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Abstract: Shot peening is a surface treatment process that improves the fatigue life of a material
and suppresses cracks by generating residual stress on the surface. The injected small shots create a
compressive residual stress layer on the material’s surface. Maximum compressive residual stress
occurs at a certain depth, and tensile residual stress gradually occurs as the depth increases. This
process is primarily used for nickel-based superalloy steel materials in certain environments, such as
the aerospace industry and nuclear power fields. To prevent such a severe accident due to the high-
temperature and high-pressure environment, evaluating the residual stress of shot-peened materials
is essential in evaluating the soundness of the material. Representative methods for evaluating
residual stress include perforation strain gauge analysis, X-ray diffraction (XRD), and ultrasonic
testing. Among them, ultrasonic testing is a representative, non-destructive evaluation method,
and residual stress can be estimated using a Rayleigh wave. Therefore, in this study, the maximum
compressive residual stress value of the peened Inconel 718 specimen was predicted using a prediction
convolutional neural network (CNN) based on the relationship between Rayleigh wave dispersion
and stress distribution on the specimen. By analyzing the residual stress distribution in the depth
direction generated in the model from various studies in the literature, 173 residual stress distributions
were generated using the Gaussian function and factorial design approach. The distribution generated
using the relationship was converted into 173 Rayleigh wave dispersion data to be used as a database
for the CNN model. The CNN model was learned through this database, and performance was
verified using validation data. The adopted Rayleigh wave dispersion and convolutional neural
network procedures demonstrate the ability to predict the maximum compressive residual stress in
the peened specimen.

Keywords: shot peened; residual stress; Rayleigh wave; convolutional neural network; Inconel 718

1. Introduction

Material surfaces are in direct contact with the environment and frequently damaged
due to corrosion and fatigue loads. The mechanical properties of material surfaces are often
improved using surface treatment processes. One of the most popular processes in the
industry is the inexpensive and straightforward shot peening process. This process is a
cold work surface process, and it uses small spherical sights made of steel and ceramic. A
shot injected at high velocity into the surface of a specimen causes compressive stresses

Materials 2023, 16, 7406. https://doi.org/10.3390/ma16237406 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16237406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-6218-3779
https://doi.org/10.3390/ma16237406
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16237406?type=check_update&version=1


Materials 2023, 16, 7406 2 of 12

on that surface, with maximum compressive residual stresses occurring at a certain depth.
After the maximum compressive residual stress to the equilibrium of the material, the
compressive residual stress gradually decreases and the tensile residual stress occurs. The
compressive residual stress improves the fatigue life of the material. This slows down
the crack propagation and requires a certain amount of compressive residual stress from
the surface to a certain depth to suppress the cracks [1,2]. Therefore, the evaluation of
compressive residual stress is essential in evaluating the integrity of the peened material,
and it is primarily evaluated using maximum compressive residual stress and surface
compressive residual stress [3].

Zhang et al. [4] performed shot peening on three different materials and found a linear
relationship between the maximum depth of the residual compressive stress field after
shot peening and the shot peening strength of the material. Sahaya et al. [5] developed
an oil jet peening process to form compressive residual stress in metal materials, and
they used surface and maximum compressive residual stress to verify the performance.
Farrahi et al. [6] concluded in their experiments that improving fatigue life could assign
maximum compressive residual stress and the depth of the plastically deformed layer.
Wang et al. [7] concluded that a metal’s yield strength and ultimate tensile strength can be
calculated through the compressive residual stress and maximum compressive residual
stress on the surface of the shot-peened test specimen in the experiment. Likewise, using
the maximum compressive residual stress is effective in evaluating the residual stress of
peened test specimens, and it is mainly used in evaluating mechanical properties [6,7].

This process of enhancing mechanical properties has been primarily used for nickel-
based superalloy steel materials in certain environments, such as the aerospace industry
and nuclear power. Nickel-based superalloy steels, such as Inconel and Hastelloy, and
titanium alloys are typical of these materials, which retain their mechanical properties at
high temperatures. In particular, research on the application of shot peening to Inconel
718, a nickel-based alloy, has been well studied [8–10], and it is a material used in various
peening studies in the industrial field [11].

