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Abstract: Dynamic problems of elastic non-periodically laminated solids are considered in this
paper. It is assumed that these laminates have a functionally graded structure on the macrolevel
along the x1-axis and non-periodic structure on the microlevel. However, along the other two
directions, i.e., x2 and x3, their properties are constant. The effects of the size of a microstructure
(the microstructure effect) on the behaviour of the composites can play a significant role. This effect
can be described using the tolerance modelling method. This method allows us to derive model
equations with slowly varying coefficients. Some of these terms can depend on the size of the
microstructure. These governing equations of the tolerance model make it possible to determine
formulas describing not only fundamental lower-order vibrations related to the macrostructure of
these composite solids, but also higher-order vibrations related to the microstructure. Here, the
application of the tolerance modelling procedure is shown to lead to equations of the tolerance
model that can be used for non-periodically laminated solids. Then, these model equations are
mainly used to analyse a simple example of vibrations for functionally graded composites with non-
periodically laminated microstructure (FGL). Similar problems were investigated in the framework
of the homogenised (macrostructural) model (Jędrysiak et al. 2006); the resulting equations neglect
the microstructure effect.

Keywords: non-periodically laminated solids; functionally graded laminates (FGL); tolerance-
periodic microstructure; microstructure effect; tolerance modelling; vibrations

1. Introduction

Composites, having properties which change continuously, smoothly, and slowly, are
called functionally graded materials (FGM) (Suresh and Mortensen [1], Woźniak et al. [2]).
An example of such material is presented in Figure 1. In this paper, we considered com-
posites on a microlevel tolerance-periodic (non-periodic) laminates along their axis x1
(Figure 2a), but, on a macrolevel, they can be treated as functionally graded along this
axis (Figure 2b). Such microstructured media can be widely applied in various branches
of engineering and can be named functionally graded laminated (FGL) media or, shorter,
functionally graded laminates (FGL). A fragment of such a composite is shown in Figure 2.

In FGM-type composites, the distribution of properties on the macrolevel is known,
but the exact description of the geometry of their microstructure is usually impossible
to determine. Partial differential equations having tolerance-periodic, highly oscillating,
non-continuous coefficients describe dynamics, stability, and thermal problems of FGLs
under consideration. These equations do not stand as a good tool to investigate special
problems. Hence, the thermomechanical phenomena in them can be considered only within
the framework of mechanical models with idealised geometry. Idealising assumptions
may be similar to those used in the description of macroscopic homogeneous composites.
The overall behaviour of FGM materials can be analysed by adapting and modifying the
methods used for homogeneous materials, although these materials are not macroscopi-
cally homogeneous. Some of the modelling methods used to describe such materials are
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discussed, among others, in [3] and, above all, in monographs [1,2]. Between many models,
those based on the asymptotic homogenisation, the book by Bensoussan et al. [4], should be
mentioned. However, these models usually neglect the microstructure effect on the general
behaviour of FGLs.
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Figure 2. A FGL composite: (a) a microstructure, (b) a macrostructure. 

Other various modelling approaches were applied in order to consider the 
different problems of composite media. A model with microlocal parameters 
used in a homogenisation was proposed for periodic plates [5].  

Research on methods and models of vibrations for composite beams was 
presented in [6]. A modified couple stress theory with a meshless method was 
proposed for microstructure-dependent laminated beams in [7]. A layer-wise 
third order shear and normal deformable beam/plate/shell theory with geomet-
ric nonlinearity was applied to analyse finite deformations of curved laminated 
beams in [8]. The dynamic stability of metal foam circular plates was nonlinearly 
investigated in [9]. Mathematical and numerical considerations of elastic buck-
ling for a sandwich beam, with a core of variable mechanical properties, were 
shown in [10]. Numerical analyses of the bending of sandwich beams with the 
core having inhomogeneous properties were presented in [11,12]. The dynamic 
stability of sandwich beams with a core of variable properties was mathemati-
cally modelled in [13]. Combined analytical-numerical models, using analytical 
relations and a finite element method, were formulated to consider some prob-
lems of composite auxetic beams—for a torsion [14,15], or for vibrations [16]. 
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Other various modelling approaches were applied in order to consider the different
problems of composite media. A model with microlocal parameters used in a homogenisa-
tion was proposed for periodic plates [5].

Research on methods and models of vibrations for composite beams was presented
in [6]. A modified couple stress theory with a meshless method was proposed for microst-
ructure-dependent laminated beams in [7]. A layer-wise third order shear and normal
deformable beam/plate/shell theory with geometric nonlinearity was applied to analyse
finite deformations of curved laminated beams in [8]. The dynamic stability of metal
foam circular plates was nonlinearly investigated in [9]. Mathematical and numerical
considerations of elastic buckling for a sandwich beam, with a core of variable mechanical
properties, were shown in [10]. Numerical analyses of the bending of sandwich beams
with the core having inhomogeneous properties were presented in [11,12]. The dynamic
stability of sandwich beams with a core of variable properties was mathematically modelled
in [13]. Combined analytical-numerical models, using analytical relations and a finite
element method, were formulated to consider some problems of composite auxetic beams—
for a torsion [14,15], or for vibrations [16]. Carrera unified formulation with Legendre
approximation was applied to analyse composite layered beams in [17].

