Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review
Abstract
:1. Introduction
2. HMs in Soil and Remediation of HM-Polluted Soils
Contamination Site | HM | Total HM (mg/kg) | MF (%) | Mobility Class | Ref. |
---|---|---|---|---|---|
Soils around a petroleum product marketing company (Nigeria) | Pb | 48.6 | 49 | Very high | [53] |
Ni | 12.3 | 58 | Very high | ||
Zn | 254.2 | 54 | Very high | ||
Cd | 1.8 | 37 | High | ||
Cr | 35.3 | 41 | High | ||
Soils from a dumping site around a Ramsar site (India) | Zn | 56.3 | 49.5 | Very high | [54] |
Cu | 12.4 | 45.2 | Very high | ||
Agricultural soils (China) | Cd | 0.24 | 46 | Very high | [55] |
Legnica copper smelter (Poland) | Cu | 8109.7 | 75.6 | Very high | [56] |
Pb | 1501.5 | 31.8 | Medium | ||
Zn | 511.3 | 74.7 | Very high | ||
Soils in the vicinity of a former Pb–Zn smelter in Copșa Mică (Romania) | Zn | 780.0 | 68.7 | Very high | [57] |
Cd | 12.7 | 87.5 | Very high | ||
Pb | 607.0 | 50.4 | Very high | ||
Soils around a former Cu and blende mine (Spain) | Cu | 248.0 | 21.2 | Medium | [58] |
Zn | 146.0 | 26.1 | Medium | ||
Soils around a former smelter (Czech Republic) | Pb | 1160.0 | 6.2 | Low | [59] |
Zn | 233.0 | 12.6 | Medium | ||
Cu | 21.7.0 | 5.5 | Low | ||
Cd | 5.7 | 56.1 | Very high |
3. Biochar Production and Strategies for Its Modification
3.1. General Strategies of Biochar Modification
3.1.1. Pre-Pyrolysis
3.1.2. Co-Pyrolysis
3.1.3. Post-Pyrolysis
3.2. Characterization of Biochar Modified with Different Methods
3.2.1. Physical Modification
Ball Milling
Microwave
Steam/Gas Activation
Magnetic Modification
3.2.2. Chemical Modification
Acid and Alkali Modification
Oxidant Modification
3.2.3. Biochar-Based Composites
Metal Ion and Metal Oxide Modification
Nanoparticle Modification
Carbonaceous Material Modification
3.2.4. Microbial Modification
4. Application of Modified Biochars for HM Immobilization in Soil
4.1. Physically Modified Biochars
4.2. Chemically Modified Biochars
4.3. Biochar-Based Composite
4.4. Microbial-Modified Biochars
5. Possible Negative Environmental Effects of the Use of Modified Biochar in Soil Remediation
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Dai, H.; Skuza, L.; Xu, J.; Shi, J.; Wang, Y.; Shentu, J.; Wei, S. Integrated Survey on the Heavy Metal Distribution, Sources and Risk Assessment of Soil in a Commonly Developed Industrial Area. Ecotoxicol. Environ. Saf. 2022, 236, 113462. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, A.; Makki, M.; Hejcman, M.; Shirzad, R.; Gusiatin, M.Z. Risk Assessment and Spatial Distribution of Heavy Metals with an Emphasis on Antimony (Sb) in Urban Soil in Bojnourd, Iran. Sustainability 2023, 15, 3495. [Google Scholar] [CrossRef]
- Kong, F.; Chen, Y.; Huang, L.; Yang, Z.; Zhu, K. Human Health Risk Visualization of Potentially Toxic Elements in Farmland Soil: A Combined Method of Source and Probability. Ecotoxicol. Environ. Saf. 2021, 211, 111922. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Zhang, J.; Mao, Y.; Huang, X.; Qian, G. Evaluation for the Heavy Metal Risk in Fine Particulate Matter from the Perspective of Urban Energy and Industrial Structure in China: A Meta-Analysis. J. Clean. Prod. 2020, 244, 118597. [Google Scholar] [CrossRef]
- Ayangbenro, A.; Babalola, O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Hu, X. Removal of Heavy Metals from Soil with Biochar Composite: A Critical Review of the Mechanism. J. Environ. Chem. Eng. 2021, 9, 105830. [Google Scholar] [CrossRef]
- Ayele, A.; Suresh, A.; Benor, S.; Konwarh, R. Optimization of Chromium(VI) Removal by Indigenous Microalga (Chlamydomonas Sp.)-Based Biosorbent Using Response Surface Methodology. Water Environ. Res. 2021, 93, 1276–1288. [Google Scholar] [CrossRef]
- Ambika, S.; Kumar, M.; Pisharody, L.; Malhotra, M.; Kumar, G.; Sreedharan, V.; Singh, L.; Nidheesh, P.V.; Bhatnagar, A. Modified Biochar as a Green Adsorbent for Removal of Hexavalent Chromium from Various Environmental Matrices: Mechanisms, Methods, and Prospects. Chem. Eng. J. 2022, 439, 135716. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, Z.; Si, M.; Zhu, F.; Yang, W.; Zhao, F.; Shi, Y. Application of Biochars in the Remediation of Chromium Contamination: Fabrication, Mechanisms, and Interfering Species. J. Hazard. Mater. 2021, 407, 124376. [Google Scholar] [CrossRef]
- Kong, L.; Gao, Y.; Zhou, Q.; Zhao, X.; Sun, Z. Biochar Accelerates PAHs Biodegradation in Petroleum-Polluted Soil by Biostimulation Strategy. J. Hazard. Mater. 2018, 343, 276–284. [Google Scholar] [CrossRef]
- Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and Biotransformation of Hexavalent Chromium [Cr(VI)]: A Comprehensive Review. Chemosphere 2018, 207, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the Removal of Contaminants from Soil and Water: A Review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
- Yang, T.; Xu, Y.; Huang, Q.; Sun, Y.; Liang, X.; Wang, L.; Qin, X.; Zhao, L. An Efficient Biochar Synthesized by Iron-Zinc Modified Corn Straw for Simultaneously Immobilization Cd in Acidic and Alkaline Soils. Environ. Pollut. 2021, 291, 118129. [Google Scholar] [CrossRef]
- Rao, M.A.; Di Rauso Simeone, G.; Scelza, R.; Conte, P. Biochar Based Remediation of Water and Soil Contaminated by Phenanthrene and Pentachlorophenol. Chemosphere 2017, 186, 193–201. [Google Scholar] [CrossRef]
- Turan, V. Potential of Pistachio Shell Biochar and Dicalcium Phosphate Combination to Reduce Pb Speciation in Spinach, Improved Soil Enzymatic Activities, Plant Nutritional Quality, and Antioxidant Defense System. Chemosphere 2020, 245, 125611. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; dos Santos Lins, P.V.; de Magalhães Oliveira, L.M.; Sepulveda, P.; Ighalo, J.O.; Rajapaksha, A.U.; Meili, L. Sewage Sludge-Derived Biochar for the Adsorptive Removal of Wastewater Pollutants: A Critical Review. Environ. Pollut. 2022, 293, 118581. [Google Scholar] [CrossRef] [PubMed]
- Marinos, S.; Agapios, A.; Terpsithea, P.; Michail, T.; Zorpas, A.A.; Hamdi, H. Biochar Production from the Pyrolysis of Tomato Processing Residues. In Tomato Processing By-Products: Sustainable Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 171–200. [Google Scholar]
- Li, Y.; Xing, B.; Ding, Y.; Han, X.; Wang, S. A Critical Review of the Production and Advanced Utilization of Biochar via Selective Pyrolysis of Lignocellulosic Biomass. Bioresour. Technol. 2020, 312, 123614. [Google Scholar] [CrossRef]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N.J. Potentials and Challenges in Lignocellulosic Biofuel Production Technology. Renew. Sustain. Energy Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Gopinath, A.; Ranjith, N.; Praveen Akre, A.; Sreedharan, V.; Suresh Kumar, M. Potential Role of Biochar in Advanced Oxidation Processes: A Sustainable Approach. Chem. Eng. J. 2021, 405, 126582. [Google Scholar] [CrossRef]
- Ponnusamy, V.K.; Nagappan, S.; Bhosale, R.R.; Lay, C.H.; Duc Nguyen, D.; Pugazhendhi, A.; Chang, S.W.; Kumar, G. Review on Sustainable Production of Biochar through Hydrothermal Liquefaction: Physico-Chemical Properties and Applications. Bioresour. Technol. 2020, 310, 123414. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Sakhiya, A.K.; Anand, A.; Kaushal, P. Production, Activation, and Applications of Biochar in Recent Times. Biochar 2020, 2, 253–285. [Google Scholar] [CrossRef]
- Zhang, A.; Li, X.; Xing, J.; Xu, G. Adsorption of Potentially Toxic Elements in Water by Modified Biochar: A Review. J. Environ. Chem. Eng. 2020, 8, 104196. [Google Scholar] [CrossRef]