Methods for measuring the residual stress generated on an object’s surface are divided
into destructive and non-destructive methods. Strain gauge analysis is a representative
destructive method, and it has high accuracy, but it has the disadvantage of causing
damage to the test material. Non-destructive methods for inspecting and evaluating
specimens without damage include X-ray diffraction (XRD), ultrasonic testing, and eddy
current testing. Among them, ultrasonic testing is used throughout the industry for
material property evaluation. Bulk waves can generally detect internal defects and evaluate
mechanical properties, but it is difficult to evaluate the surface properties [12].

On the other hand, a surface wave called a Rayleigh wave is primarily used to evaluate
the material’s surface properties. The surface wave propagates along a material surface,
and energy concentrates on the material surface.

Many studies have been conducted on defect detection and material surface property
evaluation using these characteristics. Kim et al. [13] performed surface defect detection
of metal materials using a Rayleigh wave and derived a correlation between the wave’s
amplitude and the defect size. M. Duquennoy et al. [14] tested this using the relative
variation of the Rayleigh wave time of flight to evaluate the stress distribution on the
surface generated during tooling. Kwon et al. [15] concluded that quantitative evaluation
of the bonding of ceramic-coated metal materials was possible using a Rayleigh wave.
Yeom et al. [16] concluded that the Rayleigh wave can be used to evaluate the surface
hardness of metallic material. Fereydoun Lakestani et al. [17] evaluated the thickness of
metallic coatings using Rayleigh wave dispersion. Chi-Won In et al. [18] performed a
material property analysis of a concrete surface using a Rayleigh wave. X. Jian et al. [19]
presented the characteristics of a Rayleigh wave according to surface cracks.

In addition, research on residual stress measurement using the Rayleigh wave has
been conducted actively since Ditri and Hongerholt [20]. Ditri and Hongerholt [20] found
a relationship between the stress distribution in the depth direction of the material and
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the Rayleigh wave’s dispersion. Lee et al. [21] measured the Rayleigh wave dispersion
using a minimum reflection method. Trung et al. [22] predicted the residual stress through
inverse transformation by using the Rayleigh wave dispersion measured by the method
and the relationship found by Ditri and Hongerholt [17]. Choi et al. [23] presented an
inverse transformation that utilizes an exponential function to predict residual stresses with
a simple calculation. However, the transformation had the limitation that it was essential
to set the initial values carefully [23].

Artificial neural networks (ANNs) are representative machine learning algorithms
widely used to solve various engineering system and complex problems. Research and
residual stress prediction using ANNs have been conducted in various fields.

Sembiring et al. [24] predicted nickel alloy steels’ residual stress and hardness sub-
jected to ultrasonic nanocrystal surface modification (UNSM) treatment using an ANN.
Hajializadeh et al. [25] predicted residual stresses in parts produced through direct metal
deposition using a modeling approach combining finite element analysis and an ANN.
Mathew et al. [26] conducted a study with an ANN and feedforward neural networks to
predict residual stresses caused by welding. However, research on predicting the residual
stress of peened materials using Rayleigh wave dispersion and ANNs is insufficient.

This study presented a method for predicting the maximum compressive residual
stress value in Inconel 718 specimens using a prediction ANN model and the relationship
between them. As an essential issue in ANN design is the data set, various studies have
investigated the residual stress distribution over the depth of the specimen. In addition, a
curve fitting method could accurately consider the investigated residual stress distribution
development and residual stress distribution conditions to generate 173 distribution data.
The generated data were converted to Rayleigh wave dispersion using Ditri and Honger-
holt’s equation [20]. Subsequently, a convolutional neural network (CNN) architecture, a
convenient ANN structure for extracting features from the input data, was adopted. For
learning, 173 distribution data were divided into 140 training data and 33 validation data.

Finally, to confirm the applicability of the learned CNN architecture, the CNN perfor-
mance was verified with 33 validation data and dispersion data obtained by converting the
measured residual stress data investigated in the literature.