For structures such as composite sandwich plates, various models were proposed
in several papers. Stability problems for annular three-layered plates with foam cores
and composite fibre-reinforced facings were considered in [18]. Free vibration analysis
of sandwich plates using various modelling approaches was shown in [19]. However, a
puncture problem of sandwich plates with an auxetic core was modelled in [20].

The various theoretical and numerical results of the different problems of functionally
graded media were presented in a number of works. For the thermal and mechanical
problems of functionally graded fibres, reinforced and laminated composites with mi-
crostructures and the higher-order theory were proposed and used in [21–23], and then
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evaluated by the finite element method in [24]. However, the known numerical methods
were also applied to functionally graded materials. For the thermal analysis of composites
with fibres, the boundary element method was used in [25]. The finite element method was
implemented for functionally graded materials in [26].

In a series of works, the analysis of various thermomechanical problems of function-
ally graded beams can be found. A meshless method was used to analyse vibrations
of sandwich beams that have composite functionally graded cores in [27]. The effect of
the shear correction function was taken into account in the modal analysis of composite
functionally graded beams in [28]. A one-dimensional theory of dynamic problems for
curved laminated beams using a generalisation of layer-wise displacement approaches
was formulated in [29]. An optimisation of free vibrations for composite functionally
graded nano-beams was proposed in [30]. A variational approach was used to formulate a
microstructure-dependent magneto-electro-elastic functionally graded porous (MEEFGP)
beam models in [31]. The porosity variation of the two-phase beam model via the thickness
was considered. Moreover, the extended modified couple stress theory in the proposed
model was included in order to take into account the so-called microstructure effect. In [32],
a new size-dependent axially functionally graded (AFG) micro-beam model was developed,
in which a reformulated strain gradient elasticity theory (RSGET) was also applied. The
strain gradient, velocity gradient, and couple stress effects were included in this new model
for the two-component axially functionally graded beam. Hamilton’s principle was used to
derive the governing equations and complete the boundary conditions of the AFG beam.

Similarly to the above, different problems of composite plates and shells, that also
have a functionally graded structure, were considered in many papers. Some of them are
mentioned below. Stability problems of cylindrical shells, which have functionally graded
structures and were loaded by dynamic torsional loadings, were analysed in [33]. Natural
frequencies for functionally graded plates were investigated using meshless methods, e.g.,
in [34]. Using a refined theory, a radial basis function approach for free vibrations of
functionally graded plates was proposed in [35]. Free vibrations of composite shells and
panels were considered when using a GDQ solution in [36]. Higher-order shear deformation
theories were applied to analyse coupled thermoelasticity for FGM-type plates in [37], and
statics for such plates and shells in [38]. Shells with functionally graded material properties
were numerically analysed in [39], using a new low-order shell element. The effects of
shear and normal deformations were taken into account for the free vibration problems of
thick plates with functionally graded structure in [40]. A higher-order shear and normal
deformable theory were applied to analyse the vibrations of functionally graded plates on a
foundation in [41]. A refined shear deformation theory was used to consider the nonlinear
analysis of bending for functionally graded plates in [42]. Chaotic dynamic problems
of plates from functionally graded materials were analysed in [43]. Static problems for
functionally graded shells and panels were considered in [44]. Higher-order equivalent
single-layer theory was applied to analyse stress and strain recovery for functionally graded
shells in [45]. The static behaviour of functionally graded shells under point and line loads
was considered in [46]. A strong formulation finite element method for the statics and
dynamics of laminated plates was proposed in [47]. The semi-analytical methods based on
the classical laminate plate theory were formulated and used to consider some mechanical
problems, e.g., for the dynamics and stability of functionally graded thin plates in [48];
for buckling of FML-FGM columns, made of such plates, with open cross-sections in [49];
similar columns with closed cross-sections in [50]; or for the imperfection sensitivity of the
post-buckling of FML columns in [51]. Using the modified couple stress theory, a new plate
model of the thermal buckling of functionally graded annular plates with microstructure
was proposed in [52]. A strong formulation of isogeometric analysis for laminated plates
was presented in [53]. The analysis of composite plates applying a differential quadrature
finite element method and a layerwise theory was shown in [54]. Three-dimensional finite
element modelling was used to investigate the free vibrations of FGM-type sandwich plates
under thermal loads in [55]. Novel semi-analytical solutions of the transient behaviours
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for FGM-type plates with in-plane displacements and within a thermal environment were
presented in [56]. An analytical method, based on the complex variable approach, was
proposed in [57] to the analysis of moments and forces in functionally graded plates with a
triangular hole.

