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Abstract: Acoustic metasurfaces, as two-dimensional acoustic metamaterials, are a current research
topic for their sub-wavelength thickness and excellent acoustic wave manipulation. They hold
significant promise in noise reduction and isolation, cloaking, camouflage, acoustic imaging, and
focusing. Resonant structural units are utilized to construct acoustic metasurfaces with the unique
advantage of controlling large wavelengths within a small size. In this paper, the recent research
progresses of the resonant metasurfaces are reviewed, covering the design mechanisms and advances
of structural units, the classification and application of the resonant metasurfaces, and the tunable
metasurfaces. Finally, research interest in this field is predicted in future.

Keywords: acoustic wave; acoustic metasurfaces; reflection; transmission; absorptive; tunability;
wavefront manipulation

1. Introduction

The efficient manipulation of electromagnetic or acoustic waves is a prominent area of
natural sciences. The metasurface provides a new idea for wave manipulation. In 2011, Yu
et al. proposed the theory of interfacial phase discontinuity [1]. “V”-shaped microstructures
can be designed in sub-wavelength materials based on the theory, and these materials,
known as metasurfaces, can be controlled by geometric parameters of the structure to obtain
the phase change of 0 to 2π [2], and consequently, arbitrarily regulate electromagnetic wave
propagation, driving a boom in electromagnetic metasurfaces [3–6]. An electromagnetic
metasurface has the advantage of a strong modulation, thin size and various production
capabilities. Similar to electromagnetic waves, the concept of electromagnetic metasurfaces
was quickly extended to the acoustics field. Acoustic metasurfaces can also achieve an
arbitrary modulation of acoustic wave propagation. Li et al. designed a two-dimensional ul-
trathin acoustic metasurface with a space-coiling structure and realized arbitrary regulation
of the reflected acoustic wave both theoretically and experimentally [7,8].

Space-coiling structures [9] and resonance structures are the main two types of struc-
tural units for building acoustic metasurfaces. The space-coiling structure achieves relative
control of the phase shift by accumulating travel distances of acoustic waves in the coil
channel. Furthermore, the resonant structure has the advantage of manipulating large
wavelengths with a smaller structure, and the acoustic metasurface constructed by the reso-
nant unit realizes anomalous reflection and focusing at deep subwavelengths. In addition,
efficiency is an important issue in the design of acoustic metasurfaces. For example, perfect
absorbers and bianisotropic metasurfaces were used in perfect anomalous reflection and
transmission. However, it is worth noting that the functionality of these metasurfaces is
fixed and they operate only at a single operating frequency or a narrow frequency range.
Therefore, the design of tunable acoustic metasurfaces has become a fascinating topic. Such
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metasurfaces should be tuned either by the geometrical parameters of the structure unit or
by external physical fields (e.g., electromagnetic or force fields).

Here, we review the recent research progresses of the resonant metasurfaces. This
paper is structured as follows. Section 2 presents the resonance mechanism and devel-
opment of the structure unit for resonant metasurfaces. Section 3 surveys three main
types of the metasurface and the representative phenomena and applications, including
acoustic cloaking, sound absorption, acoustic focusing and so on. Section 4 summarizes
the classification and development of tunable metasurfaces. Some main challenges and
future outlooks towards developing resonance metasurfaces are given in Section 5. The
detailed principles of metasurfaces can be found in References [10,11].

2. The Resonance Structure Units

The construction of structural units is crucial in developing acoustic metasurfaces.
These units must fulfill the necessary requirements, including the 2π phase change and
being as small as possible. The resonant structure unit that controls large wavelengths with
a small size precisely meets this requirement, and it is increasingly researched. These reso-
nant units (e.g., Helmholtz resonance, thin film resonance) can induce unipolar or dipole
resonance in the entire structure through various resonance mechanisms and can achieve
negative effective modulus or mass density, which is a benefit for adjusting parameters
such as phase and resonant frequency. The following provides a concise overview of the
resonance principle and research progress on Helmholtz resonance and thin film resonance.

2.1. Helmholtz Resonance Unit

The Helmholtz resonator (HR) is a basic acoustic resonance system that features
a cavity surrounded by a rigid wall and an elongated neck. According to the acoustic
force analogy theory, this system can be analogized as a spring-mass system, where the
cavity’s neck is viewed as a mass and the cavity as a spring. Near the resonant frequency,
the incident sound wave resonates strongly in HR and the body cavity gathers a large
amount of energy, causing strong vibration of the acoustic medium at the neck. The
vibration intensity is much greater than the excitation intensity of incident sound waves,
and the dynamic response of the material is not synchronized with the excitation of external
sound waves, exhibiting opposite response patterns. That is, when external sound waves
compress the medium, the acoustic medium in the material undergoes an expansion motion.
When sound waves stretch the medium, it undergoes compression. Therefore, a negative
dynamic response occurs and the dynamic elastic modulus of the material is negative near
the resonant frequency [12–18].

