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Abstract: Successfully reconstructing bone and restoring its dynamic function represents a signifi-
cant challenge for medicine. Critical size defects (CSDs), resulting from trauma, tumor removal, or
degenerative conditions, do not naturally heal and often require complex bone grafting. However,
these grafts carry risks, such as tissue rejection, infections, and surgical site damage, necessitating the
development of alternative treatments. Three-dimensional and four-dimensional printed synthetic
biomaterials represent a viable alternative, as they carry low production costs and are highly repro-
ducible. Hyperelastic bone (HB), a biocompatible synthetic polymer consisting of 90% hydroxyapatite
and 10% poly(lactic-co-glycolic acid, PLGA), was examined for its potential to support cell adhe-
sion, migration, and proliferation. Specifically, we seeded collagen-coated HB with MG-63 human
osteosarcoma cells. Our analysis revealed robust cell adhesion and proliferation over 7 days in vitro,
with cells forming uniform monolayers on the external surface of the scaffold. However, no cells
were present on the core of the fibers. The cells expressed bone differentiation markers on days 3 and
5. By day 7, the scaffold began to degrade, developing microscopic fissures and fragmentation. In
summary, collagen-coated HB scaffolds support cell adhesion and proliferation but exhibit reduced
structural support after 7 days in culture. Nevertheless, the intricate 3D architecture holds promise
for cellular migration, vascularization, and early osteogenesis.

Keywords: hyperelastic bone; 3D-printed scaffold; degradation; biocompatibility; hydroxyapatite;
osteogenic differentiation; MG-63 cells; poly-lactic-co-glycolic acid; PLGA

1. Introduction

Effective bone regeneration is imperative in contemporary clinical practice due to the
rising prevalence of skeletal fractures generated by trauma, congenital anomalies, revi-
sion joint arthroplasty, or tumor resection [1]. Anatomic regions, such as the craniofacial
area or extremities, are mostly affected [2]. Considered to be a “Gold Standard” in the
treatment of such conditions, autologous bone graft prevails as it provides an osteoinduc-
tive scaffold coupled to signaling molecules and osteogenic cells directly to the damaged
site [3,4]. Recent data show that more than two million bone grafts are implanted an-
nually worldwide, with one in every four procedures being performed in the US [4–7].
However, while recent medical advances have brought significant improvements in the
orthopedic field, successfully grafting bone tissue still ranks amongst the most challenging
clinical procedures [8]. Substantial disadvantages, namely the limited quantity of grafts,
postoperative pain, fractures at the harvest site, nerve damage, donor site infection, and
socioeconomic costs are associated with this procedure [4,9–11]. Further, adequate healing
and complete regain of function are dependent on the patient’s age, comorbidities, physical
condition, and disease severity [12]. The emergence of post-graft complications, such
as medication-related osteonecrosis of the jaw (MRONJ), presents a significant problem,
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particularly in patients undergoing medical treatments involving anti-resorptive, anti-
angiogenic, or immunomodulatory agents [13]. For example, a study that evaluated dental
implant therapy in patients with a history of oral bisphosphonate use noted the increased
risk of bisphosphonate-related osteonecrosis of the jaw (BRONJ). The study concluded
that, despite successful rehabilitation, concerns about BRONJ persist, prompting the rec-
ommendation for a case-specific approach to treatment decisions [14]. While traditional
dental implants are associated with BRONJ risk, the emergence of 3D and 4D synthetic
bone implants offers promise in mitigating complications. These advanced implants are
designed to facilitate better integration with the surrounding bone tissue and support
more natural bone healing, potentially reducing associated risks. Synthetic biocompatible
implants represent a promising alternative for bone repair, as they can be mass-produced at
relatively low costs and are easily customizable to fit complex anatomic skeletal defects [15].
Additionally, the precise control of construction and biological and biochemical properties
makes these biomimetic scaffolds extremely desirable [15]. Recent studies have proved that
biocompatible, nontoxic scaffolds made of chitosan, alginate, collagen, or hyaluronic acid
are now able to sustain and promote tissue development while maintaining biomechanical
integrity and, ultimately, biodegradability [16]. One such material is represented by hy-
perelastic bone (HB), which can be printed at high manufacturing rates of up to 27 cm3/h
from room-temperature extruded liquid inks [17].