- Masrura, S.U.; Dissanayake, P.; Sun, Y.; Ok, Y.S.; Tsang, D.C.W.; Khan, E. Sustainable Use of Biochar for Resource Recovery and Pharmaceutical Removal from Human Urine: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 3016–3048. [Google Scholar] [CrossRef]
- Zhao, N.; Zhao, C.; Tsang, D.C.W.; Liu, K.; Zhu, L.; Zhang, W.; Zhang, J.; Tang, Y.; Qiu, R. Microscopic Mechanism about the Selective Adsorption of Cr(VI) from Salt Solution on O-Rich and N-Rich Biochars. J. Hazard. Mater. 2021, 404, 124162. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, F.; Jin, J.; Khan, S.; Eltohamy, K.M.; He, M.; Liang, X. Qualitative and Quantitative Investigation on Adsorption Mechanisms of Cd(II) on Modified Biochar Derived from Co-Pyrolysis of Straw and Sodium Phytate. Sci. Total Environ. 2022, 829, 154599. [Google Scholar] [CrossRef]
- Gao, R.; Xiang, L.; Hu, H.; Fu, Q.; Zhu, J.; Liu, Y.; Huang, G. High-Efficiency Removal Capacities and Quantitative Sorption Mechanisms of Pb by Oxidized Rape Straw Biochars. Sci. Total Environ. 2020, 699, 134262. [Google Scholar] [CrossRef]
- Wang, F.; Jin, L.; Guo, C.; Min, L.; Zhang, P.; Sun, H.; Zhu, H.; Zhang, C. Enhanced Heavy Metals Sorption by Modified Biochars Derived from Pig Manure. Sci. Total Environ. 2021, 786, 147595. [Google Scholar] [CrossRef]
- Huang, S.W.; Chen, X.; Wang, D.D.; Jia, H.L.; Wu, L. Bio-Reduction and Synchronous Removal of Hexavalent Chromium from Aqueous Solutions Using Novel Microbial Cell/Algal-Derived Biochar Particles: Turning an Environmental Problem into an Opportunity. Bioresour. Technol. 2020, 309, 123304. [Google Scholar] [CrossRef]
- Anae, J.; Ahmad, N.; Kumar, V.; Thakur, V.K.; Gutierrez, T.; Yang, X.J.; Cai, C.; Yang, Z.; Coulon, F. Recent Advances in Biochar Engineering for Soil Contaminated with Complex Chemical Mixtures: Remediation Strategies and Future Perspectives. Sci. Total Environ. 2021, 767, 144351. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, L.; Luo, J.; Gong, H.; Zhu, N. A Sustainable Reuse Strategy of Converting Waste Activated Sludge into Biochar for Contaminants Removal from Water: Modifications, Applications and Perspectives. J. Hazard. Mater. 2022, 438, 129437. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhao, L.; Rui, X.; Hu, J.; Zhu, N. A Review of Pristine and Modified Biochar Immobilizing Typical Heavy Metals in Soil: Applications and Challenges. J. Hazard. Mater. 2022, 432, 128668. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Shi, C.; Tu, W.; Li, L.; Li, Q. Recent Developments in Modification of Biochar and Its Application in Soil Pollution Control and Ecoregulation. Environ. Pollut. 2022, 313, 120184. [Google Scholar] [CrossRef] [PubMed]
- Blenis, N.; Hue, N.; Maaz, T.M.C.; Kantar, M. Biochar Production, Modification, and Its Uses in Soil Remediation: A Review. Sustainability 2023, 15, 3442. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; Li, J.; Fang, Z.; Bolan, N.; Bhatnagar, A.; Gao, B.; Hou, D.; Wang, S.; Song, H.; et al. Engineered Biochar for Environmental Decontamination in Aquatic and Soil Systems: A Review. Carbon Res. 2022, 1, 4. [Google Scholar] [CrossRef]
- Sinha, R.; Kumar, R.; Sharma, P.; Kant, N.; Shang, J.; Aminabhavi, T.M. Removal of Hexavalent Chromium via Biochar-Based Adsorbents: State-of-the-Art, Challenges, and Future Perspectives. J. Environ. Manag. 2022, 317, 115356. [Google Scholar] [CrossRef]
- Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability 2021, 13, 14041. [Google Scholar] [CrossRef]
- Gueret Yadiberet Menzembere, E.R.; He, Y.; Dong, Y.; Li, B.; Liu, C.; Lin, H.; Sambiani, L. Insight into Modified Biochars and Their Immobilizing Effects on Heavy Metal(Loid)s in Contaminated Soils: Mechanisms and Influencing Factors. Pedosphere 2023, 33, 23–33. [Google Scholar] [CrossRef]
- Islam, M.M.; Karim, M.R.; Zheng, X.; Li, X. Heavy Metal and Metalloid Pollution of Soil, Water and Foods in Bangladesh: A Critical Review. Int. J. Environ. Res. Public Health 2018, 15, 2825. [Google Scholar] [CrossRef]
- Rouhani, A.; Azimzadeh, H.; Sotoudeh, A.; Ehdaei, A. Health Risk Assessment of Heavy Metals in Archaeological Soils of Tappe Rivi Impacted by Ancient Anthropogenic Activity. Chem. Afr. 2022, 5, 1751–1764. [Google Scholar] [CrossRef]
- Pérez, A.P.; Eugenio, R.N. Status of Local Soil Contamination in Europe—Revision of the Indicator “Progress in the Management Contaminated Sites in Europe”; Publications Office: Luxembourg, 2018. [Google Scholar]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil Heavy Metal Pollution and Food Safety in China: Effects, Sources and Removing Technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef]
- van Liedekerke, M.; Prokop, G.; Rabl-Berger, S.; Kibblewhite, M.; Louwagie, G. Progress in the Management of Contaminated Sites in Europe. Reference Report by the Joint Research Centre (JRC) of the European Commission; Publications Office: Rome, Italy, 2014. [Google Scholar]
- FAO. Food and Agricultural Organization (FAO) Global Assessment of Soil Pollution—Summary for Policymakers; Food and Agricultural Organization (FAO) Publication: Rome, Italy, 2021. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Zhang, C.; Zeng, G.; Liu, Y.; Xu, W.; Wu, Y.; Lan, S. Spatial Distribution and Transport Characteristics of Heavy Metals around an Antimony Mine Area in Central China. Chemosphere 2017, 170, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, A.; Shahivand, R. Potential Ecological Risk Assessment of Heavy Metals in Archaeology on an Example of the Tappe Rivi (Iran). SN Appl. Sci. 2020, 2, 1277. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment. Contam. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Kazi, T.G.; Jamali, M.K.; Kazi, G.H.; Arain, M.B.; Afridi, H.I.; Siddiqui, A. Evaluating the Mobility of Toxic Metals in Untreated Industrial Wastewater Sludge Using a BCR Sequential Extraction Procedure and a Leaching Test. Anal. Bioanal. Chem. 2005, 383, 297–304. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of Heavy Metal(Loid)s Contaminated Soils—To Mobilize or to Immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Adebiyi, F.M.; Ayeni, D.A. Chemical Speciation, Bioavailability and Risk Assessment of Potentially Toxic Metals in Soils around Petroleum Product Marketing Company as Environmental Degradation Indicators. Pet Res. 2022, 7, 286–296. [Google Scholar] [CrossRef]
- Borah, P.; Gujre, N.; Rene, E.R.; Rangan, L.; Paul, R.K.; Karak, T.; Mitra, S. Assessment of Mobility and Environmental Risks Associated with Copper, Manganese and Zinc in Soils of a Dumping Site around a Ramsar Site. Chemosphere 2020, 254, 126852. [Google Scholar] [CrossRef]
- Chen, R.; Gao, T.; Cheng, N.; Ding, G.; Wang, Q.; Shi, R.; Hu, G.; Cai, X. Application of DGT/DIFS to Assess Bioavailable Cd to Maize and Its Release in Agricultural Soils. J. Hazard. Mater. 2021, 411, 124837. [Google Scholar] [CrossRef] [PubMed]
- Gusiatin, Z.M.; Klik, B.; Kulikowska, D. Tannic Acid for Remediation of Historically Arsenic-Contaminated Soils. Environ. Technol. 2017, 40, 1417490. [Google Scholar] [CrossRef] [PubMed]
- Pavel, P.B.; Puschenreiter, M.; Wenzel, W.W.; Diacu, E.; Barbu, C.H. Aided Phytostabilization Using Miscanthus Sinensis×giganteus on Heavy Metal-Contaminated Soils. Sci. Total Environ. 2014, 479–480, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Esteban, J.; Escolástico, C.; Moliner, A.; Masaguer, A. Chemical Speciation and Mobilization of Copper and Zinc in Naturally Contaminated Mine Soils with Citric and Tartaric Acids. Chemosphere 2013, 90, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Janoš, P.; Vávrová, J.; Herzogová, L.; Pilařová, V. Effects of Inorganic and Organic Amendments on the Mobility (Leachability) of Heavy Metals in Contaminated Soil: A Sequential Extraction Study. Geoderma 2010, 159, 335–341. [Google Scholar] [CrossRef]
