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Abstract: The increasing accumulation of rock waste obtained due to ore processing and its environmental
impacts, such as acid mine drainage and elevated concentrations of heavy metals in soils, necessitates the
transformation of mining technologies based on the concept of circular waste management. The research is
aimed at improving the parameters of the mechanical activation effect produced on technogenic georesources,
as well as at expanding the application scope of disintegrators in the field of using the partial backfill of the
mined-out space when developing stratified deposits. In this regard, the research purpose was to substantiate
the parameters of extracting metals from enrichment tailings using their mechanochemical activation to
ensure cyclic waste management. The research involved the application of three-dimensional interpolation
methods used for processing the data and the graphical representation. As a result, the following was found
to be characteristic of the waste of the Sadonsky mine management. The degree of extracting zinc from
pre-activated tailings increases logarithmically when the H2SO4 concentration and the NaCl proportion
decrease 3.5 times. The degree of extracting lead from the activated tailings increases according to the
Fourier law when decreasing the NaCl mass concentration, and an optimal range of the H2SO4 (0.38–0.51%)
proportion decreases six times. One of the key results of the research is the justification of expanding the
scope of applying disintegrators in the case of a directed activation influence exerted on the components
of the stowing strips. The obtained results expand the understanding of the mechanism of the influence of
the mechanochemical activation of dry tailings on the reactivity unevenness when extracting several metals
from them.

Keywords: hydrometallurgical process; chemical activation; leaching Pb; failure (mechanical);
circular waste management; resource use efficiency; environmental management; sustainable
production; heavy metals and pollution
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1. Introduction

At the present stage of socio-economic development, developed countries are facing
global challenges in the field of consuming energy, water, and resources and ensuring
sustainable economic growth [1–3]. The growing need for various metals while maintain-
ing the natural environment quality necessitates the development of projects by mining
enterprises in increasingly complex conditions, which causes the problem of resource
endowment inequality [4–7]. The mining of energy resources and mineral raw materials
becomes simultaneously a versatile source of solid and liquid wastes [8,9]. The volumes of
the enrichment tailings in Chile alone reach 800 million t/year, while only 0.5 kg of metals
can be extracted from each ton [10]. The increasing accumulation of wastes during ore
dressing changes the geochemical composition of soils [11–15], which results in the fertility
loss of the soils. In addition, significant threats to microbial communities are created [16]
by changing the composition of soil gases [17,18]. The acid drainage processes [19,20]
and the formation of salt crusts on horizontal sections of the terrain require an urgent
improvement of the methodology of the integrated geo-ecological monitoring of the mining
waste impact [21,22]. This aspect should be taken into account when implementing both
promising geotechnologies [23,24] and methods of complex waste processing [25–29].

One of the advanced fields in this issue is forming “circular waste management” [30–35].
This system of measures is primarily aimed at optimizing material flows based on their cyclicity
at all stages of production [36–40]. Another approach within the framework of the “circularity”
concept is the re-extraction of metals from technogenic raw materials of old tailings [41,42]
or after the direct formation of enrichment tailings [43–45], ash residue of solid household
waste [46], and the reuse of various kinds of waste [47–49].