2. Theory
2.1. Characteristics of Residual Stress Distribution by Shot Peening

Shot peening causes a geometrical change in a material’s surface, and, as a result,
compressive residual stress is generated on the material surface. This compressive residual
stress reaches its maximum stress at a certain depth and then gradually decreases. After-
wards, tensile residual stress occurs to maintain equilibrium within the material. Figure 1
shows the typical residual stress distribution along the depth of a peened specimen.
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As shown in Figure 1, the residual stress generated by shot peening consists of a
compressive residual stress (σi) at the surface and a maximum compressive residual stress
(σmax) at a specific depth ( δd ∼ δ0). The tensile residual stress for static equilibrium occurs
after a compressive residual stress is generated within a specific range ( δd ∼ δ0).

2.2. Relationship between Residual Stress and Rayleigh Wave Dispersion According to Depth

Ditri and Hongerholt [20] studied the relationship between residual stress and changes
in surface wave propagation properties using the perturbation theory of surface wave
propagating on the surface of a material [20]. According to these studies, the phase shift of
the Rayleigh wave, as a type of surface wave propagating on the specimen’s surface, can
be calculated using Equation (1).

δ∅ = − ω

4P

∫
GdV, (1)

where δ∅ is the phase shift of the Rayleigh wave, ω is the frequency, V is the volume of
the sample, and

∫
G is the second-order (λ, µ) and third-order (l, m, n) elastic modulus.

This equation predicts the phase shift of the Rayleigh wave during deformation or stress
based on the properties of the unstressed specimen (second and third elastic modulus and
sound velocity) and Rayleigh wave characteristics, and speed information propagating on
the specimen’s surface of the specimen occurs in the specimen [20]. Moreover, the primary
assumption is that Rayleigh waves propagate in the a33 direction over the length L0. The
formula for estimating the phase change of a Rayleigh wave is given by Equation (2) [20]:

δ∅33(ω) = − L0ω

4P

∫ ∞

0
α
‖
i Fi(a2, ω)σ33(a2)da2, (2)

Fi(a2, ω) = ω2
{

fi1e−2ωKsa2 + fi2e−2ωKl a2 + fi3e−ω(Kl+Ks)a2
}

, (3)

where a2 is the depth direction of the specimen and P is the average power carried per unit
width perpendicular to the direction of propagation of the Rayleigh wave during one time.
fij, according to the perturbation theory [20], and i ∈ {1, . . . , 5} and j ∈ {1, 2, 3}, are given
as follows:

f11 =

(
Ks

V0

)2
, f12 =

(
K1K2

V0

)2
, f13 = −

2KSKlK2

V2
0

;

f21 = f11; f22 = K2
4 f21, f23 = −2K4 f21;

f31 = −2 f11 ; f32 =
KlK2K4 f31

Ks
, f33 = −

[
K4 +

KlK2

Ks

]
f31;

f41 =
1

V4
0
+ K4

s ; f42 =
K2

2
V4

0
+ (KsKlK4)

2 , f43 = −2[
K2

V4
0
+ K3

s KlK4];

f51 = 2 f11 ; f52 =
KlK2K4 f51

Ks
, f53 = −

[
KlK4

Ks
+ K2

]
f51,

where K, according to the perturbation theory [20], can be expressed using the wave
velocity, as shown in Equation (4).

Ks =

√
1

V2
0
− 1

V2
s

, Kl =

√
1

V2
0
− 1

V2
l

, K2 =
2KsKl

( 1
V2

0
+ K2

s )
, K4 =

2(
1 + V2

0 K2
s
) (4)
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V0 is the velocity of the Rayleigh wave, and Vs and Vl are the transverse and longitudi-
nal wave velocities corresponding to the unstressed media, respectively. According to the
perturbation theory [20], the constants α

‖
i in Equation (2) are as follows:

α
‖
1 ≡

1
(3λ + 2µ)

{λ + 2l − λ(2λ + 6µ + 4m)

2µ
};

α
‖
2 ≡

1
(3λ + 2µ)

{λ + 2l − (λ + µ)(2λ + 6µ + 4m)

µ
};

α
‖
3 ≡

1
(3λ + 2µ)

{
λ + 2l − λ(λ + 2m− n)

2µ

}
;

α
‖
4 ≡

1
(3λ + 2µ)

{
3λ + 2µ + m−

λ
(
2µ− n

2
)

2µ

}
;

α
‖
5 ≡

1
(3λ + 2µ)

{
λ + µ + m−

λ
(
µ− n

2
)

2µ

}
.