- Bolan, N.S.; Duraisamy, V.P. Role of Inorganic and Organic Soil Amendments on Immobilisation and Phytoavailability of Heavy Metals: A Review Involving Specific Case Studies. Proc. Aust. J. Soil Res. 2003, 41, 533–555. [Google Scholar] [CrossRef]
- Harter, R.D.; Naidu, R. Role of Metal-Organic Complexation in Metal Sorption by Soils. Adv. Agr. 1995, 55, 219–263. [Google Scholar]
- Sarkar, S.; Sarkar, B.; Basak, B.B.; Mandal, S.; Biswas, B.; Srivastava, P. Soil Mineralogical Perspective on Immobilization/Mobilization of Heavy Metals. In Adaptive Soil Management: From Theory to Practices; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Huisman, J.L.; Schouten, G.; Schultz, C. Biologically Produced Sulphide for Purification of Process Streams, Effluent Treatment and Recovery of Metals in the Metal and Mining Industry. Hydrometallurgy 2006, 83, 106–113. [Google Scholar] [CrossRef]
- Da̧browski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef]
- Vázquez, G.; Antorrena, G.; González, J.; Doval, M.D. Adsorption of Heavy Metal Ions by Chemically Modified Pinus Pinaster Bark. Bioresour. Technol. 1994, 48, 251–255. [Google Scholar] [CrossRef]
- Hubicki, Z.; Koodynsk, D. Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods. In Ion Exchange Technologies; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ippolito, J.A.; Berry, C.M.; Strawn, D.G.; Novak, J.M.; Levine, J.; Harley, A. Biochars Reduce Mine Land Soil Bioavailable Metals. J. Environ. Qual. 2017, 46, 411–419. [Google Scholar] [CrossRef]
- Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar Properties and Eco-Friendly Applications for Climate Change Mitigation, Waste Management, and Wastewater Treatment: A Review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Chen, Y.; Shan, R.; Sun, X. Adsorption of Cadmium by Magnesium-Modified Biochar at Different Pyrolysis Temperatures. BioResources 2020, 15, 767–786. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/Designer Biochar for Contaminant Removal/Immobilization from Soil and Water: Potential and Implication of Biochar Modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.; Chen, Y.; Zhao, J.; Li, B.; Li, Y.; Tao, S.; Li, M.; Li, Q.; Xu, Q.; Li, Y.; et al. Enhanced Cd Removal from Aqueous Solution by Biologically Modified Biochar Derived from Digestion Residue of Corn Straw Silage. Sci. Total Environ. 2019, 674, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.; Belver, C. A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. C J. Carbon Res. 2018, 4, 63. [Google Scholar] [CrossRef]
- Hu, Q.; Jung, J.; Chen, D.; Leong, K.; Song, S.; Li, F.; Mohan, B.C.; Yao, Z.; Prabhakar, A.K.; Lin, X.H.; et al. Biochar Industry to Circular Economy. Sci. Total Environ. 2021, 757, 143820. [Google Scholar] [CrossRef]
- Sun, Y.; Xiong, X.; He, M.; Xu, Z.; Hou, D.; Zhang, W.; Ok, Y.S.; Rinklebe, J.; Wang, L.; Tsang, D.C.W. Roles of Biochar-Derived Dissolved Organic Matter in Soil Amendment and Environmental Remediation: A Critical Review. Chem. Eng. J. 2021, 424, 130387. [Google Scholar] [CrossRef]
- Thomas, P.; Lai, C.W.; Bin Johan, M.R. Recent Developments in Biomass-Derived Carbon as a Potential Sustainable Material for Super-Capacitor-Based Energy Storage and Environmental Applications. J. Anal. Appl. Pyrolysis 2019, 140, 54–85. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, J.; Huang, X.; Wang, W.; Sun, P.; Li, Y.; Han, J. Functionalized Biochar-Supported Magnetic MnFe2O4 Nanocomposite for the Removal of Pb(II) and Cd(II). RSC Adv. 2019, 9, 365–376. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Liu, L.; Yu, H. Application of Co-Pyrolysis Biochar for the Adsorption and Immobilization of Heavy Metals in Contaminated Environmental Substrates. J. Hazard. Mater. 2021, 420, 126655. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shaheen, S.M.; Azeem, M.; Zhang, L.; Feng, C.; Peng, J.; Qi, W.; Liu, J.; Luo, Y.; Peng, Y.; et al. Removal of Lead (Pb+2) from Contaminated Water Using a Novel MoO3-Biochar Composite: Performance and Mechanism. Environ. Pollut. 2022, 308, 119693. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Huanhuan, Z.; Jing, W.; Wei, C.; Yingquan, C.; Gao, X.; Haiping, Y.; Hanping, C. Physicochemical and Adsorption Properties of Biochar from Biomass-Based Pyrolytic Polygeneration: Effects of Biomass Species and Temperature. Biochar 2021, 3, 657–670. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, S.; Huang, F.; Huang, H.; Yi, Z.; Xue, S. Biomodification of Feedstock for Quality-Improved Biochar: A Green Method to Enhance the Cd Sorption Capacity of Miscanthus Lutarioriparius-Derived Biochar. J. Clean. Prod. 2022, 350, 131241. [Google Scholar] [CrossRef]
- Tan, X.F.; Liu, Y.G.; Gu, Y.L.; Xu, Y.; Zeng, G.M.; Hu, X.J.; Liu, S.B.; Wang, X.; Liu, S.M.; Li, J. Biochar-Based Nano-Composites for the Decontamination of Wastewater: A Review. Bioresour. Technol. 2016, 212, 318–333. [Google Scholar] [CrossRef]
- Gong, J.; Lin, H.; Antonietti, M.; Yuan, J. Nitrogen-Doped Porous Carbon Nanosheets Derived from Poly(Ionic Liquid)s: Hierarchical Pore Structures for Efficient CO2 Capture and Dye Removal. J. Mater. Chem. A Mater. 2016, 4, 7313–7321. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Chen, J.; Zhang, M.; Inyang, M.; Li, Y.; Alva, A.; Yang, L. Engineered Carbon (Biochar) Prepared by Direct Pyrolysis of Mg-Accumulated Tomato Tissues: Characterization and Phosphate Removal Potential. Bioresour. Technol. 2013, 138, 8–13. [Google Scholar] [CrossRef]
- Pan, J.; Deng, H.; Du, Z.; Tian, K.; Zhang, J. Design of Nitrogen-Phosphorus-Doped Biochar and Its Lead Adsorption Performance. Environ. Sci. Pollut. Res. 2022, 29, 28984–28994. [Google Scholar] [CrossRef]
- Taherymoosavi, S.; Joseph, S.; Pace, B.; Munroe, P. A Comparison between the Characteristics of Single- and Mixed-Feedstock Biochars Generated from Wheat Straw and Basalt. J. Anal. Appl. Pyrolysis 2018, 129, 123–133. [Google Scholar] [CrossRef]
- Meng, J.; Tao, M.; Wang, L.; Liu, X.; Xu, J. Changes in Heavy Metal Bioavailability and Speciation from a Pb-Zn Mining Soil Amended with Biochars from Co-Pyrolysis of Rice Straw and Swine Manure. Sci. Total Environ. 2018, 633, 300–307. [Google Scholar] [CrossRef]
- Oh, S.Y.; Seo, T.C. Upgrading Biochar: Via Co-Pyrolyzation of Agricultural Biomass and Polyethylene Terephthalate Wastes. RSC Adv. 2019, 9, 28284–28290. [Google Scholar] [CrossRef]
- Min, X.; Ge, T.; Li, H.; Shi, Y.; Fang, T.; Sheng, B.; Li, H.; Dong, X. Combining Impregnation and Co-Pyrolysis to Reduce the Environmental Risk of Biochar Derived from Sewage Sludge. Chemosphere 2022, 290, 133371. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Deng, J.; Xie, Y.; Zhang, C.; Jiang, Z.; Cheng, Y.; Hou, K.; Zeng, G. Stabilization of Nanoscale Zero-Valent Iron (NZVI) with Modified Biochar for Cr(VI) Removal from Aqueous Solution. J. Hazard. Mater. 2017, 332, 79–86. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Ma, F.; Tankpa, V.; Bai, S.; Guo, X.; Wang, X. Mechanisms and Reutilization of Modified Biochar Used for Removal of Heavy Metals from Wastewater: A Review. Sci. Total Environ. 2019, 668, 1298–1309. [Google Scholar] [CrossRef]