A generalised differential quadrature method was applied to consider both the natural
frequency responses of hybrid functionally graded nanocomposite shells in [58], and the
effects of various reinforcements on vibrations for three-phase nanocomposite shells in [59].

Unfortunately, proposed modelling approaches for microstructured media usually
lead to model equations, which neglect the microstructure effect (Brillouin [60]). Therefore,
this effect cannot be investigated within these models. However, this effect may play a
significant role in the overall behaviour of microheterogeneous bodies [60]. This can be
seen mainly in dynamic problems, in which it is possible to observe the relationships
between macro- and micro-vibrations, and the macro and microstructure of the body
under consideration, respectively. Similar problems were analysed for certain media with
microstructures within specially adopted methods. They can be found, for example, in [61],
where the analysis of vibration band gaps in periodic beams was considered using the
differential quadrature method, and in [62], where the analysis of the properties of vibration
band gaps for Mindlin’s periodic plates applying a spectral element method was shown.
The microstructure effect has also been experimentally confirmed for periodic laminates
in [63].

Differential thermomechanical problems of microstructured media (periodic or non-
periodic) can be investigated by applying an alternative approach, named the tolerance
modelling method (or the tolerance method), to the monographs (Woźniak and Wierzbicki [64],
Woźniak et al. (Eds.) [2,65]). This method is applicable when considering various problems
of mechanics in different bodies with microstructure. The differential equations describ-
ing these problems have highly oscillating, discontinuous functional coefficients, and are
not a good tool for solving such problems. The tolerance method allows for the replac-
ing of these exact equations with averaged model equations, having constant (or slowly
varying) coefficients. Some of these coefficients are directly dependent on the size of the
microstructure.

Various mechanical problems of different periodic media were considered in many
works using the tolerance method. Fluid-saturated micro-periodic grounds were analysed
in [66]. Certain forced vibrations of periodic plates, resting on a periodically inhomoge-
neous Winkler foundation, were considered in [67]. Some problems of the dynamics of
the plane periodic structures were investigated in [68]. Meso-shape functions applied to
vibrations of wavy plates were considered in [69]. In [70], the dynamics of reinforced thin
periodic plates were investigated. Some problems of the dynamics for uniperiodic medium
thickness plates were presented in [71]. The length-scale effect in the buckling of periodic
thin plates on a Winkler foundation was analysed in [72]. An analysis of the dynamics of
periodic thin plates, with the size of the microstructure of an order of the plate thickness,
was shown in [73]. Stability, dynamics, and thermoelasticity problems of micro-periodic
shells were considered in papers [74–79]. Elastostatics of periodic thin plates with large
deflections were investigated in [80]. The vibrations of geometrically nonlinear periodic
beams were analysed in [81,82], but a comparison of natural vibration frequencies for
Bernoulli and Timoshenko beams was shown in [83]. The tolerance approach was applied
in order to consider vibrations for periodic sandwich plates in [84]. The tolerance modelling,
in a revisiting form for dynamics and stability of periodic slender beams on a foundation,
was formulated in [85]. A stress distribution in thin periodic composite plates was analysed
in [86]. The heat transfer problems of periodic laminates were also investigated, e.g., for
third type boundary conditions in [87]; for randomized material properties in [88].

The tolerance method is also a good tool for modelling and analysing the function-
ally of structures with tolerance-periodic microheterogeneity. Various aspects of the
elastic responses of laminates with functional gradation of properties were shown in
the works [89–91]. The dynamics and stability problems of longitudinally graded plates
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(e.g., annular plates) were considered in [92–95]. An analysis of vibrations for thin function-
ally graded plates with a microstructure was presented in [96], applying a new combined
asymptotic-tolerance model. Vibrations of thin-walled structures with a dense system of
ribs were analysed in [97,98], using a tolerance approach. Heat conduction problems in
cylindrical composite media with non-uniform distributions of properties were investigated
in [99,100]. The tolerance method was used in [101] to describe vibrations of functionally
graded medium thickness plates with a microstructure. The dynamics and stability of
functionally graded thin shells with a microstructure were considered in [102–104].

The above-mentioned papers do not cover the full range of problems analysed by the
authors using the tolerance method for various media with a periodic or tolerance-periodic
structure. They also do not constitute a complete list of such literature.

The aim of this paper is to present equations of the tolerance model for functionally graded
laminates (FGL) and then to show an application of these equations in the analysis of a
simple dynamical problem for a special example of functionally graded laminates. The
example has been selected in such a way as to obtain simple analytical solutions and to
show the extension of the tolerance model in relation to the asymptotic model.

This paper consists of six sections.
Section 1. Introduction includes a short description of a problem under consideration

and a review of some papers related to different objects with microstructure.
In Section 2. Modelling preliminaries, basic denotations of a classical model of an

elastic medium used for laminates are introduced. The known equation of such media
is formulated.