HRs offer several benefits including a straightforward design, ease of assembly, and a
lengthy lifespan. Depending on their structural features, these resonators can be classified
into three categories: HR, HR array, and HR-like units. Based on the physical properties
of HRs, ultrasonic metamaterials were proposed by Fang in 2006, as shown in Figure 1a,
consisting of an array of subwavelength HRs with designed acoustic inductance and
capacitance. These materials have an effective dynamic modulus with negative values
near the resonance frequency and offer the possibility of realizing applications such as
acoustic negative refraction [12]. Similarly, the following structures [19–21], some shown in
Figure 1b,c, again realize negative effects in specific frequency bands.

Long et al. present the mechanism for the asymmetric absorption of acoustic waves in
a two-port transparent waveguide system by shunting detuned HR pairs in cascade, as
shown in Figure 1d. Acoustic absorption in multiple bands or broadbands is attained by
placing several HRs within a waveguide. This design advances the concept of asymmetric
acoustic manipulation in passive two-port systems (see Figure 1e) [22,23].

An HR-like unit is constructed by inserting one or more separating plates with a
small hole into the interior of an HR. The multi-order sound absorption mechanism can
be achieved so that with the original absorption peak and the structural size unchanged,
multiple near-perfect peaks are obtained in higher frequencies by a perforated composite
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Helmholtz resonator (PCHR) unit [24]. This work offers a new guidance for the achievement
of a wider absorption band and has great potential in engineering applications.
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2.2. Membrane Resonance Unit

Thin-film acoustic metamaterials can exhibit negative mass and bulk modulus, as
well as double negativity within specific frequency ranges. The thin-film unit can also
be analogized as a spring-mass system [25], where the mass block is viewed as the mass
model and the preloading of the thin film as a spring. At the non-resonant frequencies,
the thin film, restricted by the acoustic wave and the mass, vibrates near the equilibrium
position; that is, all the components move simultaneously, and then the effective and
static mass densities become equal. At the resonant frequencies, the cavity accumulates
a considerable amount of energy. This energy hinders the synchronized motion of the
thin-film structure and the phase reversal of the inner mass and spring occur. When the
inner mass momentum exceeds that of the outer mass, the loading force and response
acceleration are in the opposite direction, resulting in a negative effective mass density.

A double-layer thin-film structural unit is constructed by replacing the lower hard
boundary with a thin film. This structure exhibits two dipolar modes that are comparable
to those of a single thin film unit; hence, the feature of negative effective mass density is
mostly retained. In addition, a new resonance mode has also emerged in the double-layer
thin-film structure, and the relative vibration of compression/expansion occurs between
the two membranes while the center of mass remains stationary, resulting in a negative
effective bulk modulus [25–28].

Compared to HRs, a membrane structure unit (Figure 2a,b) is very sensitive, and the
tension is difficult to control and maintain for a long time and may change sharply over
time or change slightly with temperature and humidity. We can categorize them into three
groups: thin films, thin plates and thin-film-like structures.

Yang et al. presented a structurally and conceptually simple double-negative acoustic
metamaterial comprising two coupled membranes. Owing to its symmetry, the system
can generate both monopolar and dipolar resonances that are separately tunable, thereby
making broadband double negativity possible, as shown in Figure 2c [29]. A sandwich
structure of double-membrane-type acoustic metamaterials combined with a Helmholtz
resonator, as shown in Figure 2d, was designed by Li et al. in 2023, which is presented with
both a pleasant mechanical nature and admirable acoustic insulation at a low frequency [30].

The design of the thin plate unit is illustrated in Figure 2e. It comprises a steel plate of
width w connected to two steel supports using rubber spacers that hold the plate above
an air cavity which creates an impedance mismatch that is used to maximize the reflected
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energy. The unit functions when hit by an incident wave, in turn causing the plate to vibrate.
Similar to the mechanism seen in the membrane-type unit, the unit vibration causes a wave
phase shift in the water and different reflected phases can be obtained [31].

Li et al. proposed a membrane-like unit consists of rotatable anisotropic three-
component resonators which can induce non-degenerate dipolar resonance, causing an
evident phase change in low frequencies. Compared with the monopole resonance widely
used in HRs, the polarization direction of the dipole resonance is a new degree of free-
dom for phase manipulation. The phase profile can continuously change by rotating the
anisotropic resonators [32].