- Peng, P.; Lang, Y.H.; Wang, X.M. Adsorption Behavior and Mechanism of Pentachlorophenol on Reed Biochars: PH Effect, Pyrolysis Temperature, Hydrochloric Acid Treatment and Isotherms. Ecol. Eng. 2016, 90, 225–233. [Google Scholar] [CrossRef]
- Sun, K.; Tang, J.; Gong, Y.; Zhang, H. Characterization of Potassium Hydroxide (KOH) Modified Hydrochars from Different Feedstocks for Enhanced Removal of Heavy Metals from Water. Environ. Sci. Pollut. Res. 2015, 22, 16640–16651. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Shihong, Z.; Haiping, Y.; Tao, S.; Yingquan, C.; Hanping, C. Influence of NH3/CO2 Modification on the Characteristic of Biochar and the CO2 Capture. Bioenergy Res. 2013, 6, 1147–1153. [Google Scholar] [CrossRef]
- Zhang, J.; Lü, F.; Shao, L.; He, P. The Use of Biochar-Amended Composting to Improve the Humification and Degradation of Sewage Sludge. Bioresour. Technol. 2014, 168, 252–258. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z.; Lv, S. A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Zimmerman, A.R.; Li, Y.; Ma, L.; Harris, W.G.; Migliaccio, K.W. Removal of Arsenic by Magnetic Biochar Prepared from Pinewood and Natural Hematite. Bioresour. Technol. 2015, 175, 391–395. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, D.; Liu, X.; Tang, C.; Parikh, S.J.; Xu, J. A Novel Calcium-Based Magnetic Biochar Is Effective in Stabilization of Arsenic and Cadmium Co-Contamination in Aerobic Soils. J. Hazard. Mater. 2020, 387, 122010. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, J.; Zhang, S.; Zhang, X.; Chen, H. Effect of Phosphorus-Modified Biochars on Immobilization of Cu (II), Cd (II), and As (V) in Paddy Soil. J. Hazard. Mater. 2020, 390, 121349. [Google Scholar] [CrossRef]
- Sun, J.; Wang, P.; Guo, Y.; Hu, B.; Wang, X. Effect of Biochar Derived from Co-Pyrolysis of Sewage Sludge and Rice Straw on Cadmium Immobilization in Paddy Soil. Environ. Sci. Pollut. Res. 2023, 30, 74808–74819. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Hu, H.; Fu, Q.; Li, Z.; Xing, Z.; Ali, U.; Zhu, J.; Liu, Y. Remediation of Pb, Cd, and Cu Contaminated Soil by Co-Pyrolysis Biochar Derived from Rape Straw and Orthophosphate: Speciation Transformation, Risk Evaluation and Mechanism Inquiry. Sci. Total Environ. 2020, 730, 139119. [Google Scholar] [CrossRef]
- Mujtaba Munir, M.A.; Yousaf, B.; Ali, M.U.; Dan, C.; Abbas, Q.; Arif, M.; Yang, X. In Situ Synthesis of Micro-Plastics Embedded Sewage-Sludge Co-Pyrolyzed Biochar: Implications for the Remediation of Cr and Pb Availability and Enzymatic Activities from the Contaminated Soil. J. Clean. Prod. 2021, 302, 127005. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Sun, Y.; Miao, W.; Liu, Z. Co-Pyrolysis of Corn Stover with Industrial Coal Ash for in Situ Efficient Remediation of Heavy Metals in Multi-Polluted Soil. Environ. Pollut. 2021, 289, 117840. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.; Saroha, A.K. Synthesis of the Magnetic Biochar Composites for Use as an Adsorbent for the Removal of Pentachlorophenol from the Effluent. Bioresour. Technol. 2014, 169, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Shan, D.; Deng, S.; Zhao, T.; Wang, B.; Wang, Y.; Huang, J.; Yu, G.; Winglee, J.; Wiesner, M.R. Preparation of Ultrafine Magnetic Biochar and Activated Carbon for Pharmaceutical Adsorption and Subsequent Degradation by Ball Milling. J. Hazard. Mater. 2016, 305, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Reguyal, F.; Sarmah, A.K.; Gao, W. Synthesis of Magnetic Biochar from Pine Sawdust via Oxidative Hydrolysis of FeCl2 for the Removal Sulfamethoxazole from Aqueous Solution. J. Hazard. Mater. 2017, 321, 868–878. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Wang, X.; Feng, K.; Su, J.; Dong, J. The Mechanism of Cadmium Sorption by Sulphur-Modified Wheat Straw Biochar and Its Application Cadmium-Contaminated Soil. Sci. Total Environ. 2020, 714, 136550. [Google Scholar] [CrossRef]
- Lin, L.; Li, Z.; Liu, X.; Qiu, W.; Song, Z. Effects of Fe-Mn Modified Biochar Composite Treatment on the Properties of As-Polluted Paddy Soil. Environ. Pollut. 2019, 244, 600–607. [Google Scholar] [CrossRef]
- Tu, C.; Wei, J.; Guan, F.; Liu, Y.; Sun, Y.; Luo, Y. Biochar and Bacteria Inoculated Biochar Enhanced Cd and Cu Immobilization and Enzymatic Activity in a Polluted Soil. Environ. Int. 2020, 137, 105576. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, B.; Chen, W.Y.; Egiebor, N.O. A Comprehensive Review on Physical Activation of Biochar for Energy and Environmental Applications. Rev. Chem. Eng. 2019, 35, 735–776. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Sun, Y.; Yu, I.K.M.; Tsang, D.C.W.; Hou, D.; Gupta, J.; Bhaskar, T.; Pandey, A. Critical Review on Biochar-Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery. Adv. Sustain. Syst. 2020, 4, 1900149. [Google Scholar] [CrossRef]
- Peterson, S.C.; Jackson, M.A.; Kim, S.; Palmquist, D.E. Increasing Biochar Surface Area: Optimization of Ball Milling Parameters. Powder Technol. 2012, 228, 115–120. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J. Effects of Ball Milling on the Physicochemical and Sorptive Properties of Biochar: Experimental Observations and Governing Mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Rouissi, T.; Verma, M.; Surampalli, R.Y.; Valero, J.R. A Green Method for Production of Nanobiochar by Ball Milling- Optimization and Characterization. J. Clean. Prod. 2017, 164, 1394–1405. [Google Scholar] [CrossRef]
- Yi, P.; Pignatello, J.J.; Uchimiya, M.; White, J.C. Heteroaggregation of Cerium Oxide Nanoparticles and Nanoparticles of Pyrolyzed Biomass. Environ. Sci. Technol. 2015, 49, 13294–13303. [Google Scholar] [CrossRef]
- Yang, Y.; Piao, Y.; Wang, R.; Su, Y.; Liu, N.; Lei, Y. Nonmetal Function Groups of Biochar for Pollutants Removal: A Review. J. Hazard. Mater. Adv. 2022, 8, 100171. [Google Scholar] [CrossRef]
- Wang, B.; Gao, B.; Fang, J. Recent Advances in Engineered Biochar Productions and Applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1418580. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Luque, R.; Menéndez, J.A.; Arenillas, A.; Cot, J. Microwave-Assisted Pyrolysis of Biomass Feedstocks: The Way Forward? Energy Environ. Sci. 2012, 5, 5481–5488. [Google Scholar] [CrossRef]
- Yagmur, E.; Ozmak, M.; Aktas, Z. A Novel Method for Production of Activated Carbon from Waste Tea by Chemical Activation with Microwave Energy. Fuel 2008, 87, 3278–3285. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Kim, C.S.; Ellis, N.; Bi, X. Microwave-Assisted Catalytic Pyrolysis of Switchgrass for Improving Bio-Oil and Biochar Properties. Bioresour. Technol. 2016, 201, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yang, X.; Cho, S.H.; Kim, J.K.; Lee, S.S.; Tsang, D.C.W.; Ok, Y.S.; Kwon, E.E. Pyrolysis Process of Agricultural Waste Using CO2 for Waste Management, Energy Recovery, and Biochar Fabrication. Appl. Energy 2017, 185, 214–222. [Google Scholar] [CrossRef]
- Biswas, A.K.; Umeki, K.; Yang, W.; Blasiak, W. Change of Pyrolysis Characteristics and Structure of Woody Biomass Due to Steam Explosion Pretreatment. Fuel Process. Technol. 2011, 92, 1849–1854. [Google Scholar] [CrossRef]
- Zoroufchi Benis, K.; Motalebi Damuchali, A.; Soltan, J.; McPhedran, K.N. Treatment of Aqueous Arsenic—A Review of Biochar Modification Methods. Sci. Total Environ. 2020, 739, 139750. [Google Scholar] [CrossRef]
- Chia, C.H.; Downie, A.; Munroe, P. Characteristics of Biochar: Physical and Structural Properties. In Biochar for Environmental Management; Earthscan Publications Ltd.: Oxford, UK, 2015; p. 89. [Google Scholar]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the Preparation and Application of Modified Biochar for Improved Contaminant Removal from Water and Wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef]
