Double Carbon Networks Reinforce the Thermal Storage and Thermal Transfer Properties of 1-Octadecanol Phase Change Materials
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Composite Foam
2.3. Preparation of MF@rGO/OD and CF@rGO/OD Composite PCMs
2.4. Characterization
3. Results and Discussion
3.1. Characteristics of MF@rGO, CF@rGO
3.1.1. Morphology and Structure
3.1.2. Composition
3.1.3. Specific Surface Area and Porosity
3.2. Microstructure and Thermal Properties of MF@rGO/OD, CF@rGO/OD Composite PCMs
3.2.1. Microstructure
3.2.2. Thermal Properties
3.2.3. Thermal Conductivity
3.2.4. Shape Stability
3.2.5. Thermal Stability
3.2.6. Photothermal Conversion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
Nomenclature | Abbreviate | ||
Tm | melting temperature (°C) | PCMs | phase change materials |
Ts | solidification temperature (°C) | OD | 1-octadecinal |
ΔHm | melting enthalpies (J/g) | MF | melamine foam |
ΔHs | solidification enthalpies (J/g) | CF | carbon foam |
Vpore | pore volume (cm3/g) | 3D | three-dimensional |
Dpore | pore distribution (nm) | SEBS | styrene-b-ethylene-co-butylene-b-styrene |
η | photothermal conversion efficiency | rGO | reduced graphene oxide |
P | solar radiation intensity (mW/cm2) | rGOA | reduced graphene oxide aerogel |
S | area of the sample | SBET | specific surface area |
m | quality (g) | ||
t0 | beginning time of the phase transition (s) | ||
te | end time of the phase transition (s) |
References
- Zeng, R.; Tang, X.; Deng, Y.; Zhang, X.; Li, H.; Yin, W.; Zhang, G. Design and optimization of solar energy system with hydrogen energy storage and alkaline fuel cell. Energy Convers. Manag. 2023, 295, 117628. [Google Scholar] [CrossRef]
- Yan, D.; Li, M. Efficient solar thermal energy utilization and storage based on phase change materials stabilized by MOF@CuO composites. J. Energy Storage 2023, 73, 108885. [Google Scholar] [CrossRef]
- Wong, T.; Vallés, C.; Nasser, A.; Abeykoon, C. Effects of boron-nitride-based nanomaterials on the thermal properties of composite organic phase change materials: A state-of-the-art review. Renew. Sustain. Energy Rev. 2023, 187, 113730. [Google Scholar] [CrossRef]
- Rashidi, S.; Samimifar, M.; Doranehgard, M.; Li, L. Organic phase change materials. Encycl. Smart Mater. 2022, 2, 441–449. [Google Scholar]
- Baccega, E.; Bottarelli, M.; Cesari, S. Addition of granular phase change materials (PCMs) and graphene to a cement-based mortar to improve its thermal performances. Appl. Therm. Eng. 2023, 229, 120582. [Google Scholar] [CrossRef]
- Carolina, C.R.; Gómez, M.A.; Jaramillo, F.; Fernández, A.G.; Cabeza, L.F. Experimental determination of thermal conductivity of fatty acid binary mixtures and their shape-stabilized composites. Renew. Energy 2021, 175, 1167–1173. [Google Scholar]
- Li, J.; Dong, L.; Zhang, D.; Chen, X.; Xue, Y.; Guan, Y.; Li, Y. Mesoporous carbon spheres modified polyurethane sponge/phase change material composites: Photothermal conversion, thermal storage and efficient recovery of high-viscosity crude oil. Carbon 2023, 214, 118372. [Google Scholar] [CrossRef]
- Akhiani, A.R.; Mehrali, M.; Latibari, S.T.; Mehrali, M.; T Mahlia, T.M.I.; Sadeghinezhad, E.; Metselaar, H.S.C. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. J. Phys. Chem. C 2015, 119, 22787–22896. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, N.; Yuan, Y.; Zhong, W.; Yu, N. Multi-energy driven form-stable phase change materials based on SEBS and reduced graphene oxide aerogel. Sol. Energy Mater. Sol. Cells 2021, 233, 111390. [Google Scholar] [CrossRef]
- Zhou, J.D.; Fang, M.; Yang, K.; Lu, K.; Fei, H.; Mu, P.; He, R. A novel MOF/RGO-based composite phase change material for battery thermal management. Appl. Therm. Eng. 2023, 227, 120383. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, R.; Wang, Y.; Cao, Y.; Shen, Y.; Huang, Y.; Chen, Y. Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 2023, 205, 112–137. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Zhang, X. Graphene aerogel-phase change material host-guest smart films. FlatChem 2021, 27, 100249. [Google Scholar] [CrossRef]
- Sang, W.S.; Kang, S.C.; Im, J.S. Synthesis and formation mechanism of pitch-based carbon foam for three-dimensional structural applications. Inorg. Chem. Commun. 2023, 156, 111285. [Google Scholar]