Section 3. Modelling technique includes some basic concepts of the tolerance mod-
elling method, with the reminded definitions of the averaging operator, the tolerance-periodic
function, the slowly-varying function, the fluctuation shape function. In the second section,
two basic assumptions of the method -the micro-macro decomposition, the tolerance averaging
approximation are formulated. The third section has a short description of the tolerance
modelling procedure.

In the Section 4. Model equations, two subsections show the governing equations
of the models—the system of equations of the tolerance model of functionally graded
laminates (FGL) with tolerance-periodic microstructure, and the asymptotic model of
functionally graded laminates (FGL) with tolerance-periodic microstructure.

Section 5. An example: vibrations of a special laminated layer consists of three
subsections. In the first section, an example under consideration of a laminated functionally
graded layer on the undeformable base is described. Some basic assumptions for this
example are also introduced. Vibration equations of both the models are shown in the
second subsection. Equations of the tolerance model for the considered layer in the first
approximation are decoupled on two equations—for the macro- and the micro-vibrations.
The third section consists of three points. In the first point, it is assumed that the cell
distribution functions and the properties distribution functions are defined. Equations for
the macro- and the micro-vibrations are written with the boundary conditions on the upper
and the bottom boundaries of the layer, and the new denotations and some additional
assumptions in the second point of this subsection. Then these equations with the boundary
conditions are rewritten in the non-dimensional form. In the third point, formulas of non-
dimensional solutions of the macro- and the micro-vibrations are obtained. Results from
these formulas are shown in the form of diagrams.

In Section 6. Remarks, general and some detailed remarks of the proposed model for
FGL layer and obtained numerical results of the example are formulated.

2. Modelling Preliminaries

For the sake of simplicity, but without losing the generality of the analysis, further
considerations are limited to a plane problem of composites in the orthogonal Cartesian
coordinate system Ox1x2.
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Let Ω = (−h1, h1) × (0, h2) be the region of the considered laminate, where 2h1 is the
dimension of the region along the x1 axis; h2 is the dimension along the x2 axis. Introduce
also denotations: x ≡ (x1, x2); and t for a time coordinate. Then denote x ≡ x1, z ≡ x2. Let
∇ ≡ (∂1, ∂2), ∂ ≡ (∂1, 0) and ∇ ≡ (0, ∂2) denote derivatives of x, x and z, respectively. It is
assumed that a distribution of laminas thicknesses is extrapolated by smooth function of
cells distribution λ(x), being slowly varying. Let us define a closed subset ∆ of the region Ω
as ∆ ≡ [−λ/2, λ/2] × {0} and the region ∆(x), x∈Ω, as ∆(x) ≡ x + ∆, such that Ω = {x∈Ω:
∆(x)⊂Ω}. The subset ∆ can be called the “basic cell” and the region ∆(x)—“the cell with a
centre at point x”. Introduce also a set of centres of cells ∆(x) defined as Ω∆ = (−h1 + λ/2,
h1 − λ/2) × (0, h2).

The laminate under consideration is made of two linear-elastic materials that occupy
regions Ω′, Ω′′, and where Γ is the system of contact planes between the components. These
components are distributed in laminas with varying thicknesses. Every lamina consisted of
two sub-laminas made of isotropic homogeneous materials with mass densities ρ’, ρ” and
elastic tensors C′, C′′ . It is assumed that the distribution of properties is extrapolated by
non-dimensional functions ν′(x), ν′′(x), satisfying the condition ν′(x) + ν′′(x) = 1. Moreover,
the non-dimensional function ν =

√
ν′ν′′ is introduced, which can be called a distribution

function of non-homogeneity. It is also assumed that the above functions ν′, ν′′ are slowly
varying functions [2,89–91]. It can be noted that the functions adopted, defining the mass
density ρ and the elasticity tensor C, are non-periodic (tolerance-periodic) functions in
x. It is also assumed that planes xα = const, α = 1, 2, are material symmetry planes, (i.e.,
C1222 = 0, C2111 = 0).

Denoting a vector of displacements by w = w(x,t) and a vector of external forces by f,
the differential equation of the composite under consideration can be written as

ρ
..
w−∇ · (C : ∇w) = f, (1)

which is satisfied in the region Ω′∪Ω′′ for every time t. It is assumed that the vector
of displacements w and the stress tensor T = C:∇w satisfy regular conditions, and the
condition of continuity for the stresses on contact planes between laminas Γ, i.e., ETFn = 0,
where ETF(x, t), x ∈ Γ, is a jump of the stress tensor; n is a unit normal vector.

The above Equation (1), describing dynamical problems of laminates with functionally
graded properties (FGL), has non-periodic (tolerance-periodic), non-continuous functional
coefficients. In this form, the equation is not a good tool to consider the special problems of
these laminates. Hence, Equation (1) can be replaced by a system of differential equations
with slowly varying, continuous functional coefficients, using the tolerance modelling
method.

3. Modelling Technique
3.1. Basic Concepts

In the tolerance modelling method, some basic concepts are used, as defined in the
books [2,64,65], e.g., an averaging operator <·>, slowly-varying function SV, tolerance-
periodic function TP, and fluctuation shape function FS. They were also shown and applied
in different papers, e.g., in [82], but here, some of them are reiterated, in order to make the
paper self consistent [89–91].