- Feng, D.; Zhao, Y.; Zhang, Y.; Sun, S.; Meng, S.; Guo, Y.; Huang, Y. Effects of K and Ca on Reforming of Model Tar Compounds with Pyrolysis Biochars under H2O or CO2. Chem. Eng. J. 2016, 306, 422–432. [Google Scholar] [CrossRef]
- Trakal, L.; Veselská, V.; Šafařík, I.; Vítková, M.; Číhalová, S.; Komárek, M. Lead and Cadmium Sorption Mechanisms on Magnetically Modified Biochars. Bioresour. Technol. 2016, 203, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, Z.; Liu, C.; Dong, Y. Technologies for Removing Heavy Metal from Contaminated Soils on Farmland: A Review. Chemosphere 2022, 305, 135457. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Lin, Q.; Chen, X.; Li, Y.; Li, G.; Zhao, X.; Tian, Y. Synthesis, Characterization and Application of Magnetic and Acid Modified Biochars Following Alkaline Pretreatment of Rice and Cotton Straws. Sci. Total Environ. 2020, 714, 136532. [Google Scholar] [CrossRef]
- Yi, Y.; Huang, Z.; Lu, B.; Xian, J.; Tsang, E.P.; Cheng, W.; Fang, J.; Fang, Z. Magnetic Biochar for Environmental Remediation: A Review. Bioresour. Technol. 2020, 298, 122468. [Google Scholar] [CrossRef]
- Fu, H.; Ma, S.; Zhao, P.; Xu, S.; Zhan, S. Activation of Peroxymonosulfate by Graphitized Hierarchical Porous Biochar and MnFe2O4 Magnetic Nanoarchitecture for Organic Pollutants Degradation: Structure Dependence and Mechanism. Chem. Eng. J. 2019, 360, 157–170. [Google Scholar] [CrossRef]
- Tang, L.; Yu, J.; Pang, Y.; Zeng, G.; Deng, Y.; Wang, J.; Ren, X.; Ye, S.; Peng, B.; Feng, H. Sustainable Efficient Adsorbent: Alkali-Acid Modified Magnetic Biochar Derived from Sewage Sludge for Aqueous Organic Contaminant Removal. Chem. Eng. J. 2018, 336, 160–169. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, G.; Chen, H.; Li, X. Magnetic Biochar Catalyst Derived from Biological Sludge and Ferric Sludge Using Hydrothermal Carbonization: Preparation, Characterization and Its Circulation in Fenton Process for Dyeing Wastewater Treatment. Chemosphere 2018, 191, 64–71. [Google Scholar] [CrossRef]
- Zhong, D.; Zhang, Y.; Wang, L.; Chen, J.; Jiang, Y.; Tsang, D.C.W.; Zhao, Z.; Ren, S.; Liu, Z.; Crittenden, J.C. Mechanistic Insights into Adsorption and Reduction of Hexavalent Chromium from Water Using Magnetic Biochar Composite: Key Roles of Fe3O4 and Persistent Free Radicals. Environ. Pollut. 2018, 243, 1302–1309. [Google Scholar] [CrossRef]
- Fang, G.; Liu, C.; Gao, J.; Dionysiou, D.D.; Zhou, D. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ. Sci. Technol. 2015, 49, 5645–5653. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Ifebajo, A.O. Highly Efficient Magnetic Chicken Bone Biochar for Removal of Tetracycline and Fluorescent Dye from Wastewater: Two-Stage Adsorber Analysis. J. Environ. Manag. 2018, 209, 9–16. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Yu, X.; Skreiberg, Ø. A Critical Review on Production, Modification and Utilization of Biochar. J. Anal. Appl. Pyrolysis 2022, 161, 105405. [Google Scholar] [CrossRef]
- Anstey, A.; Vivekanandhan, S.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Oxidative Acid Treatment and Characterization of New Biocarbon from Sustainable Miscanthus Biomass. Sci. Total Environ. 2016, 550, 241–247. [Google Scholar] [CrossRef]
- Kalaiarasi, R.; Parameswari, E.; Davamani, V.; Sharmila, D.J.S. Exploring the Potential of Biochar Activated with Phosphoric Acid towards Hexavalent Chromium Removal. Int. Res. J. Pure Appl. Chem. 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Z.; Ali, A.; Guan, W.; Xiao, R.; Wang, J.J.; Ma, S.; Guo, D.; Zhou, B.; Zhang, Z.; et al. Characterization of Phosphorus Engineered Biochar and Its Impact on Immobilization of Cd and Pb from Smelting Contaminated Soils. J. Soils Sediments 2020, 20, 3041–3052. [Google Scholar] [CrossRef]
- Amalina, F.; Syukor Abd Razak, A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Advanced Techniques in the Production of Biochar from Lignocellulosic Biomass and Environmental Applications. Clean. Mater. 2022, 6, 100137. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar Application to Low Fertility Soils: A Review of Current Status, and Future Prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Qu, J.; Wang, Y.; Tian, X.; Jiang, Z.; Deng, F.; Tao, Y.; Jiang, Q.; Wang, L.; Zhang, Y. KOH-Activated Porous Biochar with High Specific Surface Area for Adsorptive Removal of Chromium (VI) and Naphthalene from Water: Affecting Factors, Mechanisms and Reusability Exploration. J. Hazard. Mater. 2021, 401, 123292. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kang, Y.; Duan, H.; Zhou, Y.; Li, H.; Chen, S.; Tian, F.; Li, L.; Drosos, M.; Dong, C.; et al. Remediation of Cd2+ in Aqueous Systems by Alkali-Modified (Ca) Biochar and Quantitative Analysis of Its Mechanism. Arab. J. Chem. 2022, 15, 103750. [Google Scholar] [CrossRef]
- Ding, Z.; Hu, X.; Wan, Y.; Wang, S.; Gao, B. Removal of Lead, Copper, Cadmium, Zinc, and Nickel from Aqueous Solutions by Alkali-Modified Biochar: Batch and Column Tests. J. Ind. Eng. Chem. 2016, 33, 239–245. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R. H2O2 Treatment Enhanced the Heavy Metals Removal by Manure Biochar in Aqueous Solutions. Sci. Total Environ. 2018, 628–629, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yi, Y.; Fang, Z. Remediation of Cadmium or Arsenic Contaminated Water and Soil by Modified Biochar: A Review. Chemosphere 2023, 311, 136914. [Google Scholar] [CrossRef]
- He, X.; Hong, Z.-N.; Jiang, J.; Dong, G.; Liu, H.; Xu, R.-K. Enhancement of Cd(II) Adsorption by Rice Straw Biochar through Oxidant and Acid Modifications. Environ. Sci. Pollut. Res. 2021, 28, 42787–42797. [Google Scholar] [CrossRef] [PubMed]
- Yakout, S.M. Monitoring the Changes of Chemical Properties of Rice Straw-Derived Biochars Modified by Different Oxidizing Agents and Their Adsorptive Performance for Organics. Bioremediat. J. 2015, 19, 1029115. [Google Scholar] [CrossRef]
- Liang, T.; Li, L.; Zhu, C.; Liu, X.; Li, H.; Su, Q.; Ye, J.; Geng, B.; Tian, Y.; Sardar, M.F.; et al. Adsorption of as(V) by the Novel and Efficient Adsorbent Cerium-Manganese Modified Biochar. Water 2020, 12, 2720. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Ao, H.; Cao, W.; Hong, Y.; Wu, J.; Wei, L. Adsorption of Sulfate Ion from Water by Zirconium Oxide-Modified Biochar Derived from Pomelo Peel. Sci. Total Environ. 2020, 708, 135092. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Sun, Y.; Tsang, D.C.W.; Lin, D. Environmental Transformations and Ecological Effects of Iron-Based Nanoparticles. Environ. Pollut. 2018, 232, 10–30. [Google Scholar] [CrossRef]
- Teow, Y.H.; Mohammad, A.W. New Generation Nanomaterials for Water Desalination: A Review. Desalination 2019, 451, 2–17. [Google Scholar] [CrossRef]
- Lu, H.; Dong, H.; Fan, W.; Zuo, J.; Li, X. Aging and Behavior of Functional TiO2 Nanoparticles in Aqueous Environment. J. Hazard. Mater. 2017, 325, 113–119. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Biochar-Supported Nanomaterials for Environmental Applications. J. Ind. Eng. Chem. 2019, 78, 21–33. [Google Scholar] [CrossRef]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Sarkar, B.; Kwon, E.E.; Bhatnagar, A.; Ok, Y.S.; Vithanage, M. Biochar-Based Engineered Composites for Sorptive Decontamination of Water: A Review. Chem. Eng. J. 2019, 372, 536–550. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, W.; Hao, X.; Zhou, D. Transport of Biochar Particles in Saturated Granular Media: Effects of Pyrolysis Temperature and Particle Size. Environ. Sci. Technol. 2013, 47, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Gámiz, B.; Cox, L.; Hermosín, M.C.; Spokas, K.; Celis, R. Assessing the Effect of Organoclays & Biochar on the Fate of Abscisic Acid in Soil. J. Agric. Food Chem. 2017, 65, 29–38. [Google Scholar] [PubMed]