In addition, researchers have investigated numerous resonance units, establishing a
strong basis for the development of metasurfaces [7,19–21,30,33–48].
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Figure 2. The membrane resonant structures used for acoustic wave manipulation. (a) Schematic
drawing of subunit for the proposed reflection metasurface, reproduced from [40]; (b) schematic
drawing of transmission metasurface consisting of a series of structurally simple microunits, repro-
duced from [49]; (c) schematic drawing of the double-negative metamaterial, reproduced from [29];
(d) schematic of the sandwich structure of double-membrane-type acoustic metamaterials combined
with a Helmholtz resonator, reproduced from [30]; (e) metasurface unit cell constructed by steel,
reproduced from [31].

3. Acoustic Metasurface

An acoustic metasurface is an artificial two-dimensional acoustic metamaterial [50]
with a thickness less than the wavelength; they have a broad range of applications and
are employed in anomalous reflection, transmission, focusing, absorption, cloaking and
other fields. The resonant acoustic metasurface is mainly composed of the Helmholtz or
thin-film resonant structures mentioned in Section 2. In this section, acoustic metasurfaces
are reviewed, including reflection, transmission and absorption metasurfaces.

3.1. Reflection Acoustic Metasurface

Acoustic metasurfaces constructed with Helmholtz resonators (HR) have successively
achieved exotic acoustic phenomena, such as anomalous reflections, carpet cloak, focusing
lens, acoustic diffusion, etc., by tuning structural parameters such as split-hole diameters,
the spatial distance of the units and the volume of the cavities [19,20,51–57].

With the concept of phase modulation of the acoustic metasurface’s structure, Zhu
et al. proposed an ultrathin metasurface-based Schröder diffuser, which is similar to a
Helmholtz resonator. The reflection phase can be varied from 0 to 2π by adjusting the
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width of the aperture w. The composition of the Schröder diffuser metasurface achieves a
relatively efficient acoustic diffuse reflection, as shown in Figure 3 [58].
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Figure 3. (a) The proposed metasurface-based Schroeder diffuser (MSD); (b) a two-dimensional
Schroeder diffuser (2D SD); (c) the analytical and simulated relationship between the phase shift and
the geometrical parameter w of the MSD. The triangles represent the discrete points for generating
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scattered acoustic field distributions of the MSD, SD and flat plate in the x-z plane. Reproduced
from [58].

In order to further broaden the application of metasurfaces, researchers have proposed
the concept of multi-band metasurfaces, as shown in Figure 4a, which achieve anomalous
reflection, focusing and diffusing in multiple frequency bands by connecting different HRs
with different resonant frequencies in parallel, as shown in Figure 4 [59–61].

In addition to bandwidth, efficiency is also one of the factors to be taken into account in
designing metasurfaces. Li et al. proposed an acoustic metasurface which was constructed
by a square lattice of circular holes with gradient annular bumps (see Figure 5a). The
numerical results show that the wavefront of the reflected wave can be manipulated over a
wide frequency range and the gradient unit cells can suppress the parasitic reflection [62].

The parameter optimization method, based on a genetic algorithm, was applied by
Zhou et al. to construct a passive acoustic metasurface with stack-up HR units. Ultrabroad-
band and wide-angle carpet cloaking was realized [63].

Zhou et al. proposed an HR-like unit by designing a reflection metasurface for un-
derwater sound steering, of which the thickness is tens times less than the wavelength. It
was demonstrated that the local design based on the Generalized Snell Laws (GSL) does
not work well, especially for a large reflection angle. The nonlocal design via the lattice
diffraction theory (LDT), which was implemented using an optimization method, can
obtain wavefront modulation with high efficiency [64].

Based on a topology optimization method, the optimized microstructure elements
were designed by weakening vibration coupling between neighboring units, and precise
wavefront manipulation including anomalous reflection with a steep angle, conversion from
a propagating mode to an evanescent mode and near-field focusing with super-resolution
were demonstrated by Zhou et al. in 2022 [64,65].
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Thin-film structural units are also receiving attention because of their ultrathin prop-
erty. Phase changes of 2π are achieved by adjusting the parameters of the structural units,
such as width, thickness, Young’s modulus and mass density of the unit material, and the
acoustics metasurfaces (AMS) can obtain acoustic phenomena, like anomalous reflections
and focusing, and acoustic cloak [49,66–69].

In addition, acoustic phenomena such as anomalous reflections and reflection focusing
can also be achieved by applying the film attached with different masses to adjust the
tension or by choosing a film with masses of different sizes [70,71].

Chen et al. proposed a membrane-type unit which consists of an aluminum [72] (see
Figure 5b,c,e) or steel [31] box (see Figures 2e and 5d,f) with an air cavity and a lead mass
attached to the top inside. Extremely thin metasurfaces with this resonant unit (λ/61.7) [31]
were constructed to demonstrate anomalous reflection, sharp focusing, self-bending and
carpet cloaking for waterborne sound [31,72].