Define the averaging operator for an integrable function f, determined in an interval
[−h1, h1] (which can be dependent also to z and t), by

< f > (x) = λ−1
∫

∆(x)
f (y, z)dy, x = (x, z) ∈ Ω∆, (y, z) ∈ ∆(x). (2)

The averaged value obtained from (2) for a tolerance-periodic function f is a slowly
varying function in x, but this value is constant for periodic function.

Function φ, integrable and bounded in the region Ω, is called the tolerance-periodic
function, φ∈TP; if for every x∈Ω∆, there exists a function φx such that the functions φ and
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φx are indistinguishable within a certain tolerance, determined by the tolerance parameter
δ. The function φx can be named a periodic approximation of the function φ in the region
∆(x).

Function ψ, ψ ∈ C(Ω), is called the slowly varying function, ψ∈SV, if, and only if, the
following condition is satisfied:

(∀x∈Ω∆) (∀x’, x”∈∆(x)) [|ψ(x′) − ψ(x′′)| ≤ δ], (3)

where δ is the tolerance parameter, δ << 1, related to the considered problems.
Let us introduce a tolerance-periodic, bounded functionϕ,ϕ∈TP, defined in Ω, having

a partly continuous derivative of the order 1.
Function ϕ is called the fluctuation shape function, ϕ∈FSF, depending on the parameter

λ and satisfies the conditions λ∂ϕ∈O(λ) and <ϕ>(x) ≈ 0 (for every x∈Ω∆).
In the laminates under consideration, this function is a continuous, linear function

along the thickness of every sub-lamina, dependent only on the argument x. It is assumed
in the following form:

ϕ(x) =

 −λ
√

3 ν(x)
ν′′ (x) [2

x
λ + ν′(x)] dla x ∈ (−λ

2 ,−λ
2 + λν′′ (x))

λ
√

3 ν(x)
ν′(x) [2

x
λ − ν′′ (x)] dla x ∈ (λ2 − λν′(x), λ2 )

, x ∈ (−h1, h1), (4)

and shown in Figure 3.
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Because the distribution function of non-homogeneity ν is slowly varying, it can
be shown that the averaged value of the function ϕ is equal to zero in every lamina,
<ϕ>(x) ≈ 0 (it is also satisfied the condition <ρϕ>(x) ≈ 0 for every x∈Ω∆, where ρ > 0 is a
certain tolerance-periodic function).

3.2. Modelling Assumptions

Using the above concepts, basic assumptions on the tolerance modelling method can
be introduced [2,64,65].

In the first assumption, called the micro-macro decomposition, it is assumed that the
displacement w of the composite under consideration in the form:

w(x,z,t) = u(x,z,t) + ϕ(x)v(x,z,t), (5)

where functions u and v are new kinematic unknowns, named the macro-displacement and
the fluctuation amplitude, respectively. These functions satisfied the conditions

u(·,z,t), v(·,z,t) ∈ SV,

that is, they are slowly varying functions.
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In the second assumption, called the tolerance averaging approximation, it is assumed
that for any slowly varying function ψ, an approximation of the form ψ + O(δψ) ∼= ψ can
be used, according to which quantities of the order O(δ) are negligibly small compared to 1.

3.3. Modelling Procedure

The tolerance modelling procedure was proposed in different forms [2,64,65].
Here, it is applied similarly to that shown in [2]. The first step of the tolerance

modelling procedure is the substitution the micro-macro decomposition (5) into Equation
(1). After this, the governing Equation (1) does not hold, hence there exists a residual field
r(·) within the macro-dynamics, which is defined in the form

r = ρ
..
w−∇ · (C : ∇w)− f. (6)

In the next step, the residual orthogonality condition is formulated; it is assumed that the
residual field r(·) has to satisfy the following conditions:

< r > (x, z, t) = 0, < rϕ > (x, z, t) = 0. (7)

Then, in applying the conditions (7), combined together with the modelling assump-
tions, a system of governing equations for the macro-displacement u(·,z,t) and the fluctua-
tion amplitude v(·,z,t) can be obtained.

4. Model Equations
4.1. Tolerance Model Equations

From the use of the residual orthogonality condition (7) with the tolerance modelling
assumptions, the averaged equations of the laminates under consideration for u(·,z,t) and
v(·,z,t) are derived:

< ρ >
..
u− ∂ · (< C >: ∇u)−∇ · (< C >: ∇u)−

−∂ · (v· < ∂ϕ ·C >)−∇ · (< ∂ϕ ·C > ·v)+ < f >= 0,

< ρ(ϕ)2 >
..
v+

+ < ∂ϕ ·C · ∂ϕ > ·v−< C(ϕ)2 > : ∇v+
+∇u :< ∂ϕ ·C > −< ϕf > = 0.

