid reason is
definitely the decrease in the thickness of diffusion mass transfer boundary layers on the
surface of each bubble due to increase in stirring speed. This results in enhanced/faster
mass transfer to the bulk [36,37]. Furthermore, an increase in mass transfer can also be
attributed to the effect of turbulence within the medium, leading to a higher kinetic energy
dissipation rate [38]. Consequently, an increase in stirring speed contributed to improved
gas dispersion, thereby enhancing mass transfer.
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temperature = 75 ◦C, bubbling flow = 0.4 L/min, pH = 3.5, aeration aperture = 0.45 µm.

3.2.3. Effect of Bubbling Flow Rate

Figure 5 illustrates that during the initial 8 min period, an increment in the flow rate
led to a progressive rise in the efficiency of Fe2+ oxidation. When oxygen is supplied,
the deep oxidation of Fe2+ can be achieved at a flow rate > 0.4 L/min, and the oxidation
rate can be greater than 99%. Previous studies suggest that the mean bubble diameter is
barely affected by the flow velocity or surface tension [37]. Therefore, for the same reaction
time, an increase in the gas flow rate means that more microbubbles are generated; this
enhances mass transfer and results in the production of more free radicals, thereby aiding
the oxidation process.
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3.2.4. Effect of pH

As can be seen in Figure 6, the rate of oxidation of the Fe2+ increases with the increase
in pH, and the change in the reaction rate with the pH can be explained based on the
effect that hydroxyl ions has on the reaction rate [19]. Concurrently, H+ is the product of
Fe2+ oxidation precipitation reaction; the fact that its concentration is lower means that the
reaction proceeds to the right, thereby resulting in a higher reaction rate. According to the
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results of a previous experimental study [9], in the case of Ni laterite hydrochloric acid
leaching liquors, the Ni recovery rate is affected by the balance between precipitation and
dissolution and decreases as the pH is increased. Therefore, the optimal oxidation pH was
determined to be 3.5.
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3.2.5. Effect of Temperature

The impact of temperature on the rate of Fe2+ oxidation was also examined. As
shown in Figure 7, in the temperature range of 65–95 ◦C, the oxidation ratio of Fe2+

increases with increasing temperature. The oxidation ratio of Fe2+ is primarily affected
by the oxygen reaction activity, oxygen mass transfer coefficient, and DO concentration.
According to the theory of kinetics, increasing the temperature can increase the percentage
of activated molecules and the diffusion coefficient, and simultaneously decrease the
oxygen solubility [6,39,40]. At low temperatures, the former dominates, promoting the
generation of active oxygen species, increasing molecular collisions, and reducing activation
energy. However, the decrease in the oxygen solubility becomes more pronounced at high
temperatures, thereby inhibiting the formation of active oxygen. Conversely, the increase in
the reactivity of the reactive species caused by the increase in the temperature is generally
the main factor leading to a change in the oxidation rate of ferrous ions.
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3.3. Study of Macroscale Kinetics

The effect of microbubble aeration as an enhanced method on the system is to disperse
the gas, accelerate mass transfer, and promote the reaction; however, it also increases the
activity of the reactants through the system’s violent collision, and reduces the threshold
of reaction occurrence [14,41–44]. Because most conventional studies on Fe2+ oxidation
have reported low reaction rates and used low Fe2+ concentrations, the DO concentrations
can be considered approximately constant. However, the system is fully energized under
the conditions of microbubble aeration, and its kinetics may be different from those of the
conventional form.

In Figure 6, the time variation of Fe2+ concentration measured at different pH values
is depicted. It can be observed that the first-order reaction curve of [Fe2+] exhibits a
concave shape, deviating from the rate Equation (1). The oxidation clearly demonstrates
autocatalytic properties, and as both the initial concentration and reaction time increase,
it progressively diverges from normal first-order kinetics. The acceleration of oxidation
may be attributed to the catalytic effect exerted by reaction products, which intensifies with
ongoing oxidation [42].