Leaching the metals is simulated mainly on the basis of the equations of the inverse
exponential function [50], as well as other two-dimensional graphical representations
(for example, during the atmospheric leaching of mixed chlorides) [51]. The presence of
many exogenous factors influencing the leaching efficiency significantly complicates the
formulation of the problem [52,53]. The most important factors are a ratio of H2SO4 and
HCl in the leaching solution [54,55], a high-pressure value aimed at intensifying oxidative
acid leaching [56,57], and leaching time [58–60]. Scientific works analysis [61–64] showed
that in the metals leaching process, the following parameters are the most important:
the lixiviant type (H2SO4, HCl, HNO3); stirring speed; solid-to-liquid (S/L) ratio; acid
concentration; temperature; granulometric composition of tailings; leaching time. For
example, with an S/L ≤ 20 g/L, the degree of leaching of rare earth elements is 50%
higher than with an S/L = 100–200 g/L [65–69]. In most cases, sulfuric acid leaching is
preferable for Zn extraction (Pb yield is minimal), while the use of hydrochloric acid can
increase the Pb yield to 9.6% [55]. The degree of Pb extraction from tailings increases with
increasing acid concentration from 1 M to 2 M (with leaching time = 48 h) when using
H2SO4 from 46 to 58% and with HCl from 80 to 91% (which makes it more attractive for
choice of acid) [67]. During sulfuric acid leaching of low-grade zinc-containing ores, a
change in grinding fineness from −208 + 147 to −74 + 53 µm at 50 ◦C, 10% H2SO4, and
leaching time = 180 min leads to an increase in zinc yield from 28 to 80% [68]. Another
similar study proved that a particle size of 75–80 µm is sufficient to recover 91.97% of zinc
with a leaching time of only 20 min, 70 ◦C, and a sulfuric acid concentration of 100 g/L [69].
When using NaOH as a leaching solution, the grinding fineness had virtually no effect on
the yield of Zn and Pb, amounting to 78 and 10%, respectively [70].

It is worth noting that the main problem of extracting metals from enrichment tailings
is the search for optimal parameters and ways to increase their reactivity. The most
promising direction for this is to ensure the amorphization of raw materials using a high-
energy mechanical action [71,72]. The mechanochemical activation increases the surface
area of a solid and decreases the coherence energy, causing a spontaneous aggregation,
adsorption, or recrystallization of a geomaterial [73]. The general theory states that the
main effect of high-energy grinding is achieved due to changes in the stress-strain and
dispersion state, causing changes in the structure and chemical activity of the material.
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When processing the nickel ore (20% of H2SO4), the Ni concentration in the pulp varied
from 88% to 98%; Co ranged from 96% to 98%; Fe varied from 82% to 90% when the
leaching time was 60–120 min [74,75]. This study indicates the importance of assessing
the mechanical activation effect of the tailings when the leaching time is minimal. At the
same time, the assessment of the mutual influence of several factors exerted on leaching
the metals remains insufficiently studied. Optimizing the ratio of the proportions of the
reagents present in the leaching solution is also extremely important for the process under
study. The kinetics of leaching Cu by the acid from activated chalcopyrite leads to the fact
that the crystallinity degree of the geomaterial becomes 30% higher, and the dissolution
rate increases by 40% [40,76]. The activation of siliceous tailings is known to change the
pozzolanic activity unevenly when they are used as cement [77]. Therefore, the following
question arises: can the mechanical activation effect cause an uneven effect of activating the
leaching reactions when using different metals? In this connection, the research is aimed at
testing the hypothesis consisting of the fact that when the agitation leaching time is short,
the high-energy influence can cause a “competition” between metals for the consumption
of lixiviants present in the leaching solution.

The concept of a closed cycle of geomaterials necessitates not only the disposal of
waste but also its reuse in underground development [78–80]. The best thing is to produce
declining stratified deposits in operating mines. For example, sodium sulfate that is
used for activating slag pastes (filling mass) when the curing time is 28 days can reach
40 MPa [81–83].

In this regard, the purpose of the work is to substantiate the parameters of extracting
metals from the enrichment tailings using their mechanochemical activation to ensure
cyclic waste management.

2. Materials and Methods

The research object for the first task was the tailings of the Mizursky enriching factory
(they have enriched pyrite–polymetallic ores since the 1970s) that represent a typical geo-
material of the Zgidsky, Sadonsky, and Archonsky deposits of the Sadonsky mining district
of Russia. In addition, the volume of accumulated tailings already exceeds 4 million tons,
and the chemical pollution zone is about 39.4 km2. The chemical composition of the raw
materials is presented in Table 1, and the particle size is given in Table 2. For particles
screened by a 0.1 mm sieve, the specific surface area was 129.2 m2/kg.