(8)

Equation (8) with the decomposition (5) stands the system of equations of the tolerance
model of functionally graded laminates (FGL) with tolerance-periodic microstructure. The above
equations have coefficients, being slowly varying functions in x. Moreover, some of the
coefficients, underlined here, depend on the parameter λ, determining the thickness of
laminas. Hence, the microstructure effect is described by Equation (8) on the overall
dynamic behaviour of the considered laminates. Equation (8) is the system of differential
equations for the basic unknown factors: the macro-displacement u and the fluctuation
amplitude v, which have to be slowly varying functions in x. It can be observed that boundary
conditions should be formulated at x = ±h1 only for the macro-displacement u, but on all
other edges (at z = const) for every unknown: the macro-displacement u and the fluctuation
amplitude v.

4.2. Asymptotic Model Equations

Results obtained in the framework of the above model derived using the tolerance
modelling method can be evaluated by results from the approximate model. Equations
of this approximate model neglect the microstructure effect. These equations can be
derived using the proper asymptotic modelling procedure [2]. However, they can be also
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obtained directly from the tolerance model Equation (8) by neglecting the underlined
terms—dependent on the parameter λ. Hence, these equations can be written as:

< ρ >
..
u− ∂ · (< C >: ∇u)−∇ · (< C >: ∇u)−

−∂ · (v· < ∂ϕ ·C >)−∇ · (< ∂ϕ ·C > ·v)+ < f >= 0,

< ∂ϕ ·C · ∂ϕ > ·v +∇u :< ∂ϕ ·C >= 0,
(9)

which represent the asymptotic model of functionally graded laminates (FGL) with tolerance-
periodic microstructure, omitting the microstructure effect on the overall behaviour of the
laminated composites. The above equations have coefficients being slowly-varying func-
tions in x, similarly to Equation (8) for the tolerance model, in the contrast to Equation (1),
which have highly oscillating, tolerance-periodic non-continuous, functional coefficients.

5. An Example: Vibrations of a Special Laminated Layer
5.1. Preliminaries

As an example, vibrations of a layer with the thickness h2 along the z-axis (z = x2),
loaded on the upper boundary by p(x, t) and rested on the undeformable base are consid-
ered. The layer has the length 2h1 along the x-axis (x = x1) and is non-periodically reinforced
along this axis. It is made of two components, Figure 4. It is also assumed that f = 0.
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Assuming for components of the macro-displacement vector u1 and the fluctuation
amplitude v1, the following boundary conditions on the boundaries x = ±h1:

u1 = v1 = 0 and ∂1u2 = ∂1v2 = 0;

hence,
u1 = v1 = 0,

i.e., components u1, v1 are equal to zero.
Let us assume other components as independent of the argument x, i.e.,:

u2(x, z, t) = u(z, t), v2(x, z, t) = v(z, t).

5.2. Vibrations Equations

• The tolerance model

Under assumptions and denotations from Section 5.1, and neglecting a term with a
derivative of slowly-varying coefficient ∂1ϕ < C1212∂1ϕ >≈ 0 in the first approximation in
the equation for macro-vibrations (the first of Equation (8)), the governing equations of the
tolerance model (8) for the FGL under consideration take the forms:

- macro-vibrations equation

< ρ >
..
u− < C2222 > ∂22u = 0; (10)
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- micro-vibrations equation

< ρ(ϕ)2 >
..
v+ < C1212(∂1ϕ)

2 > v− < C2222(ϕ)
2 > ∂22v = 0. (11)

It can be observed that for the considered problem of vibrations for FGL layer,
Equation (8) can be written as two independent equations—one (10) for the macro-displa-
cement u describing only macro-vibrations, and one (11) for the fluctuation amplitude v
describing only micro-vibrations.

• The asymptotic model

Under assumptions and denotations from Section 5.1 and similar neglecting as in the
tolerance model, the governing equations of the asymptotic model (9) for the FGL under
consideration can be written as

< ρ >
..
u− < C2222 > ∂22u = 0; (12)

which is only for the macro-displacement u and has a form identical as Equation (10).
Hence, the obtained Equation (12) describes only the macro-vibrations.

5.3. Solutions of Special Problem of Vibrations
5.3.1. Introductory Assumptions and Denotations

Let us assume the following parameters:
- the cell distribution function

λ(x) = lλ(x), (13)

where, e.g.,:

λ(x) = exp (
x
h2

)
2
+ 1 or λ(x) = exp (

x
h2

)
2
;

- for which the properties distribution functions can be written in the form:

ν′(x) =
1

λ(x)
, ν′′ (x) =

λ(x)− 1
λ(x)

; (14)

- the loading on the upper boundary:

p(x, t) = q(x, t) + r(x, t), (15)

with the averaged part of the loading:

q(x, t) = Q0q(x) exp(iωt), (16)

and the oscillating part of the loading:

r(x, t) = R0R(x)r(x) exp(iωt), (17)

where q(x), r(x) are slowly varying functions in x, called the macro-loading amplitude,
the micro-loading amplitude, respectively; R(x) is an oscillating function.