- Liu, T.; Gao, B.; Fang, J.; Wang, B.; Cao, X. Biochar-Supported Carbon Nanotube and Graphene Oxide Nanocomposites for Pb(II) and Cd(II) Removal. RSC Adv. 2016, 6, 24314–24319. [Google Scholar] [CrossRef]
- Song, Q.; Yang, B.; Wang, H.; Xu, S.; Cao, Y. Effective Removal of Copper (II) and Cadmium (II) by Adsorbent Prepared from Chitosan-Modified Magnetic Biochar. J. Residuals Sci. Technol. 2016, 13, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, Z.; Bhatnagar, A.; Jeyakumar, P.; Wang, H.; Wang, Y.; Li, X. Microorganisms-Carbonaceous Materials Immobilized Complexes: Synthesis, Adaptability and Environmental Applications. J. Hazard. Mater. 2021, 416, 125915. [Google Scholar] [CrossRef]
- Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T.; et al. The Potential of Biochar as a Microbial Carrier for Agricultural and Environmental Applications. Sci. Total Environ. 2023, 886, 163968. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Xu, L.; Buyong, F.; Chay, T.C.; Li, Z.; Cai, Y.; Hu, B.; Zhu, Y.; Wang, X. Modified Biochar: Synthesis and Mechanism for Removal of Environmental Heavy Metals. Carbon Res. 2022, 1, 8. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, J.; Tang, L.; Su, M.; Tian, D.; Zhang, L.; Li, Z.; Hu, S. Enhanced Pb Immobilization via the Combination of Biochar and Phosphate Solubilizing Bacteria. Environ. Int. 2019, 127, 395–401. [Google Scholar] [CrossRef]
- Wei, T.; Gao, H.; An, F.; Ma, X.; Hua, L.; Guo, J. Performance of Heavy Metal-Immobilizing Bacteria Combined with Biochar on Remediation of Cadmium and Lead Co-Contaminated Soil. Environ. Geochem. Health 2023, 45, 6009–6026. [Google Scholar] [CrossRef]
- Deng, M.; Li, K.; Yan, Y.J.; Huang, F.; Peng, D. Enhanced Cadmium Removal by Growing Bacillus Cereus RC-1 Immobilized on Different Magnetic Biochars through Simultaneous Adsorption and Bioaccumulation. Environ. Sci. Pollut. Res. 2022, 29, 18495–18507. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Tenllado, F.J.; Motta, I.L.; Hill, J.M. Modification of Biochar with High-Energy Ball Milling: Development of Porosity and Surface Acid Functional Groups. Bioresour. Technol. Rep. 2021, 15, 100704. [Google Scholar] [CrossRef]
- Xiao, Y.; Lyu, H.; Tang, J.; Wang, K.; Sun, H. Effects of Ball Milling on the Photochemistry of Biochar: Enrofloxacin Degradation and Possible Mechanisms. Chem. Eng. J. 2020, 384, 123311. [Google Scholar] [CrossRef]
- Li, F.; Wan, Y.; Chen, J.; Hu, X.; Tsang, D.C.W.; Wang, H.; Gao, B. Novel Ball-Milled Biochar-Vermiculite Nanocomposites Effectively Adsorb Aqueous As(Ⅴ). Chemosphere 2020, 260, 127566. [Google Scholar] [CrossRef]
- Bardestani, R.; Kaliaguine, S. Steam Activation and Mild Air Oxidation of Vacuum Pyrolysis Biochar. Biomass Bioenergy 2018, 108, 101–112. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, Y.; Zhang, T.; Hu, Q.; Wah Tong, Y.; He, Y.; Dai, Y.; Wang, C.H.; Peng, Y. Food Waste Treating by Biochar-Assisted High-Solid Anaerobic Digestion Coupled with Steam Gasification: Enhanced Bioenergy Generation and Porous Biochar Production. Bioresour. Technol. 2021, 331, 125051. [Google Scholar] [CrossRef]
- Shi, D.; Yek, P.N.Y.; Ge, S.; Shi, Y.; Liew, R.K.; Peng, W.; Sonne, C.; Tabatabaei, M.; Aghbashlo, M.; Lam, S.S. Production of Highly Porous Biochar via Microwave Physiochemical Activation for Dechlorination in Water Treatment. Chemosphere 2022, 309, 136624. [Google Scholar] [CrossRef]
- Wan, X.; Li, C.; Parikh, S.J. Simultaneous Removal of Arsenic, Cadmium, and Lead from Soil by Iron-Modified Magnetic Biochar. Environ. Pollut. 2020, 261, 114157. [Google Scholar] [CrossRef]
- Yang, Y.; Phuong Nguyen, T.M.; Van, H.T.; Nguyen, Q.T.; Nguyen, T.H.; Lien Nguyen, T.B.; Hoang, L.P.; Van Thanh, D.; Nguyen, T.V.; Nguyen, V.Q.; et al. ZnO Nanoparticles Loaded Rice Husk Biochar as an Effective Adsorbent for Removing Reactive Red 24 from Aqueous Solution. Mater. Sci. Semicond. Process 2022, 150, 106960. [Google Scholar] [CrossRef]
- Shin, J.; Lee, Y.G.; Lee, S.H.; Kim, S.; Ochir, D.; Park, Y.; Kim, J.; Chon, K. Single and Competitive Adsorptions of Micropollutants Using Pristine and Alkali-Modified Biochars from Spent Coffee Grounds. J. Hazard. Mater. 2020, 400, 123102. [Google Scholar] [CrossRef]
- Chen, M.; Wang, F.; Zhang, D.-L.; Yi, W.-M.; Liu, Y. Effects of Acid Modification on the Structure and Adsorption NH4+-N Properties of Biochar. Renew. Energy 2021, 169, 1343–1350. [Google Scholar] [CrossRef]
- Gholami, L.; Rahimi, G. Efficiency of CH4N2S−modified Biochar Derived from Potato Peel on the Adsorption and Fractionation of Cadmium, Zinc and Copper in Contaminated Acidic Soil. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100468. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Shahab, A.; Zhang, K.; Zeng, H.; Bacha, A.U.R.; Nabi, I.; Ullah, H. Comparative Study on Characterization and Adsorption Properties of Phosphoric Acid Activated Biochar and Nitrogen-Containing Modified Biochar Employing Eucalyptus as a Precursor. J. Clean. Prod. 2021, 303, 27046. [Google Scholar] [CrossRef]
- Yazdani, M.R.; Duimovich, N.; Tiraferri, A.; Laurell, P.; Borghei, M.; Zimmerman, J.B.; Vahala, R. Tailored Mesoporous Biochar Sorbents from Pinecone Biomass for the Adsorption of Natural Organic Matter from Lake Water. J. Mol. Liq. 2019, 291, 111248. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, S.; Liu, S.; Xu, S.; Li, J.; Zhang, Y. A Novel Magnetic Biochar Prepared by K2FeO4-Promoted Oxidative Pyrolysis of Pomelo Peel for Adsorption of Hexavalent Chromium. Bioresour. Technol. 2020, 300, 122680. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Tu, G.; Zhao, D.; Tsang, P.E.; Fang, Z. Key Role of FeO in the Reduction of Cr(VI) by Magnetic Biochar Synthesised Using Steel Pickling Waste Liquor and Sugarcane Bagasse. J. Clean. Prod. 2020, 245, 118886. [Google Scholar] [CrossRef]
- Ke, W.; Liu, Z.; Zhu, F.; Xie, Y.; Hartley, W.; Li, X.; Wu, H.; Xue, S. Remediation Potential of Magnetic Biochar in Lead Smelting Sites: Insight from the Complexation of Dissolved Organic Matter with Potentially Toxic Elements. J. Environ. Manag. 2023, 344, 118556. [Google Scholar] [CrossRef]
- Diao, Y.; Zhou, L.; Ji, M.; Wang, X.; Dan, Y.; Sang, W. Immobilization of Cd and Pb in Soil Facilitated by Magnetic Biochar: Metal Speciation and Microbial Community Evolution. Environ. Sci. Pollut. Res. 2022, 29, 71871–71881. [Google Scholar] [CrossRef]
- Lu, H.P.; Li, Z.A.; Gascó, G.; Méndez, A.; Shen, Y.; Paz-Ferreiro, J. Use of Magnetic Biochars for the Immobilization of Heavy Metals in a Multi-Contaminated Soil. Sci. Total Environ. 2018, 622–623, 892–899. [Google Scholar] [CrossRef]
- Wen, E.; Yang, X.; Chen, H.; Shaheen, S.M.; Sarkar, B.; Xu, S.; Song, H.; Liang, Y.; Rinklebe, J.; Hou, D.; et al. Iron-Modified Biochar and Water Management Regime-Induced Changes in Plant Growth, Enzyme Activities, and Phytoavailability of Arsenic, Cadmium and Lead in a Paddy Soil. J. Hazard. Mater. 2021, 407, 124344. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Y.; Liu, S.; Jiang, L.; Tan, X.; Zeng, G.; Li, M.; Liu, S.; Tian, S.; Fang, Y. Activated Magnetic Biochar by One-Step Synthesis: Enhanced Adsorption and Coadsorption for 17β-Estradiol and Copper. Sci. Total Environ. 2018, 639, 1530–1542. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Li, D.; Wang, Y.; He, H.; Li, H.; Chen, G. The Compound Effects of Biochar and Iron on Watercress in a Cd/Pb–Contaminated Soil. Environ. Sci. Pollut. Res. 2020, 27, 6312–6325. [Google Scholar] [CrossRef] [PubMed]