Equation (2) indicates that the phase change has a linear relationship with the stress
distribution in the stressed specimen [20,27]. Based on the experiment in [27], this phase
change can be summarized using Equation (5) [20].

∆V
V0

= ε33 −
δ∅33V0

ωL0
, (5)

where ε33 represents the surface strain in the wave’s propagation direction and ∆V
V0

repre-
sents the relative change in the wave’s phase velocity propagating along the surface of the
stressed specimen [20]. Therefore, if the residual stress along the depth is known, ∆ ∆V

V0
can

be obtained; this ∆V
V0

can be used to predict the stress by measuring the Rayleigh wave for
the unstressed and deformed specimen with deformation.

2.3. Convolutional Neural Network (CNN)

A CNN is a deep neural network (DNN) that performs convolutional operations. The
CNN structure was announced through Fukushima in 1979 under the term “Neocognitron”
and assumed its current form after LeCun et al. proposed a CNN with a backpropagation
structure [28,29].

Like a DNN, a CNN has a structure wherein data enter the input layer, pass through
the hidden layer, and emanate from the output layer. Additionally, it uses a convolutional
layer and a pooling layer. The convolutional layer uses convolution between filters and
data to extract meaningful features from the data. In other words, when the input data
are filtered, the data dimension is reduced several times, which has the advantage of
reducing the amount of computational data but may cause data loss in some cases [30].
Therefore, a pooling layer is used to retain the characteristics. A technique often used in
the pooling layer is max pooling, which reduces the computation required by reducing
the dimensionality and extracting salient features. As a result, the convolutional layer and
pooling layers are primarily together, and the feature maps of the data are extracted by
repeating this structure. Finally, the extracted feature map is combined with the next dense
layer to obtain the predicted data values as the output of the CNN architecture. Figure 2
shows the CNN schematically.
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3. Construction of the Database of Rayleigh Wave Dispersion

In this study, a database was created based on Rayleigh wave dispersion data to
estimate the maximum compressive residual stress value of shot-peened Inconel 718 test
specimens. First of all, to obtain Rayleigh wave dispersion data, residual stress distribution
along depth is required, so XRD data of peened Inconel 718 specimens measured in various
studies were used [31–35]. XRD data are residual stress values measured at various depths
of the specimen, and in order to convert them into a continuous residual stress function
according to depth, each piece of XRD data was modeled as a continuous function using
curve fitting. Curve fitting was performed using a Gaussian function consisting of an
exponential function to perform the transformation effectively and efficiently from the
stress distribution to the Rayleigh wave distribution using Equation (5) [23]. The Gaussian
function used in this study is given by Equation (6):

y = a ∗ e[−(
x−b

c )
2
]. (6)

where x is the depth of the specimen and y is the estimated residual stress function at a
specific x. The distribution of the residual stress expressed by Equation (6) adequately
describes the distribution of the residual stress generally generated in industrial fields. To
describe this adequately, the ranges of the three variables (a, b, and c) used in Equation (6)
should be set appropriately based on the XRD measurements in references [31–35]. Variable
a represents the residual stress value of a fitting curve, variable b represents the position of
the maximum compressive stress, and variable c represents the variance. The set range is
as shown in Equation (7).

−1.4 ∗ 109 ≤ a ≤ −8 ∗ 108

0.03 ≤ b ≤ 0.07
0.05 ≤ c ≤ 0.11

(7)

The ranges of each variable derived from Equation (7) imply the following:
(1) The maximum compressive residual stress of the peened material was set not to

exceed the yield strength [36–38]. (2) The residual stress generated at a 0 mm depth (surface)
of the test specimen was not set more significantly than the maximum compressive residual
stress, nor was it set too excessively smaller. Subsequently, cases were classified based on
the value of b, and the database was constructed using a factorial design approach [39].
Figure 3 shows the constructed database.