The basic unknowns in Equations (10) and (11) are assumed as

u(z, t) = U(z) exp(iωt),
v(z, t) = V(z) exp(iωt),

(18)

where U(z) is the amplitude of the macro-displacement, called the macro-deflection, and
V(z) is the amplitude of the fluctuation amplitude, called the fluctuation variable.
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5.3.2. Equations of Vibrations

Let us introduce some denotations:

C ≡< C2222 >= C′2222ν
′ + C′′2222ν

′′ = [C′2222 − C′′2222 + C′′2222λ(x)]/λ(x),
^
C ≡< C1212(∂1ϕ)

2 >= 12(C′1212ν
′′ + C′′1212ν

′) = 12[C′′1212 − C′1212 + C′1212λ(x)]/λ(x),
ρ ≡< ρ >= ρ′ν′ + ρ′′ν′′ = [ρ′ − ρ′′ + ρ′′λ(x)]/λ(x),

β ≡ C′′2222
C′2222

, κ ≡ ρ′′

ρ′ ,

(19)

and some assumptions:

δ2 ≡ C′′2222/ρ′′ = C′2222/ρ′ = const. (20)

Then let us assume the loadings amplitudes on the upper boundary as

q(x) = r(x) =
1− β+ βλ(x)

λ(x)
, (21)

and also β = κ. Now, introducing the following parameters:

ω2 ≡ C
ρh22 =

δ2

h22 , ϑ2 ≡ R0λ(x)r(x)
C′2222 − C′′2222 + C′′2222λ(x)

, (22)

the equations of vibrations (10) and (11) can be written in the form:

• the macro-vibrations equation

∂22U +
ρ

C
ω2U = 0, (23)

with the boundary conditions:
- on the upper boundary:

∂2U(0) = − Q0q(x)
A < C2222 > (x)

= − Q0q(x)λ(x)
A[C′2222 − C′′2222 + C′′2222λ(x)]

= − Q0

AC′2222
, (24)

- on the bottom boundary:
U(h2) = 0; (25)

• the micro-vibrations equation

∂22V +

 ρ
C
ω2 −

^
C

λ2ν2C

V = 0, (26)

with the boundary conditions:
- on the upper boundary:

∂2V(0) = − < ϕ2 > (x)
l < C2222ϕ2 > (x)

R0r(x) = − R0r(x)λ(x)
l[C′2222 − C′′2222 + C′′2222λ(x)]

= −ϑ2/l, (27)

- on the bottom boundary:
V(h2) = 0. (28)

Now, the equations of vibrations (23) and (26) with the boundary conditions can be
transformed to the non-dimensional form.
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Introduce non-dimensional parameters:

ζ ≡ z/h2, ∂(·) ≡ d/dζ,

Ω2 ≡ ω2/ω2,

η ≡ l/h2, χ ≡ C′1212
C′2222

=
C′′1212
C′′2222

= const,

γ2 ≡ Ω2 −
^
Ch2

2

λ2ν2C
= Ω2 − 12χ/η2,

(29)

where ζ is the non-dimensional coordinate (argument); ∂(·) is the derivative of ζ; and some
restrictions on properties of the laminated layer under consideration:

C′2222 >> C′′2222 ⇒ 1 + C′′2222/C′2222
∼= 1, C′1212 >> C′′1212 ⇒ 1 + C′′1212/C′1212

∼= 1.

Defining the non-dimensional unknowns as

φ(ζ) ≡ AC′2222
h2Q0

U(ζh2), ψ(ζ) ≡ η

ϑ2 V(ζh2), (30)

where φ(ζ) is the non-dimensional macro-deflection; ψ(ζ) is the non-dimensional fluctua-
tion variable;

the equations of vibrations (23) and (26) take the following non-dimensional form:

• the non-dimensional macro-vibrations equation

∂∂φ+ Ω2φ = 0, (31)

with the boundary conditions:

∂φ(0) = −1,φ(1) = 0; (32)

• the non-dimensional micro-vibrations equation

∂∂ψ+ γ2ψ = 0, (33)

with the boundary conditions:

∂ψ(0) = −1, ψ(1) = 0. (34)

5.3.3. Non-Dimensional Solutions of Vibrations

For the macro-vibrations described by Equation (31) the following solutions are obtained:
- the linearly decaying solution for Ω2 = 0:

φ(ζ) = 1− ζ; (35)

- the oscillating solution for Ω2 > 0:

φ(ζ) = Ω−1[tan Ω cos(Ωζ)− sin(Ωζ)]; (36)

- the resonance for:
Ω2 = (

π

2
+ nπ)

2
. (37)

For the micro-vibrations described by Equation (33), the following solutions are obtained:
- the decaying solution for γ2 < 0, µ2 = −γ2 = 12χ/η2 − Ω2:

ψ(ζ) =
1
µ

[
exp(−µζ)

1 + exp(−2µ)
− exp(µζ)