A thin-film-like resonant structure which consists of epoxy resin and an elliptical
rubber-coated steel core, as shown in Figure 6a, is presented, and the phase is controlled
by adjusting the radius of the steel core, and the acoustic metasurface with this unit is
further designed to achieve acoustic phenomena such as waterborne acoustic anomalous
reflections, planar acoustic lenses and acoustic cloaks [73].

In addition, a multiple--resonant unit, based on rectangular foam, was bonded between
two steel sheets and a multimass inclusion that was composed of a hard-rubber cylinder
surrounded by four rectangular steel rods and embedded in a soft-rubber cylinder (see in
Figure 6b). Its resonance effect was induced by changing the radius of the soft-rubber cylinder
or rotating the angle of the multimass, and so the reflected wavefront achieved waterborne
anomalous reflections, wide-angle broadband focusing and acoustic cloak [32,74,75].

Moreover, a metasurface with tube resonators instead of HRs which realized full-
angle reflection was proposed by Liu et al. [76]. A deep subwavelength acoustic reflection
metasurface (<λ/16) with meta-molecules was combined with two structural units; that is,
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hollow tubes and split-hole hollow spheres. The metasurface achieved abnormal reflection
with 800 Hz bandwidth [77].
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Figure 6. (a) Schematic of the proposed anisotropic resonant unit; reproduced from [73]. (b) The
calculation region and a magnified view of the geometry of the inclusion; reproduced from [74].
(c) Schematic of the experimental setup. The sample with positive index and negative index (PI-NI)
interface is composed of an array of the designed different HRs from an aluminum plate. Unit cells
of each half part and the corresponding inductor–capacitor circuit analogy are shown in the insets;
the normalized pressure field distribution at 60.5 kHz, (d) measured, and (e) simulated pressure field
map of the acoustic NI metamaterial and (f) line plot of pressure field crosses the focal plane parallel
to interface. Reproduced from [78].
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3.2. Transmission Acoustic Metasurface

Due to the unique properties of reflection metasurfaces, strong energy transfer can be
achieved by using only hard boundary conditions during the design process. However, a
high transmission efficiency and a 2π change in transmission phase are needed to simultane-
ously satisfy transmission metasurfaces. Furthermore, the insufficient energy transmission
results in significant energy dissipation and loss, and the designed acoustical devices in
this manner are highly inefficient, which greatly hinders the application of metasurfaces.

Zhang et al. in 2009 firstly demonstrated an ultrasound wave focusing through a
flat acoustic metamaterial lens in an experiment, and the metasurface was composed of a
planar network of subwavelength HRs (see in Figure 6c–f). They observed a tight focus
half-wavelength in width at 60.5 kHz by imaging a point source and a variable focal length
at different frequencies. This result was in excellent agreement with a numerical simulation
from a transmission line model in which the effective mass density and compressibility
were derived [78].

A hybrid unit consisting of deep subwavelength cavities, which are a series connection
of HRs, and a straight pipe at the open side of the HRs are used to construct the transmission
screen, as shown in Figure 7a. A series connection of HRs acts as lumped elements,
achieving the phase shift of the incident acoustic field; the straight pipe effectively matches
the acoustic impedance based on the Fabry–Perot resonance, effectively enhancing the
sound transmission (see Figure 7b). The theoretical and numerical results demonstrate
that some excellent wavefront manipulations with anomalous refraction (see Figure 7c),
non-diffracting Bessel beam (see Figure 7d), self-bending beam, focusing, effective tunable
acoustic negative refraction, three-dimensional acoustic collimated self-accelerating beam,
engineering acoustic beams, and switching on/off acoustic energy flow are obtained, as
partly shown in Figure 7c,d [34,79–82].

Li et al. proposed and experimentally verified the bianisotropic unit, minimizing the
losses (see Figure 7e,f). Three refractive metasurfaces based on the bianisotropic unit can
redirect a normal incident plane wave to 60◦, 70◦ and 80◦ in the transmission direction,
and their efficiency is over 90%, which is much higher than the corresponding generalized
Snell’s law-based designs (81%, 58% and 35%) [83]. An approach in which the power flow
conformal design methodology and bianisotropic units were combined was proposed by
Peng et al. As a demonstration in Reference [84], a transmission-type acoustic metasurface
with maximum power efficiency was designed to focus sound plane waves in the near field
at 3000 Hz from aspects of numerical simulations and experiments.

Jiang et al. constructed the planar layer as an assembly of eight fanlike sections of
resonators over the whole azimuth (see Figure 8b). Each individual section was configured
to be composed of three rows of resonators in the radius (more rows can be employed for a
larger radius). Each row consisted of four lumped Helmholtz cavities and a straight pipe
that could flexibly manipulate phases (or wave numbers keff), as shown in Figure 8c. The
combination of cavities and pipes provides hybrid resonances that overcome the impedance
mismatch between the resonators and the surrounding air for a high transmission (see
Figure 8d). They use the resonances in a planar layer of half-wavelength thickness to twist
wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing
vortex beam with orbital angular momentum (OAM) (see Figure 8a,e,f). Their acoustic
resonance-based OAM production via manipulating effective wave numbers, keff, bears the
advantages of high efficiency, compact size and planar profile [85].