Figure 3a shows a database with 173 residual stress distributions created by assuming
variables that satisfied the range in Equation (7). Among the variables of the Gaussian
function, b, which is the variable that determines the location of the maximum compressive
residual stress, was set first. In addition, variable a, which is related to the maximum
compressive residual stress value, was set, and, finally, C, which represents the slope of the
residual stress distribution, was set. Figure 3b shows one data of the 173 residual stress
distribution data created based on classified cases. Figure 4 shows the transformation of
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173 residual stress distribution data modeled with a Gaussian function into Rayleigh wave
dispersion data ( ∆V

V0
).
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Figure 3. (a) Constructed database and (b) Specific distribution residual stress data in the
configured database.
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As shown in Figure 4, Equation (5) was used to convert these data into Rayleigh wave
dispersion data for a specific frequency range to generate data for CNN training and input
layers. Among the 173 dispersion data points created in this manner, 140 were used as
training data, and the remaining 33 were used as test data.

4. CNN Architecture

This study’s CNN architecture was adopted for learning designs using the Jupyter
Notebook 3.11.3 from Python and Tensorflow (Google Open Source for Deep Learning).
This structure consisted of an input layer, three convolutional layers, a max pooling layer,
and one output layer. The number of nodes in the input layer was 16, which was obtained
by dividing the range from 11 to 18 MHz in 0.5 MHz steps. The filter sizes in each
convolutional layer were 16 × 1, 15 × 1, and 14 × 1. The number of filters was 16, 64, and
128, and the strides were set to 1, 1, and 3, respectively. The activation function used was
the rectified linear unit (ReLU), and size of the max pooling size used to extract the features
was 2 × 1. Therefore, through the corresponding structure, the size of the final output layer
was 1 × 1, and this was the maximum compressive residual stress prediction value for the
input value (Rayleigh wave dispersion data) of the input layer. Figure 5 shows a schematic
diagram of the input layer and the CNN structure.
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5. Results and Validation
5.1. Performance Evaluation of the CNN Model

The performance of the CNN was evaluated using test data after training the neural
network using the training data. Figure 6 shows the results of the CNN training and
performance evaluation.
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Figure 6. (a) Learning curves of CNN and (b) scatter plot for evaluating performance.

Figure 6a shows the learning curve according to the epoch. The loss value decreased as
the epochs increased, and the mean squared error (MSE) was used as a function to reduce
the loss. Table 1 numerically presents MSE values according to the epoch.

Table 1. MSE values by epoch.

Epoch MSE (Training Data) MSE (Test Data)

1 1,298,132.25 333,497.37
500 12,858.45 29,176.74

1000 13,305.45 25,051.67
1500 12,199.92 23,150.61
2000 8434.2 14,202.05

Thus, the network was trained using 140 data points and tested using 33. Figure 6b
shows a scatter plot of the performance obtained when inputting 33 test data to a CNN
trained with 2000 epochs. In Figure 6b, the solid line represents the ideal case, thus showing
the performance with an R-squared value of 79%. Table 2 presents the performance
evaluation results of the test data.
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Table 2. CNN performance results.

True Value of Maximum
Compressive Residual Stress

Unit: MPa

800 900 1000 1100 1200 1300 1400

Predicted value of maximum
compressive residual stress 871.2 938.5 1089 1197.9 1306.9 1415.8 1524.7

Predicted value of minimum
compressive residual stress 686.8 772.7 858.5 944.4 1030.2 1278.4 1460

Predicted value of average
compressive residual stress 787 885.38 983.76 1082.13 1180.57 1349.98 1492.33

Predicted value of error −14.2%–
+8.9%

−14.2%–
+4.2%

−14.2%–
+8.9%

−14.2%–
+8.9%

−14.2%–
+8.9%

−1.7%–
+8.9%

−4.1%–
+8.9%

Table 2 shows the prediction values obtained using experimental data for the CNN.
For the average error of the predicted values for each category, the maximum error was
6.2%, and for the predicted values, it was predicted to be within 15%.

5.2. Validation with XRD Fitting Data

Using the XRD results reported in previous studies [21,31–35], the performance of
the trained CNN was further verified. For verification, the same process as the database
construction process was applied to the XRD results, and, finally, Rayleigh wave dispersion
data were created for the XRD results of each study. Figure 7 shows the further validation
results for the learned CNN structure with the Rayleigh wave dispersion data.
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The true maximum compressive residual stress values of each of the XRD validation
data input to the CNN are 975 (A), 999 (B), 1027 (C), 1055 (D), 1194 (E), and 1256 MPa (F).
Figure 7 shows the validation results as a scatter plot. Table 3 shows the predicted values
and errors for the validation data.

