Effect of Core Density on the Three-Point Bending Performance of Aluminum Foam Sandwich Panels
Abstract
:1. Introduction
2. Materials and Experimental Procedures
2.1. Materials and Sample Preparation
2.2. Micro-Indentation Hardness Tests
2.3. Quasi-Static Compression Experiment
2.4. Quasi-Static Three-Point Bending Tests
3. Results and Discussion
3.1. Morphological Characterization of Foam Specimens
3.2. Deformation Modes
3.3. Failure Load Prediction and Failure Mechanism Map
3.4. Energy Absorption
4. Conclusions
- The higher the foaming temperature and the longer the foaming time, the lower the core density of the AFS, the fewer the number of foam cores, and the larger the average core diameter.
- As the core density increases, the load-bearing capacity of the AFS is significantly enhanced, resulting in a marked increase in the bending strength and the threshold for failure load.
- AFS panels with different core densities exhibit various failure modes. At a core density of approximately 0.26 g/cm3, the top panel undergoes indentation failure, accompanied by layer-by-layer rupture of foam cores.
- When the core density reaches about 0.29 g/cm3, the AFS’s failure mode is core shear. When the core density exceeds 0.33 g/cm3, the peak load surpasses the bearing threshold of the bottom panel, resulting in its yield and fracture.
- The initial failure loads for various failure modes were projected theoretically, and it was found that the calculated results align well with the experimental values. Based on these theoretical predictions, a failure mode diagram was designed, serving as a guide for the production of thin-panel aluminum foam sandwich panels.
- When the core density of AFS is greater than 0.33 g/cm3, it exhibits an elevated initial energy absorption efficiency. However, this also leads to premature failure. In the context of large deformations, AFS with a core density of less than 0.29 g/cm3 demonstrate superior energy absorption efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gibson, L.; Ashby, M. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Ashby, M.F.; Evans, T.; Fleck, N.A.; Hutchinson, J.; Wadley, H.; Gibson, L. Metal Foams: A Design Guide; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Allen, H.G. Analysis and Design of Structural Sandwich Panels; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Castanié, B.; Bouvet, C.; Ginot, M. Review of composite sandwich structure in aeronautic applications. Compos. Part C Open Access 2020, 1, 100004. [Google Scholar] [CrossRef]
- Schwingel, D.; Seeliger, H.W.; Vecchionacci, C.; Alwes, D.; Dittrich, J. Aluminium foam sandwich structures for space applications. Acta Astronaut. 2007, 61, 326–330. [Google Scholar] [CrossRef]
- Banhart, J.; Seeliger, H.-W. Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications. Adv. Eng. Mater. 2008, 10, 793–802. [Google Scholar] [CrossRef]
- Huang, Y.; Gong, J.; Lv, S.; Leng, J.; Li, Y. Fluxless soldering with surface abrasion for joining metal foams. Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process. 2012, 552, 283–287. [Google Scholar] [CrossRef]
- Wan, L.; Huang, Y.; Lv, S.; Feng, J. Fabrication and interfacial characterization of aluminum foam sandwich via fluxless soldering with surface abrasion. Compos. Struct. 2015, 123, 366–373. [Google Scholar] [CrossRef]
- Ubertalli, G.; Ferraris, M.; Bangash, M.K. Joining of AL-6016 to Al-foam using Zn-based joining materials. Compos. Part A—Appl. Sci. Manuf. 2017, 96, 122–128. [Google Scholar] [CrossRef]
- Huang, P.; Sun, X.; Su, X.; Gao, Q.; Feng, Z.; Zu, G. Three-Point Bending Behavior of Aluminum Foam Sandwich with Different Interface Bonding Methods. Materials 2022, 15, 6931. [Google Scholar] [CrossRef]
- Zu, G.; Song, B.; Zhong, Z.; Li, X.; Mu, Y.; Yao, G. Static three-point bending behavior of aluminum foam sandwich. J. Alloys Compd. 2012, 540, 275–278. [Google Scholar] [CrossRef]
- Lu, X.; Luo, H.; Yang, S.; Wei, Y.; Xu, J.; Yao, Z. Two-step foaming process combined with hot-rolling in fabrication of an aluminium foam sandwich panel. Mater. Lett. 2020, 265, 127427. [Google Scholar] [CrossRef]
- Crupi, V.; Montanini, R. Aluminium foam sandwiches collapse modes under static and dynamic three-point bending. Int. J. Impact Eng. 2007, 34, 509–521. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Z.; Yu, J.; Qian, C.; Lu, F. Deformation and failure mechanisms of sandwich beams under three-point bending at elevated temperatures. Compos. Struct. 2014, 111, 285–290. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Q.; Han, X.; Ai, W. The initial plastic failure of fully clamped geometrical asymmetric metal foam core sandwich beams. Compos. Part B—Eng. 2016, 87, 233–244. [Google Scholar] [CrossRef]