In addition, structural units, such as a symmetric unit coupling two layers of four
HRs with a straight pipe [86], a single row of HRs with varying geometric parameters [87],
dumbbell-shaped double-split hollow spheres (DSDSHS) [88], HRs with rectangular ridges
inside [89], and a design approach of passive and reciprocal [90], have been proposed to
enable flexible manipulation of transmitted acoustic waves (see Figure 9a–c) [86–90].
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Figure 7. (a) An array of passive elements, (b) phase shift (red, solid) and transmission rate (blue,
solid) of the hybrid structure as a function of height ratio h1 = h (or, correspondingly, h3 = h), and a
comparison with that of HRs (red and blue dashed), reproduced from [34]; (c) anomalous refractions
of theoretical (up) and simulated (down) pressure fields, reproduced from [80]; and (d) acoustic
metasurface for the non-diffracting Bessel beam, reproduced from [79]. Study of a bianisotropic
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By appropriately changing the thickness of the membranes to modulate the phase, the 
steering of the transmiĴed wave trajectory is demonstrated and some extraordinary phe-
nomena are realized at 3.5 kHz, such as planar acoustic axicon, acoustic lens, the conver-
sion from spherical waves to plane waves, and the transformation from propagating 
waves to surface waves [40]. 

A membrane-type hybrid unit with four HRs connecting to a straight pipe was pre-
sented to construct metasurfaces by Lan et al. Each resonator is an air-filled cavity with a 
rigid back and sealed with a membrane. The structure is similar to the HR unit [34,79–
81,85], and the membrane corresponds to the short neck of the HR [91] (see Figure 9d). It 
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Figure 8. (a) Illustration of a resonant planar layer (blue) converting an in-coming axisymmetric wave
without orbital angular momentum (OAM) to an outgoing beam with a helical wave front-carrying
OAM (wave fronts are shown in gray), (b) schematic of the assembled layer consisting of eight
fanlike sections of resonators, (c) an individual section consisting of three rows of resonators in the
radial r direction, (d) the effective wave number keff (red; normalized by k = 2π/λ) and transmission
coefficient [T] (blue), (e) airborne sound pressure field on the outgoing surface of the planar layer,
(f) phase (top) and amplitude (bottom) of the field at four cross-sections, illustrating the transition
from the near to the far field, where the geometric centers of the cross-sections are denoted by the
white dots. Reproduced from [85].
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subunit. In order to conveniently calibrate the parameters of the structure, the figure is not the
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Compared to Helmholtz-types, the membrane-type is helpful to design a metasurface
with smaller dimensions. A membrane-type unit, which consists of a cavity filled with air
and two elastic membranes on the ends of cavity, is designed by Zhai et al. (see Figure 2a).
By appropriately changing the thickness of the membranes to modulate the phase, the steer-
ing of the transmitted wave trajectory is demonstrated and some extraordinary phenomena
are realized at 3.5 kHz, such as planar acoustic axicon, acoustic lens, the conversion from
spherical waves to plane waves, and the transformation from propagating waves to surface
waves [40].

A membrane-type hybrid unit with four HRs connecting to a straight pipe was pre-
sented to construct metasurfaces by Lan et al. Each resonator is an air-filled cavity with a
rigid back and sealed with a membrane. The structure is similar to the HR unit [34,79–81,85],
and the membrane corresponds to the short neck of the HR [91] (see Figure 9d). It is
demonstrated that high transmission efficiencies, acoustic phenomena such as anomalous
refraction, cloak based on flat focusing, self-bending beams, conversion of propagating
waves to surface waves and negative refraction can be realized.

3.3. Absorption Acoustic Metasurface

Noise has become a problem topic in recent years as excessive noise not only affects
people’s daily work and study but also impacts the performance, precision, reliability and
safety of modern equipment. Traditional absorptive acoustic materials, such as acoustic
sponge, multi-hollow fiber materials, etc., can only exhibit excellent performance in the high-
frequency band, but relatively poor performance in the low-frequency band. According to
acoustic theory, it is necessary to ensure that the size of the noise reduction material and
the wavelength of the low-frequency noise are within an order of magnitude; that is, the
thickness of the absorptive material must be used in the scale of decimeter or meter. So, the
design of absorptive acoustic materials at low-frequency ranges is a very challenging and
urgent issue.