Table 3. CNN validation results.

Maximum Compressive
Residual Stress True Value

Unit: MPa

975 (A) [34] 999 (B) [35] 1027 (C) [33] 1055 (D) [21] 1194 (E) [32] 1256 (F) [31]

Predicted value (max) 1160.1 1266.9 1072.1 792.6 1410.2 1256.3
Predicted value error 16.2% 21.2% 4.2% 24.9% 15.34% 0.01%
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As shown in Table 3, the predicted values for each maximum compressive residual
stress are 1160.1, 1266.9, 1072.1, 792.6, 1410.2, and 1256.3 MPa. In addition, the maximum
error is 24.9%, the minimum error is 0.01%, and the average error of the predicted value is
13.64%, which is similar to the performance evaluation results with the test data.

6. Discussion

From the performance evaluation using a database of 173 data points created based
on XRD reference data [31–35], the coefficient of determination was 79%, and the predicted
value was within 15%. However, in the additional validation results after curve fitting
to the XRD data of references [21,31–35], the coefficient of determination was negative,
and the predicted value was within 25% of the maximum. This is because the C [33] and
F [31] data are very close to the true value, and the prediction error of E [32] is within 15%,
but the error of other data is significant. In particular, when curve fitting the XRD data of
reference [21], variable a satisfied Equation (7) as −1.05 × 109, but variable b (44.9) and
variable c (45.9) were not satisfied. In addition, this confirms that A and B have prediction
errors of 15% or more, and Table 4 below shows the depth at the maximum stress of the
curve fitting value obtained using XRD data from each study.

Table 4. Validation results.

XRD Validation Data from References The Depth of the Maximum Compressive Residual Stress
Value from the Surface (Unit: mm)

A [31] 0.035
B [32] 0.025
C [30] 0.04
D [21] 0.045
E [29] 0.046
F [28] 0.057

Table 4 shows the depths at which the maximum stress occurs in data A and B, which
are 0.035 and 0.025 mm. When using Equation (5), the higher the frequency of the Rayleigh
wave, the more accurate the conversion in the range close to the surface. This is because
most of the Rayleigh wave energy is concentrated in a thin region near the surface [40].
Therefore, because the currently used frequency band is about 20 MHz, it is expected that
A and B prediction errors can be effectively reduced by raising the frequency band or using
a correction coefficient to increase the frequency band.

7. Conclusions

In this study, the maximum compressive residual stress was estimated to evaluate the
residual stress for peened Inconel 718, and a method for predicting the maximum stress
value using Rayleigh wave dispersion and a CNN model is proposed.

A database for CNN model learning was composed of Rayleigh wave dispersion data. To
produce the Rayleigh wave dispersion, curve fitting was performed on the XRD stress data
from the investigated literature [31–35]. For curve fitting, the Gaussian function was adopted
to efficiently perform the transformation using Equation (5), and the range of the variables
of the Gaussian function was set by referring to various studies [36–38]. Using this range,
the depth at which the maximum compressive residual stress occurs in the residual stress
distribution was classified on a case-by-case basis, and a total of 173 residual stress distribution
data were generated case by case. To create data for the CNN input layer, the 173 residual
stress distribution data according to depth were converted to a Rayleigh wave dispersion curve
using Equation (5). The database constructed 140 training and 33 test data to estimate the
maximum compressive residual stress value.

The CNN structure uses the converted Rayleigh wave dispersion as input to predict
the maximum compressive residual stress value. In order to effectively extract the features
of the dispersion curve, the CNN is constructed with three convolutional layers and one
max pooling layer and then trained.
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According to the results of the CNN performance evaluation using the experimental
data, the average error of the predicted values was higher than 6.2%, and the predicted
value was within 15%. The six residual stress data from the research literature used to
design the database were converted to the dispersion data through Equation (5), and the
average error of the predicted value obtained by performing additional validation with the
dispersion data was 13.64%. If the Rayleigh wave dispersion for the peened specimen is
acquired experimentally, it is expected that it can be available to evaluate the residual stress
through the experimental data and the prediction CNN model. The approach to estimating
the maximum residual stress using a CNN presented in this study is expected to be a valid
method for use in industrial settings.
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