1 + exp(2µ)

]
; (38)
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- the linearly decaying solution for γ2 = 0:

ψ(ζ) = 1− ζ; (39)

- the oscillating solution for γ2 > 0:

ψ(ζ) = γ−1[tan γ cos(γζ)− sin(γζ)]; (40)

- the resonance for:
γ2 = (

π

2
+ nπ)

2
. (41)

Some results calculated from Formulas (35), (36) and (38)–(40) are presented in
Figures 5 and 6, respectively, in the form of curves of the non-dimensional solutions
versus the non-dimensional coordinate ζ = z/h2.
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Figure 5 shows diagrams of the non-dimensional macro-deflection calculated using
Formulas (35) and (36) for various values of parameter Ω = 0; 0.5; 1; 5.

From the solutions (35) and (36) and the above figure it can be observed that for the
problem of vibrations for the FGL layer under consideration there is one linearly decaying
solution of the non-dimensional macro-deflection (for Ω = 0); and are many solutions,
which are decaying and oscillating (for Ω2 > 0, Ω2 6= (π2 + nπ)2). Moreover, for higher
absolute values of Ω, e.g., |Ω| = 5, these solutions become strongly oscillating. The results
shown in Figure 5 can be interpreted so that the macro-deflection of the layer has values
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other than zero at its upper free edge, subjected to load. However, on the lower edge, at the
contact with the non-deformable base, the macro-deflection is zero.

In Figure 6, diagrams of the non-dimensional fluctuation variable calculated using
Formulas (38)–(40) for various values of parameter γ = 0; 0.5; 1; 5 or µ = 0.5; 5 are shown.

Results calculated from the solutions (38)–(40), and presented in Figure 6, make it
possible to observe that, for the considered problem of vibrations for the FGL layer, there is
one linearly decaying solution of the non-dimensional fluctuation variable (for γ = 0), and
are many solutions, which are decaying (for γ2 < 0, i.e., µ2 < 0), and are also many solutions,
which are decaying and oscillating (for γ2 > 0). Moreover, for higher values of µ, e.g., µ = 5,
the solutions become strongly decaying, and for higher values of γ, e.g., γ = 5, the solutions
become strongly oscillating. The results shown in Figure 6 can be interpreted similarly to
the macro-deflection of the layer, which means that the layer fluctuation variable has values
other than zero at the upper edge of the layer, free and subject to load. However, on the
lower edge, at the contact with the non-deformable base, the fluctuation variable is zero.

6. Remarks

In this paper, vibrations of functionally graded laminated (FGL) composites with
tolerance-periodic (non-periodic) microstructures have been considered. The tolerance
modelling method applied to the known differential equation of composites replaced this
equation with tolerance-periodic (non-periodic), non-continuous coefficients by the system
of governing differential equations with continuous, smooth, slowly-varying coefficients.

The microstructure effect is taken into account in the obtained averaged tolerance
model equations on the overall dynamic behaviour of the composites under consideration.
Thus, in these problems, this effect can be studied both at the macro and microlevels within
the tolerance model.

The asymptotic model has been also introduced to evaluate the obtained results within
the tolerance model. The governing equations of this approximate model could be derived
using the asymptotic modelling procedure. This model, omitting the microstructure effect,
allows the investigation of vibration problems only at the macrolevel.

In the example, it has been determined that the property distribution function in the
FGL layer loaded on the upper boundary, under the condition, and the basic unknowns
(the macro-displacement u2 = u and the fluctuation amplitude v2 = v), are independent of
x1 = x coordinate.

From the example, some specific remarks can be formulated.

1. It has been shown that only the tolerance model makes it possible to investigate
the effect of the micro-oscillations of the boundary loading, and also the effect of
macro-oscillations.

2. The asymptotic model allows for the analysis of only the effects of the macro-oscillations
of the loading.

3. Introduced various additional assumptions and restrictions make it possible to obtain
the analytical formulas of solutions.

4. It can be observed that the solutions of macro-vibrations can decay linearly, decay
and oscillate, or they not exist.

5. Solutions of micro-vibrations can decay exponentially, decay linearly, decay and
oscillate, or they not exist.

Other more complicated and interesting problems will be investigated using the
tolerance model equations of the considered FGL composites in forthcoming papers.
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77. Tomczyk, B.; Bagdasaryan, V.; Gołąbczak, M.; Litawska, A. Stability of thin micro-periodic cylindrical shells; extended tolerance

modeling. Compos. Struct. 2020, 253, 112743. [CrossRef]
78. Tomczyk, B.; Bagdasaryan, V.; Gołąbczak, M.; Litawska, A. On the modelling of stability problems for thin cylindrical shells with

two-directional micro-periodic structure. Compos. Struct. 2021, 275, 114495. [CrossRef]
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81. Domagalski, Ł.; Jędrysiak, J. Nonlinear vibrations of periodic beams. J. Theor. Appl. Mech. 2016, 54, 1095–1108. [CrossRef]
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