An impedance-matched surface by using membrane units, as demonstrated by Ma
et al. (see Figure 9e), can generate hybrid resonances due to multiple reflections between
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the membrane and reflective hard wall, and it can completely absorbed in one or multiple
frequencies [92]. Using subwavelength decorated membrane resonators (DMRs) as basic
units (see Figure 9f), Yang et al. experimentally achieved perfect sound absorption, up to
99.7%, even at a large airborne wavelength of up to 1.2 m [93]. It is demonstrated that the
maximum absorption with a back-reflecting surface from two-sided incidence can reach
100%, and it was attained by the hybridized resonances [94].

Jimenez et al. presented theoretical and experimental evidence of subwavelength
resonant panels, and it exhibits quasiperfect sound absorption at low frequencies, as shown
in Figure 11a. The subwavelength panel is composed of periodic horizontal slits loaded by
identical HRs. Due to the presence of the HRs, the propagation inside each slit is strongly
dispersive, with near-zero phase velocity close to the resonance of the HRs. In this slow
sound regime, the frequencies of the cavity modes inside the slit are down-shifted and the
slit behaves as a subwavelength resonator. Furthermore, the strong dispersion causes cavity
resonances below the HR resonance frequency, and quasi-critical coupling of symmetry
and antisymmetry can be achieved simultaneously. So, quasiperfect absorption can be
attained by using only monopolar resonators in a material that includes transmission [95].

A metasurface based on a subwavelength perfect sound absorber with coupled multi-
ple resonators was designed and fabricated by Li et al which converts the incident wave to
a non-radiating surface mode with matched impedance, thereby absorbing the incident
energy and rendering it dark to the incident sound. Over 99% energy absorption is achieved
in the experiment. The proposed metasurface yields near perfect absorption experimentally
with subwavelength dimensions (λ/20) [96].

Guo et al. propose an ultrathin metasurface for low-frequency sound absorption,
which is composed of HR-like resonators with an embedded spiral neck and a coiling-up
backing cavity (see Figure 11b). The analytical, numerical and experimental results show
that the proposed metasurface can achieve excellent absorption (absorption coefficient
being 0.98) at 180 Hz with an extremely thin thickness of 13 mm (λ/145); a dual-band
low-frequency absorber and a wide-band one are achieved by multiple units with different
geometric parameters in parallel [97].

Furthermore, near perfect absorption is obtained by an acoustic absorber based on
split tube resonators [98] (see Figure 11c), resonators with symmetrical or anti-symmetrical
coherent perfect absorption (CPA) [99], resonators with asymmetric configurations [100],
an HR array [101] and so on [98–101]. In addition, the geometric parameters of the HR unit
play an important role in acoustic absorption (see Figure 11d) [102,103].

Besides the above two types of structure unit, the Fabry–Perot (F-P) resonator can
also be used to design the metasurface. The F-P channel is so narrow that dissipation
occurs due to air sticking and high absorption is realized, but the size of this channel
needs a minimum of one-quarter wavelength. However, an ultrathin sound absorbing
panel (λ/100) composed by bending and coiling-up quarter-wavelength sound damping
tubes was reported by Cai et al., as shown in Figure 11e. Absorption efficiencies of the
absorbing panel were in good agreement between theoretical analysis and experimental
measurements [104].

Yang et al. reported an absorbing metasurface composed of square lattice, which
consists of 16 FP channels; blue channels are coiled by three foldings, pink channels are
coiled by two foldings, orange channels are coiled by one folding, and the green channels
are straight. Near-perfect flat absorption starting at around 400 Hz can be achieved by this
metasurface [105].

Moreover, the assembled structures with different length F-P channels [106], bending
F-P channel array [107] (see Figure 10a), bending quarter-wavelength resonators [108]
(see Figure 10b), and the unit composed of HRs and F-P channels [109] can also achieve
absorption in different bands [106–109].
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Figure 10. (a) Photographs of a realistic unit cell fabricated with polylacticacid (PLA) by means of (left)
3D printing and (right) its inner structure, reproduced from [107]; (b) bending quarter wavelength
resonators, reproduced from [108]; (c) a schematic representation of a tunable subwavelength unit
cell, which is composed of a straight channel and five shunted HRs. The cavity sizes are controlled by
pumping fluid into/out of the unit cell, (d) numerical characterization of unit cell. By changing the
cavity height of h1, the acoustic phase can be tuned in the full range of [−π, π] while maintaining high
transmission amplitude. When the cavity height is over 18 mm, the transmission coefficient drops to
zero, (e) analytical (up) and experimental (down) results for acoustic beam engineering. Analytical
energy fields of five different acoustic beams, which demonstrate beamforming, tuning the focal
distance, steering the beam direction, generating a tweezer-like beam and guiding energy along a
parabolic trajectory, respectively, (f) experimental results for on/off switching of acoustic energy flow.
Acoustic energy fields at (left) on and (middle) off states. (Right) comparison of pressure amplitudes
along a line at y = 25 mm between on and off states. Reproduced from [82].
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manufactured acoustic metasurfaces respond at a certain frequency. In other words, the 
working frequency region of the resonance metasurfaces is narrow and the function is 
single. The metasurface needs to be rebuilt if the working frequency or the desired func-
tionality has a change, which will cause waste and limit its applications. So, it is necessary 
to design tunable acoustic metasurfaces, like the electromagnetic counterpart. In this sec-
tion, we will give a brief review on the progress in tunable acoustic metasurfaces. Usually, 
there are two manners to achieve tunability. First, the mechanical reconfigurability of a 
unit itself is used to adjust the phase change in the gradient metasurface. Second, piezoe-
lectric materials and magnetomechanical materials are employed to achieve reconfigura-
ble elements. 