Table 1. The chemical composition of the enrichment tailings.

Component Content (%)

Pb 0.84 ± 0.06
Zn 0.95 ± 0.06

TiO2 0.03 ± 0.001
Al2O3 0.8 ± 0.04
K2O 3.5 ± 0.05
Mn 0.015 ± 0.002
Cu 0.18 ± 0.08
Ag 0.015 ± 0.002
S 1.88 ± 0.15

CaO 1.96 ± 0.15
Fe2O3 4.4 ± 0.05
SiO2 31.4 ± 0.13
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Table 2. Granulometric composition of tailings.

Residue on Sieve, mm, %

Sieve size, mm 1.6 1 0.63 0.40 0.315 0.2 0.16 0.1

Activated tails, % 3.18 4.56 4.12 6.20 9.72 15.46 18.30 24.12

Original tails, % 22.3 11.25 8.62 5.74 4.01 4.26 3.22 2.09

Similarly to [84], the general task of determining the metal yield was considered as a re-
sponse function in the volume concentrations of lixiviants (h (H2SO4), g/L;
h (NaCl), g/L); the ratio of solid and liquid fractions (S/L); the pulp mass (Mp); the
agitation leaching time (t, min); the presence/absence of the activation influence; and the
rotor rotation speed in the disintegrator (Speed, rpm), if available. The main parameters
(ranges h of (H2SO4) h of (NaCl), S/L) were specially selected to be the same as those
mentioned in the previous work and were assumed to be the same for each group of the
experiments. As before, the five-dimensional formulation of the problem of determining
the response space, specified implicitly, can be defined as Pb = ƒ(h; t; S/L; Mp). A detailed
description of the formulas used for determining intermediate values during experiments
is provided in [84].

The H2SO4-NaCl mixture is used in the technological process of the existing industry,
and this determines the “basic version” parameters of the technology. The advantage of
using NaCl is conditioned by the ability to extract Pb simultaneously with Zn by obtaining
hydrochloric acid during the reaction between sodium chloride and sulfuric acid. The
acid H2SO4 leaching is the “classic” and most effective option, although it is the least
environmentally friendly. A more focused study in this area is [55].

In this study, the first stage of the experiments required clarifying the influence of
the preliminary dry mechanical activation effect (when the number of rotor rotations was
minimum) exerted on the enrichment tailings during a minimum leaching time. The ground
samples of the tailings were sieved through a 2.0 mm sieve to form the pulp. The activation
effect on the pulp was produced by a DESI-11 disintegrator (Tootmise OÜ, Tallinn, Estonia)
(Figure 1) at a rotor speed of 300 rpm and 1200 rpm, respectively, for 0.25 and 1 h.
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Figure 1. The laboratory installation intended for mechanical activation.

The waste mass in each sample (3 repetitions) was 50 g. The concentration of the
metals in the pulp was determined by a common technique using an atomic absorption
spectrometer “KVANT-AFA” (OOO “KORTEK”, Moscow, Russia). Since the results of the
experiments raised a number of questions when realizing the first stage, a decision was
taken to conduct clarifying experiments on leaching zinc. To carry out percolation leaching,
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an ES-8400 overhead stirrer (Moscow, Russia) was used, while in all the experiments, the
mixing speed was 50 rpm. In the second stage, the problem of assessing the influence of
the disintegration effect on the longer leaching of Pb was solved (Table 3).

Table 3. Type parameters of sets of experiments.