- Wang, M.; Yu, X.; Zhang, J.; Qin, Q. Three-point bending of physically asymmetric metal sandwich beams with aluminum foam core: Failure behavior and optimal design. Compos. Struct. 2022, 280, 114873. [Google Scholar] [CrossRef]
- Jiang, B.; Li, Z.; Lu, F. Failure mechanism of sandwich beams subjected to three-point bending. Compos. Struct. 2015, 133, 739–745. [Google Scholar]
- Wang, N.-z.; Chen, X.; Li, A.; Li, Y.-x.; Zhang, H.-w.; Liu, Y. Three-point bending performance of a new aluminum foam composite structure. Trans. Nonferrous Met. Soc. China 2016, 26, 359–368. [Google Scholar] [CrossRef]
- Zhang, J.X.; Qin, Q.H.; Ai, W.L.; Li, H.M.; Wang, T.J. The Failure Behavior of Geometrically Asymmetric Metal Foam Core Sandwich Beams Under Three-Point Bending. J. Appl. Mech.—Trans. ASME 2014, 81, 071008. [Google Scholar] [CrossRef]
- Yan, C.; Song, X.; Jing, C.; Feng, S. Effects of epoxy resin liquidity on the mechanical properties of aluminum foam sandwich. J. Adhes. Sci. Technol. 2018, 32, 673–691. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, X.; Sun, S.; Chen, H. Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement. Compos. Sci. Technol. 2013, 77, 14–21. [Google Scholar] [CrossRef]
- Bart-Smith, H.; Hutchinson, J.W.; Evans, A.G. Measurement and analysis of the structural performance of cellular metal sandwich construction. Int. J. Mech. Sci. 2001, 43, 1945–1963. [Google Scholar] [CrossRef]
- Kabir, K.; Vodenitcharova, T.; Hoffman, M. Response of aluminium foam-cored sandwich panels to bending load. Compos. Part B—Eng. 2014, 64, 24–32. [Google Scholar] [CrossRef]
- McCormack, T.M.; Miller, R.; Kesler, O.; Gibson, L.J. Failure of sandwich beams with metallic foam cores. Int. J. Solids Struct. 2001, 38, 4901–4920. [Google Scholar] [CrossRef]
- Yu, J.; Wang, E.; Li, J.; Zheng, Z. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending. Int. J. Impact Eng. 2008, 35, 885–894. [Google Scholar] [CrossRef]
- Urtekin, L.; Gunes, D.; Yilan, F.; Çanli, M. The Effect of Layers on the Unidirectional Carbon Fibers of the Reinforced Polyester Resin Matrix Composite Material. Gazi Univ. J. Sci. Part C Des. 2022, 10, 495–503. [Google Scholar] [CrossRef]
- Pandey, A.; Muchhala, D.; Kumar, R.; Sriram, S.; Venkat, A.N.C.; Mondal, D.P. Flexural deformation behavior of carbon fiber reinforced aluminium hybrid foam sandwich structure. Compos. Part B—Eng. 2020, 183, 107729. [Google Scholar] [CrossRef]
- Helwig, H.M.; Garcia-Moreno, F.; Banhart, J. A study of Mg and Cu additions on the foaming behaviour of Al-Si alloys. J. Mater. Sci. 2011, 46, 5227–5236. [Google Scholar] [CrossRef]
- Sun, X.; Jian, Z.; Su, X.; Huang, P.; Gao, Q.; Feng, Z.; Zu, G. Aluminum Foam Sandwich: Pore Evolution Mechanism Investigation and Engineering Preparing Optimization. Materials 2023, 16, 6479. [Google Scholar] [CrossRef]
- Idris, M.I.; Vodenitcharova, T.; Hoffman, M. Mechanical behaviour and energy absorption of closed-cell aluminium foam panels in uniaxial compression. Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process. 2009, 517, 37–45. [Google Scholar] [CrossRef]
- McCullough, K.Y.G.; Fleck, N.A.; Ashby, M.F. Uniaxial stress–strain behaviour of aluminium alloy foams. Acta Mater. 1999, 47, 2323–2330. [Google Scholar] [CrossRef]
- GB/T 31930; Metallic Materials-Ductility Testing-Compression Test for Porous and Cellular Metals. China Standard Publishing House: Beijing, China, 2015.
- Kechagias, S.; Oosterbeek, R.N.; Munford, M.J.; Ghouse, S.; Jeffers, J.R.T. Controlling the mechanical behaviour of stochastic lattice structures: The key role of nodal connectivity. Addit. Manuf. 2022, 54, 102730. [Google Scholar] [CrossRef]
- Belardi, V.G.; Fanelli, P.; Trupiano, S.; Vivio, F. Multiscale analysis and mechanical characterization of open-cell foams by simplified FE modeling. Eur. J. Mech. A—Solids 2021, 89, 104291. [Google Scholar] [CrossRef]
- Orbulov, I.N.; Szlancsik, A.; Kemeny, A.; Kincses, D. Compressive mechanical properties of low-cost, aluminium matrix syntactic foams. Compos. Part A—Appl. Sci. Manuf. 2020, 135, 105923. [Google Scholar] [CrossRef]
- GB/T 1455; Test Method for Shear Properties of Sandwich Constructions or Cores. China Standard Publishing House: Beijing, China, 2005.