Figure 11. (a) Conceptual view of the thin panel placed on a rigid wall with N = 4 layers of square
cross-section HRs, reproduced from [95]; (b) illustration of a resonator with a spiral extended neck
and a coiled backing cavity, reproduced from [97]; (c) cross-sectional schematic of the absorber
composed of two ellipse-shaped split tubes denoted by 1 and 2, reproduced from [98]; (d) the single
HR with olive neck, reproduced from [102]; (e) the sketch of sound absorptive panel with arrays of
embedded coplanar spiral tubes, reproduced from [104].
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4. Tunable Metasurface

As mentioned above, acoustic metasurfaces have received extensive attention because
of their multiple functionalities and ultrathin characteristics. However, most of the manu-
factured acoustic metasurfaces respond at a certain frequency. In other words, the working
frequency region of the resonance metasurfaces is narrow and the function is single. The
metasurface needs to be rebuilt if the working frequency or the desired functionality has
a change, which will cause waste and limit its applications. So, it is necessary to design
tunable acoustic metasurfaces, like the electromagnetic counterpart. In this section, we will
give a brief review on the progress in tunable acoustic metasurfaces. Usually, there are two
manners to achieve tunability. First, the mechanical reconfigurability of a unit itself is used
to adjust the phase change in the gradient metasurface. Second, piezoelectric materials and
magnetomechanical materials are employed to achieve reconfigurable elements.

4.1. Mechanical Reconfigurable Units

Tian et al. proposed a tunable metasurface, and its unit is composed of a straight
channel and five shunted HRs (see Figure 10c). The phase and amplitude of transmission
acoustic waves through each unit cell can be modulated dynamically and continuously (see
Figure 10d), and its effective mass can be tuned by a robust fluidic system. Based on such a
mechanism, the metasurface can achieve versatile wave manipulation by engineering the
phase and amplitude of transmission waves on a subwavelength scale. Through acoustic
field scanning experiments, multiple wave manipulation, including steering acoustic waves,
engineering acoustic beams and switching on/off acoustic energy flow by using one design
of a metasurface, is visually demonstrated (see Figure 10e,f) [82].

Fan et al. theoretically and experimentally investigated a helical acoustic metasurface
capable of providing a modulated sound-reflected wavefront and a continuously tunable
broadband feature, as shown in Figure 12a. The metasurface experimentally demonstrated
the continuously tunable multifunction, including anomalous reflection, arbitrary focusing,
self-bending beams, broadband carpet cloaking (curved metasurface) and ground illusion
at a wide working band (curved metasurface) [110,111].

A flat, structurally tunable acoustic metasurface is constructed based on the helical unit
(see Figure 12b). The length of the acoustic channel can be tuned by the screw-in depth of
the helix, and then, the wave phase for the transmission acoustic wave can be tuned and the
wavefront can be manipulated. Just by screwing in or out the helixes, multifunction, such
as anomalous refraction, point focusing, beam focusing and self-bending, can be realized
and switched, and the broadband operating frequency is also realized. The experiments for
anomalous refraction and point focusing are also performed, and the results show that the
designed metasurface is effective [112].

A reconfigurable acoustic metalens is realized by utilizing an existing active meta-
surface. By tuning the position of the sliders inside each unit cell with a dynamic control
system, arbitrary scanning of the focus can be achieved. Its trajectory can also be flexibly
manipulated under basic transformations including rotation, translation and scaling. These
results have been confirmed with full wave simulations and measurements [113]. Tuning
the slit width [114] of a composite unit with a HR array and tube or using the slider [115]
to adjust the volume of the cavity can both achieve acoustic phenomena with efficient
transmission such as sound wave redirection, focusing and acoustic illusion [114,115].

Additionally, the acoustic phenomena can be realized by varying the helical length,
rotating the angle of resonator (see Figure 12c) and tuning the distance of the hard boundary,
and these phenomena are anomalous reflection, perfect absorption, acoustic axicon for the
Bessel beam or Airy beam, tunable carpet cloak, and indifferent bands, both airborne or
waterborne-filed [32,116–120].