Type Name of a Group of Experiments

Li_Pb(0.25) Des_Pb(0.25) Des_Zn(0.25) Li_Pb(1) Des_Pb(1)

Metal type Pb Pb Zn Pb Pb
t (min) 15 15 15 60 60

Speed (rpm) - 300 300 - 1200

Table 3 shows that in the first set of the experiments “Li_Pb(0.25)”, the agitation
leaching of lead from the geomaterial samples was conducted for 15 min. To consider a
five-dimensional problem in several three-dimensional ones, in each set of experiments,
two factors were assumed to be constant: the S/L and h(H2SO4)/h(NaCl) ratio. S/L took
one of three values (1/4, 1/7 and 1/10). At the same time, the h(H2SO4)/h(NaCl) ratio
was equal to the following series of values (2/20; 6/20; 10/20; 2/160; 6/160; 10/160;
6/90). In addition, to reduce the dimensionality, the Mp factor was completely neutralized
by transiting to the mass concentration of lixivants present in it (mP (H2SO4), % and
mP (NaCl), % (Table 4)).

Table 4. Variants of the experiments in each set of groups of the experiments.

N
h

(H2SO4)
h

(NaCl) S/L
MP

mP
(H2SO4)

mP
(NaCl)

g/L g/L g % %

1 2 3 9 11 12 13

1 2 20 1/4 250 0.16 1.58
2 6 20 1/4 250 0.47 1.58
3 10 20 1/4 250 0.79 1.58
4 2 160 1/4 250 0.15 11.79
5 6 160 1/4 250 0.44 11.77
6 10 160 1/4 250 0.73 11.75
7 6 90 1/4 250 0.46 6.86
8 6 90 1/7 400 0.50 7.50
9 2 20 1/10 550 0.18 1.80

10 6 20 1/10 550 0.54 1.80
11 10 20 1/10 550 0.90 1.79
12 2 160 1/10 550 0.17 13.40
13 6 160 1/10 550 0.50 13.38
14 10 160 1/10 550 0.83 13.36

The analysis of the scattered data remains a rather complex task that is solved in
different ways. The algorithms based on machine learning or deep learning are mainly
used [85–87], including ANN in combination with the Levenberg–Marquardt Scheme
having backpropagation [88,89], Shapley Additive exPlanations (SHAP) in combination
with CatBoost (an AI model was used for increasing the gradients on decision trees) [90],
two-dimensional regression models [91–93], Shapley Value Regression [94], Nearest Neigh-
bor Method [95], etc. The main disadvantages of ANN, as well as of other “stochastic”
interpolation methods, are provided in [96–98].

Q-Q graphs were selected as a “goodness-of-fit” criterion used for checking the sim-
ulation quality. At the initial stage (as well as when constructing Q–Q graphs), the data
were processed using the Microsoft Excel v2010 software. The author’s approach was
based on the method of processing the experimental data, using the classical algorithm of
“smoothing” the data in combination with the three-dimensional triangulation procedure
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of Renka R.J. [99,100], which were implemented in the form of “scripts” (using the Vi
IMproved software (v9.0)), coded in Python (v2.7.10). The final three-dimensional graphs
were constructed in the “gnuplot” software (v5.4). The data were regressed using the least
square method intended for selecting the model parameters (“Scilab v6.1.1” software).

3. Results

3.1. The Influence of the Preliminary Dry Mechanical Activation Effect on the Agitation Leaching
of Pb and Zn from Technogenic Raw Materials

The essence of the first stage of the research consisted of comparing two response sur-
faces: the agitation leaching of Pb during 15 min without activating the tailings (Li_Pb(0.25)),
depending on different ratios of the mass fractions of H2SO4 and NaCl; leaching Pb from
pretreated dry geomaterials in a disintegrator at a “speed” of 300 rpm (Des_Pb(0.25)) when
the duration of the process and the ratios of the mass fractions of H2SO4 and NaCl are the
same. In addition, at the first stage, an additional set of experiments on leaching Zn from
the mechanically activated dry geomaterials at a “Speed” of 300 rpm (Des_Zn(0.25)) was
carried out when the process duration and the ratio of lixivants were the same. The second
stage of identifying the influence of the process duration on the efficiency of leaching
Pb consisted of two sets of experiments, “Li_Pb(1)” and “Des_Pb(1)”, intended for the
simple agitation leaching of Pb during 60 min and obtaining lead from the mechanically
activated dry tailings at a “speed” of 1200 rpm. The results of all the above variants of the
experiments are shown in Table 5.