- Medha, I.; Chandra, S.; Vanapalli, K.R.; Samal, B.; Bhattacharya, J.; Das, B.K. (3-Aminopropyl)Triethoxysilane and Iron Rice Straw Biochar Composites for the Sorption of Cr (VI) and Zn (II) Using the Extract of Heavy Metals Contaminated Soil. Sci. Total Environ. 2021, 771, 144764. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Fang, Z.; Tsang, P.E.; Zheng, L.; Cheng, W.; Fang, J.; Zhao, D. Remediation of Hexavalent Chromium Contaminated Soil by Biochar-Supported Zero-Valent Iron Nanoparticles. J. Hazard. Mater. 2016, 318, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, X.; Cao, Y.; Chen, G. Does Micro/Nano Biochar Always Good to Phytoremediation? A Case Study from Multiple Metals Contaminated Acidic Soil Using Salix Jiangsuensis “172”. Carbon Res. 2023, 2, 21. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, B.; Jiao, L.; Meng, X.; Zhang, L.; Li, B.; Sun, H. Preparation of Ball-Milled Phosphorus-Loaded Biochar and Its Highly Effective Remediation for Cd- and Pb-Contaminated Alkaline Soil. Sci. Total Environ. 2022, 813, 152648. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Wang, Y.; Huang, L.; Yu, J.; Chen, H.; Tang, J.; Xu, F.; Lu, X.; Zhong, M.-E.; Zhou, Z. In Situ Modification Provided by a Novel Wet Pyrolysis System to Enhance Surface Properties of Biochar for Lead Immobilization. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 39–47. [Google Scholar] [CrossRef]
- Liu, H.; Xu, F.; Xie, Y.; Wang, C.; Zhang, A.; Li, L.; Xu, H. Effect of Modified Coconut Shell Biochar on Availability of Heavy Metals and Biochemical Characteristics of Soil in Multiple Heavy Metals Contaminated Soil. Sci. Total Environ. 2018, 645, 702–709. [Google Scholar] [CrossRef]
- Dianat Maharlouei, Z.; Fekri, M.; Mahmoodabadi, M.; Saljooqi, A.; Hejazi, M. Chromium Desorption Kinetics Influenced by the Rice Husk and Almond Soft Husk Modified Biochar in a Calcareous Soil. Arab. J. Geosci. 2021, 14, 38. [Google Scholar] [CrossRef]
- Ma, J.; Hua, Z.; Noreen, S.; Malik, Z.; Riaz, M.; Kamran, M.; Ali, S.; Elshikh, M.S.; Chen, F. Chemical and Mechanical Coating of Sulfur on Baby Corn Biochar and Their Role in Soil Pb Availability, Uptake, and Growth of Tomato under Pb Contamination. Environ. Pollut. 2023, 338, 122654. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Li, G.; Wang, S.; Duan, L.; Mulder, J.; Cornelissen, G.; Cheng, Z.; Yang, S.; Hou, D. Sulfur-Modified Rice Husk Biochar: A Green Method for the Remediation of Mercury Contaminated Soil. Sci. Total Environ. 2018, 621, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, X.; Wu, Q.; Zhang, S.; Xu, L.; Zhou, J.; Zheng, X.; Zhou, J. Hematite Enhances the Immobilization of Copper, Cadmium and Phosphorus in Soil Amended with Hydroxyapatite under Flooded Conditions. Sci. Total Environ. 2020, 708, 134590. [Google Scholar] [CrossRef] [PubMed]
- Netherway, P.; Reichman, S.M.; Laidlaw, M.; Scheckel, K.; Pingitore, N.; Gascó, G.; Méndez, A.; Surapaneni, A.; Paz-Ferreiro, J. Phosphorus-Rich Biochars Can Transform Lead in an Urban Contaminated Soil. J. Environ. Qual. 2019, 48, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Pan, H.; Shaheen, S.M.; Wang, H.; Rinklebe, J. Immobilization of Cadmium and Lead Using Phosphorus-Rich Animal-Derived and Iron-Modified Plant-Derived Biochars under Dynamic Redox Conditions in a Paddy Soil. Environ. Int. 2021, 156, 106628. [Google Scholar] [CrossRef]
- Ning, K.; Gong, K.; Chen, H.; Cui, Q.; Xin, C.; Tong, X.; Qiu, J.; Zheng, S. Lead Stabilization in Soil Using P-Modified Biochars Derived from Kitchen Waste. Environ. Technol. Innov. 2022, 28, 102953. [Google Scholar] [CrossRef]
- Sha, H.; Li, J.; Wang, L.; Nong, H.; Wang, G.; Zeng, T. Preparation of Phosphorus-Modified Biochar for the Immobilization of Heavy Metals in Typical Lead-Zinc Contaminated Mining Soil: Performance, Mechanism and Microbial Community. Environ. Res. 2023, 218, 114769. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Zhu, S.; Li, Z.; Deng, S.; Zhao, B.; Meng, F.; Jin, N.; Ren, X. Sorption and Transport of Mn2+ in Soil Amended with Alkali-Modified Pomelo Biochar. Environ. Sci. Pollut. Res. 2021, 28, 56552–56564. [Google Scholar] [CrossRef]
- Zhong, M.; Li, W.; Jiang, M.; Wang, J.; Shi, X.; Song, J.; Zhang, W.; Wang, H.; Cui, J. Improving the Ability of Straw Biochar to Remediate Cd Contaminated Soil: KOH Enhanced the Modification of K3PO4 and Urea on Biochar. Ecotoxicol. Environ. Saf. 2023, 262, 115317. [Google Scholar] [CrossRef]
- Li, P.; Hu, M.; Suo, J.; Xie, Y.; Hu, W.; Wang, X.; Wang, Y.; Zhang, Y. Enhanced Cr(VI) Removal by Waste Biomass Derived Nitrogen/Oxygen Co-Doped Microporous Biocarbon. Environ. Sci. Pollut. Res. 2020, 27, 5433–5445. [Google Scholar] [CrossRef]
- Tian, X.; Liu, M.; Iqbal, K.; Ye, W.; Chang, Y. Facile Synthesis of Nitrogen-Doped Carbon Coated Fe3O4/Pd Nanoparticles as a High-Performance Catalyst for Cr (VI) Reduction. J. Alloys Compd. 2020, 826, 154059. [Google Scholar] [CrossRef]
- Ramola, S.; Belwal, T.; Li, C.J.; Wang, Y.Y.; Lu, H.H.; Yang, S.M.; Zhou, C.H. Improved Lead Removal from Aqueous Solution Using Novel Porous Bentonite—And Calcite-Biochar Composite. Sci. Total Environ. 2020, 709, 136171. [Google Scholar] [CrossRef]
- Xie, L.; Chen, Q.; Liu, Y.; Ma, Q.; Zhang, J.; Tang, C.; Duan, G.; Lin, A.; Zhang, T.; Li, S. Enhanced Remediation of Cr(VI)-Contaminated Soil by Modified Zero-Valent Iron with Oxalic Acid on Biochar. Sci. Total Environ. 2023, 905, 167399. [Google Scholar] [CrossRef]
- Herath, I.; Zhao, F.J.; Bundschuh, J.; Wang, P.; Wang, J.; Ok, Y.S.; Palansooriya, K.N.; Vithanage, M. Microbe Mediated Immobilization of Arsenic in the Rice Rhizosphere after Incorporation of Silica Impregnated Biochar Composites. J. Hazard. Mater. 2020, 398, 123096. [Google Scholar] [CrossRef]
- Liu, M.; Sun, F.; Lv, Y.; Xu, Y.; Li, M.; Wang, Y.; Yin, X.; Jiang, H. Remediation of Arsenic-Contaminated Soil by Nano-Zirconia Modified Biochar. Environ. Sci. Pollut. Res. 2021, 28, 68792–68803. [Google Scholar] [CrossRef]
- Chuaphasuk, C.; Prapagdee, B. Effects of Biochar-Immobilized Bacteria on Phytoremediation of Cadmium-Polluted Soil. Environ. Sci. Pollut. Res. 2019, 26, 23679–23688. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Ma, J.; Zhang, X.H.; Yang, G.; Long, L.L.; Chen, C.; Song, C.; Wu, J.; Gao, P.; Guan, D.X. Biochar-Bacteria Partnership Based on Microbially Induced Calcite Precipitation Improves Cd Immobilization and Soil Function. Biochar 2023, 5, 20. [Google Scholar] [CrossRef]
- Hafeez, A.; Pan, T.; Tian, J.; Cai, K. Modified Biochars and Their Effects on Soil Quality: A Review. Environments 2022, 9, 60. [Google Scholar] [CrossRef]
- Chen, M.; Wang, D.; Yang, F.; Xu, X.; Xu, N.; Cao, X. Transport and Retention of Biochar Nanoparticles in a Paddy Soil under Environmentally-Relevant Solution Chemistry Conditions. Environ. Pollut. 2017, 230, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Liao, W.; Zhang, P.; Li, J.; Nabi, M.; Wang, S.; Cai, Y.; Li, F. Fe1-XS/Biochar Combined with Thiobacillus Enhancing Lead Phytoavailability in Contaminated Soil: Preparation of Biochar, Enrichment of Thiobacillus and Their Function on Soil Lead. Environ. Pollut. 2020, 267, 115447. [Google Scholar] [CrossRef] [PubMed]