A recent study investigated the HB scaffold’s ability to support cell viability, prolif-
eration, and osteogenic differentiation of seeded human mesenchymal stem cells in the
absence of osteoinductive factors [17]. Subsequently, HB biocompatibility evaluations were
carried out in vivo, encompassing a mouse subcutaneous implant model (7 and 35 days).
A rat posterolateral spinal fusion model was also used to assess de novo bone formation
(8 weeks), while further evaluation included a rhesus macaque calvaria defect case over
a period of 4 weeks. Results unveiled regenerative effects, characterized by the absence
of infection, immune rejection, or fibrotic encapsulation. The HB scaffolds demonstrated
rapid structural integration with host tissue, ultimately leading to ossification and de novo
bone formation [17]. Another study addressed the challenges associated with regenerat-
ing large bone fractures by utilizing HB implants enriched with superparamagnetic iron
oxide nanoparticles (SPIONs) [18]. The initial phase of the experiment involved in vitro
examination, demonstrating the viability of embryonic murine C3H10T12 cells and human-
patient-derived osteoblast-like cells seeded on the HB scaffolds over a period of 14 days.
Subsequently, in vivo examination, utilizing a rat model of a femoral bone defect proved
significant regenerative effects were observed within a two-week timeframe. Importantly,
there were no indications of infection, immune rejection, or fibrotic encapsulation [18]. Sim-
ilar to the previously described study, the HB grafts exhibited rapid integration within the
existing tissue and de novo bone formation [17,18]. Another study focused on enhancing
regenerative techniques for craniomaxillofacial bone injuries by incorporating a 3D-printed
polymer or ceramic-based meshes into mineralized collagen scaffolds [19]. The two mesh
types, Fluffy-PLG and HB, were evaluated for their impact on the mechanical and biological
properties. Notably, both mesh-reinforced composites demonstrated increased osteogene-
sis support, upregulating key osteogenic genes like RUNX2, Osterix, and COL1A2. The
HB-reinforced composites also exhibited a significant boost in osteoprotegerin secretion, a
crucial factor in inhibiting osteoclast-mediated bone resorption [19].

Synthetic bone scaffolds proved substantial efficacy and bone-forming potential, espe-
cially when combined with various osteoinductive agents [17–20]. For example, Wang et al.
employed controlled-release recombinant human bone-morphogenetic protein-2 (rhBMP-2)
within 3D-printed hydroxyapatite scaffolds to assess its osteogenic potential [17]. Another
study that utilized 3D-printed HB demonstrated that the structures exhibited significant
osteogenic response in adult human mesenchymal stem cells [21]. Moreover, through se-
quential seeding of pre-cultured human smooth muscle cells (hSMCs), followed by human
umbilical vein endothelial cells (HUVECs), these structures can serve as comprehensive
platforms for developing synthetic-based vascularized bone grafts [20]. In vivo experi-
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ments also noted successful outcomes, with subcutaneous implantation [22], calvaria defect
animal models [23], and even LV-transduced ADSCs implanted in murine models [24].
These findings underscore the considerable translational potential of 3D-bioprinted HB
scaffolds alone or enriched with functional nanoparticles [17]. However, it has been re-
ported that the geometry and porosity of 3D-printed HB scaffolds can drastically impact
their mechanical characteristics and overall behavior [17,18]. Given these aforementioned
studies, we wanted to introduce a variation in the experimental approach using HB, that
is, by coating it with collagen to see if it improves its performance as a tissue-engineered
scaffold. Herein, we describe our in vitro study using collagen-coated-HB in combination
with osteoblastic cells.

In light of these advancements, we hypothesized that the HB scaffold is capable of
supporting robust cell adhesion and proliferation. Specifically, our study aimed to assess the
biocompatibility, biodegradability, and osteoinductive capacity of a 3D-printed HB scaffold,
seeded with MG-63 cells. Considering that hydroxyapatite is the main inorganic component
of bone [4], the scaffold was composed of 90% by weight (wt) hydroxyapatite and 10%
by weight poly (lactic-co-glycolic acid, PLGA). Initial adhesion experiments involved
the use of positive (+collagen) and negative controls (−collagen). However, due to the
observation of irregular and non-uniform patterns of cell attachment in the negative control
group, we opted to use a type I collagen coating consistently throughout the experimental
timeline. Type I collagen promotes cellular adhesion while serving a fundamental role in the
native extracellular cellular matrix [25]. Previously, we also functionalized poly(L-lactide)
electrospun scaffolds with bioactive collagen molecules and showed that they supported
robust osteoblast adhesion and mineralization [26].