Table 5. Results of the five sets of experiments on the efficiency of leaching the metals from techno-
genic raw materials.

N
Experiment Group Names

Li_Pb(0.25) Des_Pb(0.25) Des_Zn(0.25) Li_Pb(1) Des_Pb(1)

1 2 3 4 5 6

1 1.43 0.81 19.37 17.14 1.43
2 1.59 8.34 88.72 3.12 5.39
3 0.48 0.95 56 1.43 0.86
4 36.19 17.62 6.74 24.76 3.33
5 40.77 9.1 21.16 41.78 38.71
6 38.1 2.38 28.21 37.14 37.14
7 47.45 32.12 53.34 24.38 34.99
8 49.17 33.33 36.84 40.83 45
9 3.57 3.21 50.53 3.57 2.98
10 2.87 7.62 88.04 2.08 5.58
11 4.76 2.62 61.05 1.79 6.67
12 30.95 35.71 4.63 46.43 36.9
13 36.25 23.26 18.1 50.3 51.7
14 35.71 38.1 13.68 44.05 38.1

The processing of the first two sets of the experiments when the leaching duration was
15 min, provided in Table 4, is demonstrated in Figure 2.

The analysis of the response surface projection shown in Figure 2a allows the conclu-
sion that a NaCl concentration increase from 1 to 14% in the case of the boundary values of
H2SO4 (0.1 and 0.9%) leads to an increase in the lead yield in the pulp from 6–12% to 30%
according to a dependence that is close to the logarithmic one. To obtain the optimal con-
centration of the sulfuric acid (from 0.3 to 0.55%), starting with NaCl ≥ 1%, a monotonous
increase in the Pb concentration from minimum values to a maximum of more than 48% in
the NaCl range from 6.8 to 10% is also observed. When NaCl≥ 10%, the Pb yield increase is
replaced by a smooth decline to 38–36%. In this connection, a dependence by the type of a
rational Taylor series was established for this “base case”, whose formula has the following
form (R2 = 0.9):
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Pb =

(
10.33− 0.51NaCl− 37.64H2SO4 + 0.08(NaCl)2 + 25.16(H2SO4)

2 + 4.28NaClH2SO4

)
1− 0.14NaCl− 2.10H2SO4 + 0.01(NaCl)2 + 1.92(H2SO4)

2 + 0.10NaClH2SO4
, (1)Materials 2023, 16, x FOR PEER REVIEW 7 of 18 
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The analysis results presented in Figure 2b demonstrate that the preliminary acti-
vation of the geomaterial leads to the response surface transformation accompanied by
a pronounced tendency to shift the local maximum of the zone of the optimal ratio of
lixivants to the left relatively NaCl, which is very good. At the same time, the value of
the lead yield maximum decreased from 48 to 36%, which is a disadvantage. In addi-
tion, an insufficiently pronounced zone of the second local maximum (NaCl = 12–14%;
H2SO4 = 0.65–0.9%) having a level of 48% appears, which corresponds to the base vari-
ant value. In view of this, the dependence in the form of the Fourier Series Bivariate
Order 2 × 3 (R2 = 0.96) was established for this case of preliminary mechanical processing.