Strategy of Modification | Type of Biomass | Type of Process/Modifier | Conditions | Main Effects | Ref. |
---|---|---|---|---|---|
Pre-pyrolysis | orange peel | Co-precipitation of Fe3+/Fe2+ (magnetite) | pH 10, 30 min, stirring | Decreased SSA (by 482)/increased APR (2.0); high sorption capability | [96] |
pine wood | Hematite treatment ɣ-Fe2O3 (maghemite) | 120 min, mixed | Slightly decreased SSA (16.5); strong magnetic property | [97] | |
rice straw | Calcium-based magnetic biochar: Fe3+/Fe2+ and CaCO3 | 400 °C, 2 h, ground through a 0.15 mm sieve and stored | Slightly decreased CEC (7.8); increase in soil pH (by 0.19)/complexation on iron oxide surface | [98] | |
camphor wood chips, bamboo offcut, cornstalk, rice husk | Phosphorus-modified biochars: K3PO4 | 550 °C, 2 h. | OCFGs, P-O groups, and P-C groups were introduced to biochar surface; no significant change in SSA and PV | [99] | |
Co-pyrolysis | rice straw (RS) sewage sludge (SS) | Pyrolysis in a muffle furnace at different mass ratios of RS:SS (1:0, 3:1, 2:1, 1:1, 1:2, 1:3, and 0:1) | 400 °C 2 h | The optimum RS/SS ratio of 1:2, improved biochar yield, decreased TOC content, and increased biochar pH and surface porosity. Cd bioavailability in soil decreased by 67–86% | [100] |
rap estraw (RS), orthophosphate (P) | Pyrolysis of RS and P at mass ratio of 1:0.456 | 500 °C 2 h | Improved pH of biochar and number of functional groups. Improved metal immobilization in soil, especially Pb and Cu | [101] | |
microplastics (MPs) sewage sludge (SS) | Slow pyrolysis for different dosage ratios of MPs in the mixture (5–15%) Flash pyrolysis for different dosage ratios of MPs in the mixture (5–15%) | 500 °C 1 h 700 °C 7 min | Biochar more effective from slow than fast pyrolysis due to larger molar O/C and O+N/C ratios, enhanced surface area and PV, and the presence of spherical- or ellipsoidal-shaped macro/mesopores Transformation of Cr and Pb into residual fraction in soil with biochar containing 10 and 15% of MPs | [102] | |
corn stover (CS) industrial coal ash (CA) | Horizontal tube reactor, CS and CA mixed at mass ratio 1:1 | 450 °C 1 h | Significantly enhanced immobilization of Pb (by 71%) and Cd (by 45%) in soil due to increased pH value, surface functionality, and surface negative charge | [103] | |
Post-pyrolysis | paper mill sludge | Iron solution treatment (+ surfactant + reducing agent (Zero Valent Iron)) | 30 min, vigorous stirring | Increased SSA (by 34)/slight decrease in PV; low iron leaching from the biochar matrix | [104] |
walnut shells | Ball milling Fe3O4 | Ball milled, 6 h, 550 rpm | Increased SSA (by 334)/PV (by 0.50); a fast and high adsorption rate | [105] | |
pine sawdust | Oxidative hydrolysis Fe3O4 | 90 °C N2 protection | Decreased SSA (by 172)/slight increase in PV (by 0.06); high saturation magnetization; and adsorption was exothermic with physisorption | [106] | |
wheat straw | Sulfur-modified biochar: NaOH/CS2 | NaOH and CS2 were mixed at a ratio of 2:3; stirred at 40 °C for 16 h | Slight increase in SSA (by 1.7) and PV (by 0.003) | [107] | |
corn straw | KMnO4/Fe(NO3)3 | 600 °C for 0.5 h, KmnO4:Fe(NO3)3 weight ratio of 25:4:1. | Increased SSA (by 147); increased soil redox potential; and improved soil enzyme activities | [108] | |
maize straw | Biochar with Pseudomonas frederiksbergensis strain NT-2 | Cultivation of the strain, blending with biochar at 1:3 ratio, incubation (8 h) | Microbial cell aggregation on biochar surface, the presence of extracellular polymeric substances around the cells, and increased HM stability in soil | [109] |
No. | Biochar | Description | Selected Properties | Ref. |
---|---|---|---|---|
Physical modification | ||||
1. | pristine | pine, pyrolysis temp. 600 °C | SSA: 197; PV: 0.078; AC: 0.15 | [169] |
modified | ball-milled biochar | SSA: 337; PV: 0.078; AC: 0.90 | ||
2. | pristine | woodchips, pyrolysis temp. 300 °C | SSA: 1.21; PV: 0.003; PS: 17.80 | [170] |
modified | ball-milled biochar | SSA: 7.92; PV: 0.034; PS: 21.50 | ||
3. | pristine | hickory wood chips, pyrolysis temp. 600 °C | SSA: 214.62; PV: 0.009; PS: 1.14 | [171] |
modified | ball- milled biochar | SSA: 286.45; PV: 0.100; PS: 0.587 | ||
4. | pristine | spruce and fir, pyrolysis temp. 475 °C, | SSA: 50; PV: 0.03; PS: 1.5; pH: 6.6; AS: 1.2 | [172] |
modified | steam activation | SSA: 1025; PV: 0.77; PS: 3.0; pH: 10.3; AS: 11.3 | ||
5. | pristine | food waste, pyrolysis temp. <500 °C | SSA: 3.97; PV: 0.007; PS: 7.30 | [173] |
modified | biochar-assisted high-solid anaerobic digestion coupled with steam gasification | SSA: 160.66; PV: 0.213; PS: 5.63 | ||
Chemical modification | ||||
6. | pristine | waste palm shell, pyrolysis temp. 600 °C | SSA: 185.8; VM: 20.6; AS: 3.3 | [174] |
modified | KOH activation | SSA: 301.1; VM: 17.5; AS: 3.0 | ||
7. | pristine | rice straw, pyrolysis temp. 500 °C | SSA: 1.16; PV: 0.0053; PS: 18.14; AS:16.38 | [130] |
modified | alkali-modified biochar (NaOH) | SSA: 260.59; PV: 0.2310; PS: 3.55; AS: 22.71% | ||
8. | pristine | cedar, pyrolysis temp. 300 °C | SSA: 533; PV: 0.095; AS: 22.5%; pH: 6.3 | [175] |
modified | iron-modified magnetic biochar | SSA: 370; PV: 0.077; Ash: 26.9%; pH: 9.7 | ||
9. | pristine | rice husk, pyrolysis temp. 400 °C | SSA: 4.01; PV: 0.0103; PS: 13.31–39.54 | [176] |
modified | ZnO nanoparticles | SSA: 13.84; PV: 0.0155; PS: 4.51–17.65 | ||
10. | pristine | wheat straw, pyrolysis temp. | SSA: 2.94; PV: 0.0017; AS: 16.12 | [107] |
modified | sulfur-modified biochar | SSA: 4.64; PV: 0.0042; AS: 20.80 | ||
11. | pristine | spent coffee grounds, pyrolysis temp. 800 °C | SSA: 4.0; PV: 0.006; PS: 5.818; AS: 12.6 | [177] |
modified | alkali-modified biochar | SSA: 427.5; PV: 0.006; PS: 3.113; AS: 15.4 | ||
12. | pristine | rice hull, pyrolysis temp. 550 °C | SSA: 6.2; PV: 0.014; PS: 8.839; AC: 1.638 | [178] |
modified | acid-modified biochar (H2SO4) | SSA: 105.9; PV: 0.062; PS: 2.357; AC: 12.100 | ||
13. | pristine | potato peel, pyrolysis temp. 550 °C | PV: 0.025; pH: 9.24; EC: 2.1; CEC: 57.16; AS: 12.06 | [179] |
modified | CH4N2S-modified biochar | PV: 0.073; pH: 9.67; EC: 2.3; CEC: 74.39; AS: 13.18 | ||
14. | pristine | waste eucalyptus chips, pyrolysis temp. 500 °C | SSA: 1265.56; PV: 1.31; PS: 3.91 | [180] |
modified | Phosphoric-acid-activated biochar | SSA: 1654.38; PV: 1.85; PS: 4.12 | ||
15. | pristine | pinecone biomass | SSA: 0.58; PV:0.001; PS: 7.40 | [181] |
modified | biochar modification with NaOH or ZnCl2 (1/2 weight ratio of biochar/activator), drying, heating at 700–800 °C | SSA: 1470.27; PV: 0.705; PS: 2.96 SSA: 1067.90; PV: 0.511; PS: 2.68 | ||
16. | pristine | rice straw, pyrolysis temp. 550 °C | SSA: 71.35 | [150] |
modified | activation with KOH, HNO3, H2SO4, H2O2, KMnO4, activation conditions depended on the activator | SSA: 143.3; 87.2; 56.9; 110.9; 87.7, respectively |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusiatin, M.Z.; Rouhani, A. Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review. Materials 2023, 16, 7342. https://doi.org/10.3390/ma16237342
Gusiatin MZ, Rouhani A. Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review. Materials. 2023; 16(23):7342. https://doi.org/10.3390/ma16237342
Chicago/Turabian StyleGusiatin, Mariusz Z., and Abdulmannan Rouhani. 2023. "Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review" Materials 16, no. 23: 7342. https://doi.org/10.3390/ma16237342
APA StyleGusiatin, M. Z., & Rouhani, A. (2023). Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review. Materials, 16(23), 7342. https://doi.org/10.3390/ma16237342