2. Materials and Methods
2.1. Hyperelastic Bone Characteristics

The HB scaffold was designed and produced by Dimension Inx LLC, Chicago, IL, USA.
The structure is composed of 90% by weight (wt) HA and 10% by weight PLGA, totaling
8 layers at 170 um/layer. The individual fibers are 250 um in diameter with an offset
between the fibers of 0–90◦ and 0–7 mm spacing (Figure 1). HA represents the main ionic
component in bone [27] and PLGA is an FDA-approved biodegradable polymer that has
been widely used as a scaffold for tissue engineering applications [28–30]. Moreover, our
laboratory has extensively used PLGA to generate tissue engineering scaffolds designed
to deliver DNA [31–34], growth factors [35], and antibiotics [36], as well as to study their
basic properties such as degradation and hydrophilicity [37].
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2.2. Cell Culture

The MG-63 human osteosarcoma cell line (Sigma Aldrich, St. Louis, MI, USA, 86051601)
was cultured in α-MEM (ThermoFisher, Waltham, MA, USA) supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin (Sigma-Aldrich) at 37 ◦C with 5% CO2.

2.3. Preparation and Seeding of HB

The 3D-printed HB sheet provided by Dimension Inx LLC was cut into standard-size
fragments (7 × 7 mm) and hydrated following the manufacturer’s protocol. To maintain
proper sterility, the procedures were performed under a laminar flow hood. Briefly, the
individual HB pieces were submerged for 5 min in 70% ethanol, followed by a wash with
a phosphate buffer solution (PBS). This ensured both proper hydration as well as the
removal of any microscopic fragments that resulted from sectioning. After completion of
three hydration and wash cycles, the scaffolds were submerged in rat tail Type 1 collagen
(5 mg/mL) for 1 h. Adequate collagen viscosity was maintained by keeping the samples on
ice throughout the coating procedure. The excess collagen solution was vacuumed, and the
HB samples were transferred into individual wells of a 96-well plate. The scaffolds were
then seeded with MG-63 cells, at a concentration of 2.5 × 105 cells/scaffold. Following a
30 min incubation period (37 ◦C), an additional 150 µL of α-MEM was added to submerge
the scaffold in the medium. Figure 2 summarizes the experimental design.
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2.4. Immunofluorescence and Imaging

After 1, 3, 5, and 7 days in culture, the cell-seeded scaffolds (n = 10/timepoint) were
stained with a LIVE/DEAD Viability/Cytotoxicity Kit (ThermoFisher, Waltham, MA, USA).
Briefly, the cell-seeded scaffolds were washed with PBS and immersed in LIVE/DEAD
solution for 15 min at 37 ◦C. The staining solution was then removed, and the structures
were washed 3X with PBS. Gross cell morphology was also assessed using nuclei stain DAPI
(Sigma, St. Louis, MO, USA). Images were taken using a fluorescent microscope (Zeiss
Axiovert, Zeiss, Dublin, CA, USA) with Lumenera Infinity 3 camera/software (Teledyne,
Waterloo, ON, Canada). Additionally, confocal laser scanning microscopy (CLSM) was
used to visualize the proportion and distribution of viable cells on the individual fibers.
Cell viability measurements were determined with the help of ImageJ Software 1.49v.

2.5. Cell Proliferation Analysis (MTS)

Cell proliferation, viability, and cytotoxic were assessed using the 3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (ab197010).
Prior to the addition of the MTS reagent, the scaffolds were relocated in a sterile 96-well
plate, and the reagent was immediately added according to the supplied manufacturer’s
protocol. The samples were incubated for 4 h before measuring their absorbance val-
ues at 490 nm. The analysis was conducted on days 1, 3, 5, and 7 of the experiment
(n = 5/timepoint).
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2.6. Cryosections

Cell-seeded HB scaffolds (n = 3/group) were embedded into Tissue-Tek (Leica, Wetzlar,
Germany) and placed in a−80 ◦C freezer. The blocks were cut, forming 30 µm cross-sections
using a cryotome (Leica, Wetzlar, Germany). The cryosections were stained with DAPI for
15 min at 37 ◦C, followed by a PBS wash and visualized using fluorescent microscopy as
described above.