A slight deterioration of leaching the lead from the technogenic geomaterials was diffi-
cult to predict; the only reason could be the high chemical activity of another metal, which
was conditioned by the disintegrator action. To test the probability of the
Zn influence on the lead yield reduction when the process parameters are optimal, a
set of experiments, “Des_Zn(0.25)”, were conducted, whose results are shown in Figure 3.
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The analysis of the response surface projection presented in Figure 3 allows the
conclusion that the NaCl concentration increase from 1 to 14%, when the H2SO4 val-
ues were 0.1%, leads to a smooth decline in the zinc yield in the pulp from 54% to 6%
(NaCl = 10.5%) and less according to a dependence that is close to the parabolic one. When
the H2SO4 values are 0.9%, a NaCl proportion decrease results in a sharp decline in the
zinc yield of up to about 30% (NaCl = 6.5–10%) and then in a slight increase of up to 42%
when NaCl = 14%. A characteristic peculiarity of zinc is a very large local maximum zone,
and its extreme left location along NaCl indicates a very high reactivity of Zn with respect
to Pb (during their mechanical activation). Moreover, the mass concentration increase of
sulfuric acid from 0.2 to 0.8%, aimed to provide the maximum productivity of the process,
requires a progressively smaller fraction of NaCl (from 8 to 3%). When the maximum
lead leaching zone is imposed (see the red area in Figure 3) on a given response surface, it
becomes obvious that their locations are mutually conditioned.

For the case of the preliminary mechanical processing of the tailings, the dependence
of the Zn yield on the parameters of the lixiviants was established when the process of the
Taylor Series Polynomials type, ◦ lasted for 15 min, whose formula had the following view
(R2 = 0.92):

Pb = −61.65 + 188.19lnNaCl− 283.81lnH2SO4 − 123.79(lnNaCl)2 − 117.57(lnH2SO4)
2 + . . .

.. + 83.30NaClH2SO4 + 26.70(lnNaCl)3 + 28.73(lnH2SO4)
3 + 88.23lnNaCl(lnH2SO4)

2 + . . .
+30.49(lnNaCl)2lnH2SO4,

(2)

The Q–Q graphs shown in Figure 4 were selected as a “goodness-of-fit” criterion used
for checking the quality of three-dimensional models.

The analysis of Figure 4 shows that the quality of the obtained regression equations
is very high. The last stage of the experiments is conditioned by the need to identify the
mutual influence of the disintegration effect and the agitation leaching duration on the
degree of the lead yielded from the technogenic raw materials.
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3.2. The Mechanical Activation Effect during the Prolonged Leaching of Pb

The processing of the corresponding results presented in Table 4 is provided in Figure 5.
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The analysis of the response surface projection provided in Figure 5a allows the
conclusion that the NaCl concentration increases from 1 to 14% when the boundary value
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of H2SO4 is 0.1%, leading to a monotonous increase in the lead yield in the pulp from 6 to
44% (when NaCl ranges from 10.2 to 14%). The boundary H2SO4 value of 0.9% increases
the lead yield in the pulp from 6 to 43% when NaCl ranges from 2% to 14%. In the
case of the optimal sulfuric acid concentration (ranging from 0.5 to 0.72%), starting with
NaCl≥ 6.3%, a zone of the local maximum Pb yield having a minimum value of 36% is also
traced, which increases up to 42% when NaCl ≥ 12%. This maximum reaches the highest
value of 48% when NaCl ≥ 13.4%.

The analysis of the results presented in Figure 2b establishes the fact that the prelimi-
nary activation of the geomaterial (when t = 60 min) results in a similar picture presented in
Figure 2a. The main difference is a significant expansion of the local maxima area towards
a lower concentration of sulfuric acid (apparently because of an increase in reactivity due
to the amorphization of the geomaterials).

The comparison of the two variants of the agitation leaching shown in
Figures 2a and 5a, when the process duration is 15 and 60 min, allows the conclusion
that the more focused area of the maximum during a shorter leaching time is replaced by a
uniformly elongated area directed towards a smaller NaCl concentration. When comparing
the two variants of leaching the activated tailings (Figures 2a and 5b) while increasing υ

from 300 to 1200 rpm, the sizes of both zones of local maxima increase significantly. And
the local minimum area disappears altogether (NaCl ranges from 1 to 12.5%; H2SO4 varies
from 0.5–0.9%; the white area inside the darkest grayscale color indicates the area of zero %
of the Pb yield).

4. Discussion

The comparison of the results shown in Figures 2b and 3 makes it possible to conclude
that the obvious fact is a higher increase in the Zn reactivity as compared to that of Pb after
dry mechanical activation of the tailings. The absolute values of the local maximum of the
zinc yield are 54%, and in the same conditions, those of Pb are only 36%.