A metasurface was proposed by Li et al. in 2019 which is composed of a square lattice
of circular holes with gradient annular bumps. The phase shift is tuned by changing the
volume of water filled in the holes. The numerical results show that the acoustic focusing
on a subwavelength scale is obtained by selecting a suitable water depth, and the wavefront
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of the reflected wave can be manipulated over a wide frequency range [62]. Tunable curved
metasurfaces based on this unit cell with corrugated holes are designed, and anomalous
reflection, focusing and ground illusion are numerically demonstrated [121].

4.2. Electromagnetic Reconfigurable Units

A membrane unit fixing an electromagnet was proposed by Ma et al. in 2018 (see
Figure 12d), and tunability can be achieved by changing the current level and the magnitude
force of the electromagnet and then adjusting the film tension [122]. A magnetically
controlled approach was investigated for achieving a multifunctional acoustic metasurface
with elastic films and additional mass. The properties of this acoustic metasurface could
be continuously modulated by magnetic force value. Through switching the direction
of the magnetic forces, the transmission acoustic wave is easily tailored, and different
functions such as focusing, beam splitting-like and other near-field acoustic displays are
switched [123].

As shown in Figure 12e, a magnetic-control multifunctional metasurface based on
membrane structures with magnetic response at deep subwavelength scales (~λ/85) was
proposed for low-frequency wave manipulation by Chen et al., and extraordinary phe-
nomena, such as acoustic wave redirecting, focusing, bending, etc., were realized by
switching the magnetic force distribution without changing the physical structure over a
wide band [41]. A metasurface is composed of the piezoelectric membrane (see Figure 12f)
and transducer, which can change its local acoustic response almost arbitrarily in real
time. A metasurface with a variety of functions, such as lenses and beam steering, and the
efficient second harmonic acoustic imaging that overcomes the diffraction limit of linear
lenses was experimentally demonstrated [124].
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of helix, reproduced from [112]; (c) (left) schematic sketch and (middle) equivalent circuit of the coupled
structure by split hollow sphere (SHS) and hollow tube (HT). (Right) schematic sketch of the optimized
model based on (left); the inner ring can be spun freely to arbitrary angle θ around its center axis,
reproduced from [118]; (d) the unit cell design. The membrane can be electrically switched between two
states; one (denoted OFF state) has one fixed boundary at its edge and the other (denoted ON state) has
two fixed boundaries, reproduced from [122]; (e) schematic diagram of the proposed magnetic-controlled
metasurface, reproduced from [41]; (f) (up) unit cell consisting of a piezoelectric membrane. The cell
acoustic response is controlled by a digital electronic circuit that can be reconfigured in real-time, (down)
photograph of the fabricated unit cell. Reproduced from [124].
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5. Conclusions and Outlook

This paper reviews research progress on resonant metasurfaces, including the de-
sign of structural units, metasurface classification and tunability. Overall, the subject
of metasurfaces remains challenging, with many unresolved issues from their design to
application.

It is crucial for resonant metasurfaces to design structure units. Further, exploring
structure units based on bioinspiration presents an intriguing topic [125]. Airborne acoustic
metasurfaces have received much attention, but there is a noticeable lack of research on
waterborne acoustic ones because the wavelength of sound in water is longer and the
propagation loss is smaller. Therefore, controlling sound in water is more challenging than
controlling sound in air of the same frequency. Furthermore, the density and impedance of
water are larger than those of air, so conventional metal cannot be considered rigid and
becomes an elastomer. Additionally, the fluid loading of water on the structure cannot be
ignored, making the design of water acoustic metasurfaces more complex.

The study of tunable metasurfaces have been made greater progress; however, tuning
a phase gradient metasurface is more difficult because of the required precise phase shift
profile for a particular functionality. Usually, each element should be tuned independently,
which makes tunability difficult to realize. Therefore, new mechanisms and methods
of tunability need be explored. Using chips in structural units to design intelligent tun-
able structural units that can be tuned autonomously on demand is an interesting and
challenging topic.

The design of broadband metasurfaces has been a widely concerned but difficult
problem. As one of the possible solutions, the tunability design of a metasurface by
adjusting the structural geometry or material properties of the unit could be considered
in order to obtain the same response at different frequencies. However, in the case of
broadband pulse incidence, this approach is no longer applicable; reverse-design topology
optimization provides a possible solution [126]. In addition, due to the complexity of
realistic acoustic fields, the use of multiple coupled structural units to realize simultaneous
acoustic modulation in multiple frequency bands is also an interesting solution [61].

Customized metasurfaces for specific functions are appealing for practical applications,
yet challenging to achieve through experiential design. The active design of highly efficient
broadband metasurfaces through resonant structure units with double-negative properties
is also an interesting and challenging topic.
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