2.7. Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR)

Quantitative real-time PCR (qPCR) was used to evaluate the expression levels for the
bone differentiation markers, collagen type 1 (Col 1), osteocalcin (OCN), and RUNX-2, with
18S as the housekeeping gene (Table 1). Total RNA was isolated on days 3 and 5 from
MG-63 seeded HB scaffolds (n = 5/timepoint). The samples were initially homogenized in
TriZol reagent (Invitrogen, Waltham, MA, USA), followed by RNA extraction. Sample RNA
concentration was measured using the Nanodrop (ND1000). The obtained RNA samples were
then used to generate cDNA (High-Capacity cDNA Reverse Transcription Kit from Applied
Biosystems, Waltham, MA, USA) per the manufacturer’s instructions. Quantitative real-time
PCR (qPCR) was performed on pooled cDNA samples for each time point. Primers were
custom designed to amplify sequences within the interest genes Col I, OCN, and RunX-2.
All gene expression patterns were normalized to the expression pattern of the housekeeping
18S gene. Reactions utilized the One-Step QuantiTect SYBR Green RT-PCR kit (Qiagen,
Hilden, Germany) and were run using a Light Cycler 480 (Roche, Basel, Switzerland). Each
experiment was performed 5X to determine the standard deviation. The results were reported
as an average fold change relative to each time point ± standard deviation.

Table 1. Primers used for qPCR: Col I collagen type I, OCN osteocalcin, RunX-2 runt-related tran-
scription factor 2.

Gene Accession # Forward Reverse Annealing
Temp

Amplicon
Size (bp)

Col 1 XM_054315083 5′-CCGCCGCTTCACCTACAGC-3′ 5′-TTTTGTATTCAATCACTGTCTT-3′ 64 ◦C 83

OCN NM_199173 5′-AGCAAAGGTGCAGCCTTTGT-3′ 5′-GCGCCTGGGTCTCTTCACT-3′ 64 ◦C 63

RUNX-2 NM_001278478 5′-ATTCCTGTAGATCCGAGCACC-3′ 5′-GCTCACGTCGCTCATTTTGC-3′ 64 ◦C 81

2.8. Statistical Analyses

All statistical analyses were conducted in GraphPad Prism 9 with one-way analysis of vari-
ance (ANOVA). All results are expressed as the mean ± standard deviation. A p-value ≤ 0.05
was considered statistically significant. All experiments were conducted in triplicate. The
symbols *, **, ***, and **** represent p ≤ 0.05, 0.01, and 0.001, 0.0001, respectively.

3. Results
3.1. Adhesion

In the absence of a collagen coating, cell adhesion was poor on these scaffolds. These
uncoated scaffolds demonstrated irregular and non-uniform patterns of cell attachment as
opposed to the collagen-based scaffolds that showed robust cell adhesion (Figure 3). These
observations underscore the pivotal influence of collagen coating on enhancing cellular
adhesion and, subsequently, cellular migration and proliferation, as described below.

Throughout the selected time points, specifically, 1, 3, 5, and 7 days, seeded collagen-
coated HB scaffolds demonstrate a homogenous distribution of viable cells (Figure 4).
Interestingly, the geometry of the structure substantially enhanced cellular migration on
all the individual layers. Moreover, the grid-like architecture allowed for nutrient-rich
α-MEM media to adequately reach cells located at the core of the scaffold. This section
may be divided by subheadings. It should provide a concise and precise description of the
experimental results and their interpretation, as well as the experimental conclusions that
can be drawn.
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3.2. Proliferation

LIVE/DEAD staining of the HB scaffolds on day 1, demonstrated the presence of
viable cells on the HB scaffolds. By day 3, the density of live cells increased, while migra-
tion ensured spatial distribution throughout the HB scaffold by day 5. Importantly, there
were only a few fluorescently marked dead cells. The results were verified quantitatively
using the MTS assay and are shown in Figure 5. By day 7, the number of cells decreased
dramatically as a result of scaffold degradation.

Specifically, cell proliferation peaked on day 5 (Figure 5), as cells developed mono-
layers on the individual fibers of the HB scaffold (Figure 6). Using different focal plains,
fluorescent images of the top three layers show viable MG-63 cells homogeneously adhered
to the scaffold. Clusters of cells were evident as cell proliferation continued, confirming the
scaffold’s biocompatibility. However, confocal imagining shows that cellular proliferation
occurs mostly on the external scaffold fibers. No cells were observed within the core of the
scaffold’s individual fibers. Notably, up to day 5 in the culture, the HB scaffold provided
adequate structural support, successfully maintaining its mechanical characteristics.