- Ni, L.; Luo, Y.; Wang, G.; Yan, L.; Qiu, S.; Liang, M.; Zhou, S.; Zou, H. Fabrication of flexible polyimide/rGO composite foams and their derived carbon foams for thermal insulation and EMI shielding applications. Polymer 2023, 284, 126296. [Google Scholar] [CrossRef]
- Merline, D.J.; Vukusic, S.; Abdala, A.A. Melamine formaldehyde: Curing studies and reaction mechanism. Polym. J. 2013, 45, 413–419. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, Z.; Ge, W.; Lu, Y.; Dai, J. Robust, fluorine-free and superhydrophobic composite melamine sponge modified with dual silanized SiO2 microspheres for oil–water separation. Chin. J. Chem. Eng. 2021, 33, 50–60. [Google Scholar] [CrossRef]
- Kumar, G.N.; Al-Aifan, B.; Parameshwaran, R.; Ram, V.V. Facile synthesis of microencapsulated 1-dodecanol/melamine-formaldehyde phase change material using in-situ polymerization for thermal energy storage. Colloids Surf. A Physicochem. Eng. Asp. 2020, 610, 125698. [Google Scholar] [CrossRef]
- Widakdo, J.; Kadja, G.T.M.; Anawati, A.; Subrahmanya, T.M.; Austria, H.F.M. Tsung-Han Huang, Edi Suharyadi, Wei-Song Hung. Graphene oxide-melamine nanofilm composite membrane for efficient CO2 gas separation. Sep. Purif. Technol. 2023, 323, 124521. [Google Scholar] [CrossRef]
- Scheiner, S.; Kar, T. Red versus blue-shifting hydrogen bonds: Are there fundamental distinctions? J. Phys. Chem. A 2002, 106, 1784–1789. [Google Scholar] [CrossRef]
- Hao, S.; Zou, Y.; Xiang, C.; Sun, L.; Xu, F.; Hu, Z. Composite phase change materials based on CuS-coated carbonized melamine foam/reduced graphene oxide frameworks for multiple energy conversion and storage applications. J. Energy Storage 2023, 72, 108615. [Google Scholar] [CrossRef]
- Sharma, M.; Rani, S.; Pathak, D.K.; Bhatia, R.; Kumar, R.; Sameera, I. Temperature dependent Raman modes of reduced graphene oxide: Effect of anharmonicity, crystallite size and defects. Carbon 2021, 184, 437–444. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Chen, C.; Wang, R.; Qiao, X.; Waterhouse, G.I.N.; Xu, Z. A surface-enhanced Raman scattering sensor for the detection of benzo[a]pyrene in foods based on a gold nanostars@reduced graphene oxide substrate. Food Chem. 2023, 421, 136171. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Oliviser, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Yu, N.; Shang, N.; Kuang, N. Efficient photocatalytic reduction of chromium (VI) using photoreduced graphene oxide as photocatalyst under visible light irradiation. Mater. Sci. Technol. 2021, 32, 17–27. [Google Scholar] [CrossRef]
- Bai, J.; Huang, J.; Jiang, Q.; Jiang, W.; Demir, M.; Kilic, M.; Altay, B.N.; Wang, L.; Hu, X. Synthesis and characterization of polyphenylene sulfide resin-derived S-doped porous carbons for efficient CO2 capture. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131916. [Google Scholar] [CrossRef]
- Lu, T.; Bai, J.; Huang, J.; Yu, Q.; Demir, M.; Kilic, M.; Altay, B.N.; Wang, L.; Hu, X. Self-Activating Approach for Synthesis of 2,6-Naphthalene Disulfonate Acid Disodium Salt-Derived Porous Carbon and CO2 Capture Performance. Energy Fuels 2023, 37, 3886–3893. [Google Scholar] [CrossRef]
- Luo, L.; Luo, W.; Chen, W.; Hu, X.; Ma, Y.; Xiao, S.; Li, Q.; Jiang, X. Form-stable phase change materials based on graphene-doped PVA aerogel achieving effective solar energy photothermal conversion and storage. Sol. Energy 2023, 255, 146–156. [Google Scholar] [CrossRef]
- Huo, Y.; Yan, T.; Chang, X.; Pan, W. Expanded graphite@octadecanol composite phase change material with photothermal conversion interface. Sol. Energy 2023, 263, 111922. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, S.; Du, G.; Lai, X.; Wang, Y.; Qu, J.; Zhang, Z. Assembling and properties characterization of boron nitride-chitosan porous structure embedded low supercooling and shape stable sodium acetate trihydrate based phase change materials. Sol. Energy Mater. Sol. Cells 2023, 253, 112212. [Google Scholar] [CrossRef]
- Tselepi, M.; Prouskas, C.; Papageorgiou, D.G.; Lagaris, I.S.; Evangelakis, G.A. Graphene-based phase change composite nano-materials for thermal storage applications. Energies 2022, 15, 1192–1203. [Google Scholar] [CrossRef]