To investigate the impact of heterogeneous reactions, we conducted an oxidation
experiment: a 0.01 mol/L FeCl2 solution was subjected to oxidation for one hour at a
temperature of 75 ◦C, pH value of 3.5, and rotation speed of 500 rpm, followed by filtration.
Subsequently, the filtered residue was introduced into a simulated lixivium and further
oxidized under identical experimental conditions. As depicted in Figure 8, it is evident
that the presence of precipitate significantly enhances the rate of oxidation compared to its
absence.
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The oxidation of Fe2+ by dissolved oxygen (DO) takes place through two distinct
pathways [20,21]: one involves a homogeneous reaction within the solution, while the other
entails a heterogeneous reaction occurring on the precipitate. The latter term makes a more
substantial contribution. Thus,

Fe2+ + O2 = Fe3+ + O−
2 (homo) (4)

Fe2+
ad + O2 = Fe3+ + O−

2 (hetero) (5)
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We made the assumption that the adsorption of Fe2+ onto the precipitate reaches
equilibrium. The observed oxidation rate is the combined result of both homogeneous and
heterogeneous reactions and, under a constant pH condition, can be expressed as

−d[Fe2+]/dt = k[Fe2+][O2] + ks[Fe2+][O2]L1 (6)

where k is the rate constant of the homogeneous reaction, ks represents the rate constant
for the heterogeneous reaction, and L1 denotes the concentration of adsorbed Fe2+. In a
study conducted by Tamura et al. [20], the ratio L1/[Fe2+] was determined under varying
pH levels and precipitate quantities, yielding the subsequent empirical equation

L1/[Fe2+] = K1Lp/[H+] (7)

where Lp was the concentration of iron precipitate, and the constant K1 was 1.41 × 10−5 at
298 K.

Given the assumption that the precipitate’s surface characteristics in this study resem-
ble those observed by Tamura et al. [20] and that their K1 value can be extended to our
investigation, it can be concluded that L1 is notably lower than Lp, and

Lp ≈ [Fe2+]0−[Fe2+] (8)

From Equations (6)–(8), we obtain

− 1
[Fe2+ ] [O2 ]

d [Fe2+ ]

dt
= k + k1( [Fe2+ ]0 − [Fe2+ ]) (9)

where
k1 = ksK1/[H+] (10)

Using the experimental data for [Fe2+], [O2], and d[Fe2+]/dt, we plotted the left-hand
side of Equation (9) against ([Fe2+]0−[Fe2+]) in Figure 9. The parameters ‘k’ and ‘k1’ were
determined through linear regression analysis, with ‘k’ corresponding to the intercept, and
‘k1’ being derived from the slope of the linear regression.
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The relationship between temperature and the rate constant ‘k’ is presented in
Figure 10, with the activation energy calculated to be 399 kJ/mol. The variations of
Fe2+ ions and dissolved oxygen concentration over time under different pH conditions
are illustrated in Figure 6. Initially, the oxidation reaction exhibits an accelerated rate,
indicating that heterogeneous reactions play a significant role as precipitation increases.
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During the experimental conditions with a pH lower than 3.5, the dissolved oxygen concen-
tration swiftly attains saturation upon the initiation of oxidation, indicating that chemical
reaction primarily dictates the overall rate. Conversely, at elevated pH levels, the oxygen
concentration remains below saturation, indicating that both the chemical reaction and the
dissolved oxygen collectively influence the overall oxidation rate.
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4. Conclusions

A comprehensive investigation has been undertaken in order to explore the optimiza-
tion of Fe2+ oxidation in the hydrochloric acid leachate of laterite through the utilization of
the microbubble aeration method. An analysis of the mass transfer process has unveiled
that the oxygen mass transfer coefficient, KLa (0.051 s−1), associated with the microbubble
aeration approach surpasses that of the macrobubble aeration method (0.006 s−1) by a
substantial factor of 8.5. Single-factor experiments have demonstrated that under ideal
conditions (including an aeration orifice diameter of 0.45 µm, a stirring speed of 500 rpm,
a gas flow rate of 0.4 L/min, a pH level of 3.5, a temperature range of 75–85 ◦C, and an
oxidation duration of 8 min), the efficacy of Fe2+ oxidation exceeds an impressive 99%. It
has been substantiated that the microbubble oxygen exhibits inherent self-catalytic proper-
ties in the context of the Fe2+ oxidation reaction. Subsequent kinetic investigations have
disclosed an apparent activation energy of 399 kJ/mol. It is important to note that the
governing mechanism of the reaction primarily relies on chemical reactions when the pH is
maintained below 3.5. However, when the pH surpasses the threshold of 3.5, both chemical
reactions and oxygen dissolution act in concert to control the reaction.
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