However, scaffold degradation begins to occur around day 6. The HA and poly fibers
became brittle and developed microscopic fissures. This phenomenon was initially located
close to the edges of the construct. However, from day 7 onwards, the HB scaffold degraded
rapidly, and even minimal mechanical stress (movement) produced significant structural
defects. Due to severe fragmentation, the number of surviving cells drastically decreased,
as indicated by the MTS assay (Figure 5).
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3.3. Cell Migration

Sections of cell-seeded scaffolds were stained with DAPI at the end of 5 days in
culture since that was the highest rate of proliferation observed (Figure 7). A thin layer
of cells was present on the scaffold’s outer lamina attached to the collagen-coated surface.
However, no cells penetrated the core of the fibers. To further support these findings,
confocal microscopy was used to evaluate cellular morphology and distribution (Figure 7).
A coronal three-dimensional view of the HB fibers depicted the same spatial distribution
noted by cryosection analysis. Remarkably, results were consistent throughout the different
levels of the structure, as cell growth can be identified up to the core levels of the complex
geometrical construct.

3.4. Gene Expression

mRNA levels of bone differentiation markers expressed by MG-63 cells were shown
to be upregulated throughout the experiment. Specifically, we examined the temporal
expression of Col I, OCN, and RunX-2 after 3 and 5 days of incubation. (Figure 8) All three
genes showed stable expression at both 3 and 5 days post-plating, indicating that the cells
have retained their osteogenic potential.
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Figure 7. DAPI-stained cryotome sections of cell-seeded scaffolds on day 5 of culture confirm
successful cell proliferation on the outer lamina of the scaffold. Top schematic indicates the slices
obtained thought the scaffold. Arrows mark confluent cells on the fiber surface (B) and around the
fibers (C,D). No cells were observed penetrating the core of the fibers (A) as an indirect indicator of
low porosity. Confocal imaging demonstrates the formation of a cellular layer on the surface of the
structure (E–G).
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Figure 8. Expression of osteogenic markers Col I, OCN, and RunX-2 was measured by qRT-PCR
and compared between day 3 and day 5 of incubation. Relative expressions were normalized to 18S
(housekeeping gene). Gene expression showed a gradual increase throughout the 2 measured time
points. Data are presented as mean ± SD (n = 5/timepoint).

4. Discussion

Restoring bone structure and function in damaged bone tissue represents a mon-
umental challenge for physicians and researchers. The biological complexity of bone
fracture/defect healing is morphologically characterized by a cascade of well-orchestrated
events, such as the inflammatory response, chondrogenesis, and osteogenesis [38]. How-
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ever, internal repair mechanisms often lack the capacity to heal large structural defects,
making bone grafting one of the few available therapeutic approaches. Autogenous cancel-
lous bone grafts provide osteogenic and osteoconductive properties but the high incidence
of morbidity during graft harvest and the high socioeconomic costs associated with this
intervention create an urgent demand for alternative therapeutic approaches. Techniques
such as 3D and 4D bioprinting represent a rapidly evolving niche that provides innovative
and cost-efficient solutions for regenerative medicine [39]. Several studies have investigated
shape-fitting polymers for both in vitro [20,21,40,41] and in vivo applications [22,23,40,42].
While the complex geometric structure of 3D scaffolds provides mechanical support, the
use of an osteoinductive material, such as hydroxyapatite, tricalcium phosphate calcium
sulfate, or bioactive glass-ceramics, is mandatory for the recruitment of immature cells and
osteogenesis [15]. Therefore, selecting the appropriate structural design, biomaterial, and
cellular or molecular components is crucial for successful bone regeneration.