In this connection, a significant proportion of smithsonite is apparently present in the
tailings. The direct leaching of smithsonite with sulfuric acid is known to be represented
as follows:

ZnCO3 + H2SO4 → ZnSO4 + H2O + CO2, (3)

In [55], the simple agitation leaching of Zn from the tailings allowed for establishing
the fact that this process proceeded quite quickly, while Pb was practically not extracted.
When using hydrochloric acid instead of sulfuric acid, Pb was leached more efficiently
into the solution, with the yield ratio of Zn and Pb = 90 and 10%, respectively (or 9/1).
In our case, the introduction of additional hydrochloric acid into the leaching solution is
conditioned by the need to extract both of the metals. Sodium chloride is required for
the formation of hydrochloric acid, which in turn can react with Zn and Pb according to
the schemes:

NaCl + H2SO4 → NaHSO4 + HCl,
ZnCO3 + 2HCl→ ZnCl2 + H2O + CO2 ,

(4)

PbO + 2HCl→ PbCl2 + H2O, (5)

The area of the maximum Zn zone shown in Figure 3 is 6–7 times higher, and it is
located much to the left along the NaCl axis. This can be explained by the fact that at
low concentrations of sulfuric acid ranging from 0.1 to 0.35%, all the acid reacts actively
according to the reaction (3), which provides a disadvantage for the HCl formation. At
an optimal level of H2SO4 varying from 0.4 to 0.55%, the maximum volumes of sulfuric
acid seem to react with NaCl and cause an increase in reaction volumes by the reaction (5).
At the same time, to obtain optimal process parameters, the ratio of the Zn and Pb yield
must be 2/1, which determines the efficiency improvement of the metal leaching during
mechanical activation.

The mutual location of the two zones of the optimal leaching of the metal indicates that
zinc reacts at lower concentrations of the reagents that are present in the leaching solution.
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Lead leaching without mechanical activation is known to be about 23% [101]. Oxide, silicate,
or carbonate forms of zinc dissolve more easily in the sulfuric acid solution as compared
to lead disulfate [102,103]. The efficiency coefficient of using this acid (according to the
(AHP) method in the case of Zn) is the maximum possible (0.709), and in the case of Pb, it
is only 0.157. In our case, we managed to achieve 36% or more, while the local maximum
area became more focused in the region of optimal concentrations of H2SO4 and NaCl.
The obtained results of the optimum yield values of Zn (54%) and Pb (36–48%) correlated
well with the results of the flotation of the lead–zinc ores of the Belousovskaya enrichment
factory (Kazakhstan), where the recovery percentage was 58% and 29%, respectively [47].
In the study of Chinese researchers, applying the mechanical activation of sphalerite for
15 min allowed increasing the zinc yield from 5% to 30% [104]. This allows the conclusion
that when these two metals are simultaneously present in the tailings, a more soluble and
active zinc gains a greater effect during mechanical activation. As a result, proving the
effect of increasing the lead yield during preliminary high-energy grinding was impossible
in this work.

Without activating the tailings (when H2SO4 = 1 M, 0.5 M, and 0.25 M), no more than
30% of Zn was extracted in 2 h in another similar study [105]. At the same time, the zinc
yields comparable to that presented in our studies (about 50%) could be obtained only in 5 h.
Our results show the possibility of obtaining the same metal yield in the case of significantly
less leaching time and acid consumption. In the study, during the leaching time of 12 h,
the yttrium proportion in the solution was increased to 88% as compared to 48% obtained
without activation. In our case, when a leaching duration was 1 h (see Figure 5), the area
of the local minimum lead yield significantly decreased (by 50%). Similarly to [57], when
the S/L and a sulfuric acid fraction was 200 g/L, a large part of the metal yield during
activation in a ball mill was achieved in the first hour. Leaching Cu with sulfuric acid from
the ore [59] confirms the process productivity increase accompanied by an increase in the
number of rotor rotations. In our case, at high rotor speeds, lead is characterized by the
large focus of the second region of the local maximum (48%) towards the optimal values of
the sulfuric acid concentration.