- Chen, W.; Ye, F.; Situ, Z.; Xu, J.; Lu, X.; Zhang, H.; Chen, S.; Dong, Z.; Dang, L.; Li, M. In-situ versatile characterization and manipulation toward amorphous-to-crystalline phase transition via nanoparticles strategy for organic luminescent materials and its applications. Chem. Eng. J. 2023, 460, 141828. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, J.; Guo, Y.; Chen, H.; Bi, T.; Lin, Q. Three-dimensional hierarchical porous carbon surface-decorated graphitic carbon foam/stearic acid composite as high-performance shape-stabilized phase change material with desirable photothermal conversion efficiency. Appl. Energy 2023, 15, 121995. [Google Scholar] [CrossRef]
- Wu, R.; Mei, W.; Zhou, Y.; Bi, T.; Lin, Q. Continuous dual-scale interpenetrating network carbon foam–stearic acid composite as a shape-stabilized phase change material with a desirable synergistic effect. ACS Appl. Mater. Interfaces 2022, 14, 37120–37133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wen, R.; Huang, Z.; Tang, C.; Huang, Y.; Liu, Y.; Fang, M.; Wu, X.; Min, X.; Xu, Y. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials. Energy Build. 2017, 149, 463–470. [Google Scholar] [CrossRef]
- Qin, J.; Chen, Y.; Xu, C.; Fang, G. Synthesis and thermal properties of 1-octadecanol/nano-TiO2/carbon nanofiber composite phase change materials for thermal energy storage. Mater. Chem. Phys. 2021, 272, 125041. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, X.; Li, Y.; Li, L.; Wang, Q.; Mou, F. In-situ calcination of NiO nanowalls@carbon foam with hybrid 2D/3D framework to reinforce 1-octadecanol phase change materials. J. Energy Storage 2022, 50, 104611. [Google Scholar] [CrossRef]
- Mehrali, M.; Elashof, J.E.; Shahi, M.; Mahmoudi, A. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material. Chem. Eng. J. 2021, 405, 126624. [Google Scholar] [CrossRef]
- Li, Q.; Tan, Y.; Lin, C.; Ning, Y.; Yu, L.; Cao, Z.; Sun, L.; Zeng, J. Preparation and properties of erythritol/exfoliated graphite nanoplatelets@polyaniline microencapsulated phase change materials with improved photothermal conversion efficiency. J. Energy Storage 2023, 72, 108553. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Vpore (cm3/g) | Dpore (nm) |
---|---|---|---|
CF | 1.7 | — | — |
GO | 46.0 | 0.04 | 3.55 |
MF@rGO | 82.6 | 0.09 | 8.17 |
CF@rGO | 120.9 | 0.08 | 14.28 |
Samples | Melting | Solidifying | ||
---|---|---|---|---|
Tm (°C) | ΔHm (J/g) | Ts (°C) | ΔHs (J/g) | |
OD | 57.7 | 242.2 | 56.7 | 210.1 |
MF/OD | 56.9 | 181.7 | 56.6 | 177.9 |
CF/OD | 56.9 | 239.0 | 56.8 | 201.2 |
MF@rGO/OD | 56.5 | 192.7 | 55.9 | 188.9 |
CF@rGO/OD | 57.0 | 208.3 | 56.2 | 191.4 |
Filler | Matrix | Tm (°C) | ΔHm (J/g) | Thermal Conductivity (W/m·K) | Ref. |
---|---|---|---|---|---|
Surface-decorated graphitic carbon foam | stearic acid | 71.3 | 167.5 | 3.25 | [32] |
Dual-scale pore carbon foam | stearic acid | 70.5 | 192.8 | 1.30 | [33] |
CNT/expanded perlite | paraffin | 43.7 | 95.9 | 0.50 | [34] |
Nano-TiO2/carbon nanofiber | OD | 57.6 | 209.1 | 0.43 | [35] |
NiO@CF | OD | 56.5 | 185.3 | 1.12 | [36] |
CF@rGO | OD | 56.5 | 208.3 | 1.54 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, Q.; Cheng, X.; Chen, X.; Bai, M. Double Carbon Networks Reinforce the Thermal Storage and Thermal Transfer Properties of 1-Octadecanol Phase Change Materials. Materials 2023, 16, 7067. https://doi.org/10.3390/ma16227067
Wang X, Wang Q, Cheng X, Chen X, Bai M. Double Carbon Networks Reinforce the Thermal Storage and Thermal Transfer Properties of 1-Octadecanol Phase Change Materials. Materials. 2023; 16(22):7067. https://doi.org/10.3390/ma16227067
Chicago/Turabian StyleWang, Xiuli, Qingmeng Wang, Xiaomin Cheng, Xiaolan Chen, and Mingjun Bai. 2023. "Double Carbon Networks Reinforce the Thermal Storage and Thermal Transfer Properties of 1-Octadecanol Phase Change Materials" Materials 16, no. 22: 7067. https://doi.org/10.3390/ma16227067
APA StyleWang, X., Wang, Q., Cheng, X., Chen, X., & Bai, M. (2023). Double Carbon Networks Reinforce the Thermal Storage and Thermal Transfer Properties of 1-Octadecanol Phase Change Materials. Materials, 16(22), 7067. https://doi.org/10.3390/ma16227067