In this study, we evaluated the spectrum of advantages provided by 3D-biomimetic im-
plants. The constructs, developed by “Dimension Inx” are novel, as they are commercially
available and “ready to print”, hence requiring little preparation prior to implanting. Recent
advancements in bio-inks mean that the geometry and architecture of 3D-biomimetic struc-
tures can now provide increased resistance to tensile force while maintaining biodegradabil-
ity. The balance between mechanical strength, porosity, and vascularization is paramount
for the success of bone constructs. What sets our study apart is the unique focus on archi-
tecturally intricate HB scaffolds which, compared to other constructs, have an eight-layer
grid-like design that offers high flexibility while maintaining a certain degree of stability.
The use of such a complex geometrical shape allows “room” for cellular migration and
vascular development while notably, requiring no need for crosslinking. Another unique
element of this study centers on the size of the samples. This approach distinguishes the
study by offering valuable insights into the possible constraints of complex 3D-printed
HB scaffolds when addressing smaller-sized defects, primarily attributable to structural
degradation and poor long-term adhesion. Previous in vitro experiments using similar
HB have demonstrated that it serves as an ideal platform for studying cell behavior and
cellular response in a controlled environment [43]. For example, HB has been shown to
exhibit remarkable osteogenic potential as it produced a significant osteogenic response in
adult human mesenchymal stem cells, without the need for any additional osteoinductive
factors [21]. The 3D-biomimetic structure can serve as a physiologically relevant microenvi-
ronment for cells. However, one limitation of biomimetic materials is they are sometimes
represented by low cellular adhesion. Namely, alginate or chitosan structures have low
bioactivity due to the lack of cell-binding sites [15]. This issue was encountered while using
HB, as the structure alone did not promote significant cellular adhesion in preliminary trials.
In a previous study, Vandrovcová et al. in 2011 proved that coating synthetic scaffolds
with collagen improves adhesion, proliferation, and osteogenic differentiation in MG-63
cells [44]. Moreover, studies show that the use of ECM proteins offers a “softer” substrate
for cell adhesion while increasing osteogenic gene expression [45]. To circumvent this
limitation, we tested whether a collagen-type I coating applied to the HB structure can
improve cell adhesion. While a prominent formation of mineralized nodules was noted in
similar scaffolds [46], no such clusters were identified in our study, probably due to the
limited culture time. During the initial 5 days of the experiment, uniform and gradual
cellular growth was evident, characterized by the formation of a cellular monolayer as
observed through light and confocal microscopy. Expression analysis showed an upreg-
ulation in Col Type I, OCN, and RUNX two genes, indicating maintenance of osteogenic
potential. Through its enhanced biomimicry of native bone, HB can facilitate proliferation,
differentiation, and osteogenic potential for a limited interval.

While ceramic-based bone constructs have been used in a large number of stud-
ies [46,47], research is still needed to develop scaffolds based on bioresorbable polymers [16].
Previously, we showed that SCPP polymerized alginate/collagen hydrogels facilitate MC-
3T3 osteoblast growth and mineralization [48]. However, additional factors such as rigid-
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ity and essential blood supply are fundamental, especially for bone defects larger than
5 cm [49,50]. As such, adequate material porosity represents a vital characteristic of 3D-
printed bone-mimicking scaffolds [51–53]. Interestingly, similar 3D-printed HB scaffolds
have been used to serve as comprehensive platforms for developing synthetic-based in vitro
vascularized bone grafts [20]. A recent study concluded that sequential seeding of hSMCs
and HUVECs over a period of 3 weeks can generate early microvascular networks which
can further develop into formed lumen structures throughout the 3D-printed HB. However,
in our study, although initially maintaining adequate rigidity, the hydroxyapatite and
poly bio-ink undergo degradation after only 7 days in culture. As we observed its degra-
dation kinetics, we noted that structural disintegration might be attributed to the initial
sectioning of the provided sheet. Furthermore, the relatively small size of the fragments
used could be considered a contributing factor to rapid structural disintegration. Unlike
other ceramic-based materials, the quick loss of strength during in vitro manipulation and
the poor degradation of its internal structure makes HB scaffolds problematic for cellular
development. Long-term survival and proliferation of cells were affected by this rapid
fragmentation. Notably, between days 5 and 7, the structure became brittle and began to
develop micro-fissures. By day 7, the HB scaffold was degrading rapidly, as even mini-
mal mechanical stress would produce significant structural defects, leading to decreased
cell counts.