Based on the obtained results, the following findings can be formulated:

1. For the first time, the present work has established the fact that during the preliminary
dry mechanical activation of the enrichment tailings lasting for 0.25 h, a decrease in
the mass NaCl concentration from 14 to 1% when the H2SO4 concentration decreases
from 0.8 to 0.2% occurs, which leads to a zinc yield increase from 12 to 54% by the
logarithmic dependence;

2. For the first time, the present study has determined the fact that during the preliminary
dry mechanical activation of the enrichment tailings lasting for 0.25 h, a decrease in
the mass NaCl concentration from 8 to 5% when the H2SO4 concentration decreases
from 0.38 to 0.51% occurs, increasing the lead yield from 6 to 36% according to the
dependence of a complex type;

3. Using a disintegrator to induce an activation effect significantly transforms the re-
sponse surfaces of the process under study, improving the efficiency of the Pb yield
from the enrichment tailings at a lower cost of reagents (expansion of the local maxima
areas regardless of the number of rotor rotations);

4. One of the key results of the research is the confirmation of the hypothesis about
the presence of a different reactivity when leaching the metals (in the case of Zn,
it is several times higher than that in the case of Pb), which is conditioned by the
mechanochemical activation of the dry tailings in the disintegrator.

The waste obtained at this stage, in accordance with the author’s approach, must be
used in the mine construction as fillers in filling mixtures. Some authors [106] suggest
using iron ore tailings (up to 20% by the concrete weight) as an inert filler in a mixture
containing cement. If the waste is reactivated in order to improve the properties of the filling
mass, as the study [107] mentions, the strength of the samples can be increased two times.
Even using the copper tailings as an additional cement material can be environmentally
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justified [108–110]. In our previous studies concerning this type of tailings, the backfilling
strength was found to be 8–9 MPa [84]. Other studies [111,112] also indirectly confirm
the efficiency of applying high-energy effects to improve the properties of geomaterials.
In our case, we propose using an alternative to foaming materials [113–115] applied for
the formation of filling masses or security structures in the form of high-performance
polyethylene filled with an inert filler composition, which should act as enrichment tailings.

5. Conclusions

Optimization of the agitation leaching parameters using the mechanical activation
of the technogenic geomaterials allows obtaining valuable polymetallic raw materials at
lower cost prices (the dump masses are already located on the surface). When introducing
“circular economy” mechanisms, the widespread use of disintegrators in order to involve
dump masses as an inert filler used for security strips will make waste recycling in mining
even more profitable. The main factor that will contribute to this concept implementation
is an efficiency increase in the preliminary extraction of the metals due to the fact that if the
agitation leaching is short-term, the mechanical activation of the tailings will necessarily
enhance the reactivity (and consumption of lixiviants in the leaching solution) of Zn
compared with that of Pb. This circumstance should be taken into account when justifying
the parameters of the full cycle of the multistage and complex processing of the technogenic
raw materials before using it as an inert filler.

The practical significance of applying the disintegrators for implementing the circular
waste management concept may consist in the subsequent development of the regulations
on applying the mechanical activation effect to technogenic waste for the purpose of
increasing the yield of metals and forming security strips.

Further research should be aimed at specifying the types of chemical reactions al-
lowing Pb and Zn leaching in the H2SO4–NaCl solution for such conditions (based on the
mineralogical studies of the samples), as well as searching for rational forms of security
strips based on the obtained results. The conclusions are valid only for the geomaterials
obtained from the Sadonsky mining district. The main limitations include the ranges of the
components present in the leaching solution (based on H2SO4 = 0.1–0.9%, NaCl = 1–12.5%);
the process duration is 0.25–1 h; the S–L ratio is from 1/4 to 1/10.
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