- ASTM C393; Standard Test Method for Core Shear Properties of Sandwich Construction by Beam Flexure. ASTM International: West Conshohocken, PA, USA, 2016.
Composition | Range Size (μm) | Purity (%) | Content |
---|---|---|---|
Al | <45 | 99.7 | 85% |
Si | <38 | 99.5 | 6% |
Mg | <75 | 99.9 | 4% |
Cu | <38 | 99.9 | 4% |
TiH2 | <45 | 99.7 | 1% |
Label | Panel Size (mm) | Cavity Height (mm) | Powder Weight (kg) | Preform Thickness (mm) | Foaming Temperature (°C) | Foaming Time (min) |
---|---|---|---|---|---|---|
A | 500 × 350 × 4 | 15 | 4.2 | 4 | 650 | 16 |
B | 500 × 350 × 4 | 15 | 4.5 | 4 | 650 | 12 |
C | 500 × 350 × 4 | 20 | 5.6 | 6 | 620 | 16 |
D | 500 × 350 × 4 | 20 | 6.0 | 6 | 620 | 12 |
Label | c (mm) | t (mm) | m (g) | ρc (g/cm3) | Pmax (N) | Ppre (N) | Mmax (Nm) | Failure Mode |
---|---|---|---|---|---|---|---|---|
A1 | 14.00 | 0.98 | 75.14 | 0.25 | 1510.39 | 1619.70 | 45.31 | IN |
A2 | 14.74 | 0.95 | 75.48 | 0.26 | 1534.87 | 1584.99 | 46.05 | IN |
A3 | 14.10 | 0.96 | 73.93 | 0.25 | 1640.22 | 1577.86 | 46.21 | IN |
B1 | 14.16 | 0.99 | 79.13 | 0.28 | 1701.34 | 2109.27 | 51.04 | CS |
B2 | 14.10 | 0.96 | 78.46 | 0.29 | 1784.21 | 2207.87 | 53.53 | CS |
B3 | 14.47 | 0.93 | 79.48 | 0.29 | 2060.13 | 2260.55 | 61.80 | CS |
C1 | 18.02 | 1.02 | 98.81 | 0.34 | 3465.32 | 3270.89 | 100.12 | IN + FY |
C2 | 18.65 | 1.01 | 99.65 | 0.33 | 3354.12 | 3345.32 | 103.62 | IN + FY |
C3 | 18.94 | 0.99 | 100.00 | 0.33 | 3273.15 | 3323.04 | 98.19 | FY |
D1 | 18.50 | 1.02 | 105.41 | 0.39 | 3679.15 | 3556.26 | 110.37 | FY |
D2 | 18.31 | 1.03 | 107.33 | 0.39 | 3573.35 | 3511.28 | 107.20 | FY |
D3 | 18.61 | 1.02 | 108.61 | 0.39 | 3654.12 | 3582.39 | 109.62 | FY |
Label | Total Count of Pores | Equivalent Pore Diameter (mm) | Standard Deviation of Equivalent Pore Diameter | Average Circularity |
---|---|---|---|---|
A1 | 237 | 2.59 | 1.76 | 0.74 |
B1 | 294 | 2.28 | 1.34 | 0.75 |
C1 | 361 | 2.37 | 1.17 | 0.81 |
D1 | 559 | 1.81 | 0.87 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Gao, Q.; Su, X.; Feng, Z.; Sun, X.; Zu, G. Effect of Core Density on the Three-Point Bending Performance of Aluminum Foam Sandwich Panels. Materials 2023, 16, 7091. https://doi.org/10.3390/ma16227091
Huang P, Gao Q, Su X, Feng Z, Sun X, Zu G. Effect of Core Density on the Three-Point Bending Performance of Aluminum Foam Sandwich Panels. Materials. 2023; 16(22):7091. https://doi.org/10.3390/ma16227091
Chicago/Turabian StyleHuang, Peng, Qiang Gao, Xixi Su, Zhanhao Feng, Xi Sun, and Guoyin Zu. 2023. "Effect of Core Density on the Three-Point Bending Performance of Aluminum Foam Sandwich Panels" Materials 16, no. 22: 7091. https://doi.org/10.3390/ma16227091
APA StyleHuang, P., Gao, Q., Su, X., Feng, Z., Sun, X., & Zu, G. (2023). Effect of Core Density on the Three-Point Bending Performance of Aluminum Foam Sandwich Panels. Materials, 16(22), 7091. https://doi.org/10.3390/ma16227091