Further, a major limitation of our study was represented by poor cellular migration to
the core of the HB fibers. Although the grid-like structure supported cellular proliferation
throughout the eight individual layers, inks, such as alginate, matrigel, or hyaluronic acid,
form a gelatinous protein mixture that can be used for the encapsulation of various cell
types. The use of dense hydroxyapatite and poly ink severely limits cellular migration.
DAPI-stained cryosections and confocal imaging showed that cells were unable to penetrate
the 3D fibers. Even at peak cell proliferation, no cells were identified in the internal core of
the individual fibers. However, promising findings were evident in other in vivo studies.
For example, in murine experiments, subcutaneous HB implants demonstrated biocom-
patibility, improved tissue growth, and structure over commonly implemented hot-melt
polymer-calcium phosphate composite materials [54]. Similar beneficial observations were
reported in a rat posterolateral spinal fusion model, where HB was equally efficacious at
promoting bone growth, as allograft-derived demineralized the bone matrix [42]. A case
study of HB implantation in a calvaria bone defect in a rhesus macaque demonstrated
that the synthetic graph can be quickly produced on a relevant scale and fashioned in-
traoperatively to press-fit into the defect site [22]. Finally, in a separate investigation, the
viability of human adipose-derived stem cells (ADSCs) transduced with a lentiviral (LV)
vector to overexpress BMP-2 was evaluated when loaded onto an HB scaffold. The study
demonstrated successful BMP-2 production by transduced ADSCs on the HB scaffold,
leading to significant bone formation in a hind limb muscle pouch model [24]. Histolog-
ical analysis confirmed the formation of woven bone, which was notably absent in the
control groups. Despite promising results observed in previously described settings, the
limitations observed in our current experiment require additional investigation. Although
novel bio-ink formulation, in conjunction with 3D and 4D-bioprinting technology, has great
potential, choosing the correct formula for bio-inks is heavily dependent on the type of
bone defect [39,55]. Future investigations are necessary as the loss of mechanical strength
and reduced permeability might essentially lead to poor contact between the scaffold and
defect margins. Arguably, the size of the implants could be fundamental for structural
degradation, cell recruitment, angiogenesis, and regenerative healing, as 3D-HB implants
might be better suited for in vivo applications on large bone defects.

In conclusion, our study underscores the importance of gaining a deeper understand-
ing of the dynamic components and scaffold functions for the advancement of future
bio-inks in regenerative medicine. While our investigation yielded promising results, sev-
eral limitations necessitate attention for further progress. Notably, the quest for long-term
stability and mechanical integrity remains fundamental and must be addressed to ensure
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the practical viability of these scaffolds in clinical settings. Existing biomedical scaffolds
could provide a temporary template for tissue engineering while the encapsulation of
growth factors, cells, or even vascular components should be considered. The creation
of precise mechanical and biological constructs for individual applications in bone tis-
sue regeneration can, however, present significant challenges due to the complex and
unique characteristics of bone and its diverse responses to different types of trauma and
healing processes.

Another limitation of the current study includes the absence of a control group utilizing
different bio-ink formulations. This underscores the need for future research to provide a
more comprehensive assessment of various biomaterials. Moreover, the translational issue
remains significant, as no fully functional bone structure has yet been fabricated using 3D
or 4D printing approaches.

5. Conclusions

The proposed study examined the biocompatibility, biodegradability, and osteoin-
ductive capacity of a 3D-printed HB scaffold seeded with MG-63 cells in vitro. Initial
adhesion and proliferation were successful but were unfortunately limited by the gradual
degradation of the HB scaffold. The addition of Collagen Type 1 coating enhanced the
robust adhesion of osteogenic cells, which successfully formed monolayers throughout
the eight individual levels of the scaffold. However, cells did not penetrate the 3D-printed
fibers, limiting their growth and migration to the external lamina. Notably, the cells ex-
hibited osteogenic activity, as shown by increased Col I, RUNX 2, and OCN expression.
Additionally, the geometric assembly of HB offers structural support and easy nutrient-rich
media flow between individual layers. A certain degree of elasticity might make the HB
structure adequate to fit complex defects. However, by day 7, microfractures and general
degradation of the biomimetic material resulted in a substantial decrease in live cells. If
controlled, HB cell-seeded grafts can be valuable in treating bone microlesions, providing
temporary mechanical support and osteoinductive stimulus for dynamic in vivo healing.
Overall, the study demonstrates the effectiveness of utilizing ECM-based proteins to fa-
cilitate the adhesion, growth, and migration of cells on synthetic polymer scaffolds and
broadly outlines the osteoinductive characteristics of cell-seeded biodegradable constructs.
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