Advanced Geopolymer-Based Composites for Antimicrobial Application
Abstract
:1. Introduction
2. Methods of Obtaining Geopolymers
3. Nanoparticles Used as Additives in Geopolymers
3.1. Graphene Oxide (GO)
3.2. Silver (Ag)
3.3. Zinc Oxide
3.4. Silica Nanoparticles and Silica Fume
3.5. Copper
4. The Antibacterial Mechanism of Nanoparticles Used as Additives in Building Materials
4.1. Graphene Oxide
4.2. Silver
4.3. Zinc Oxide (ZnO)
4.4. Silica (SiO2)
4.5. Copper (CuO)
5. Trends in Geopolymer Nanocomposites Applications as Building Materials
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidovits, J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989, 35, 429–441. [Google Scholar] [CrossRef]
- Farhan, K.Z.; Johari, M.A.M.; Demirboğa, R. Assessment of important parameters involved in the synthesis of geopolymer composites: A review. Constr. Build. Mater. 2020, 264, 120276. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Růžek, V.; Novosád, J.; Buczkowska, K.E. Geopolymer Antimicrobial and Hydrophobic Modifications: A Review. Ceramics. 2023, 6, 1749–1764. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, C.; Qiao, Y.; Wang, X.; Jia, D.; Li, H.; Colombo, P. Porous geopolymer composites: A review. Composites 2021, 150, 106629. [Google Scholar] [CrossRef]
- Ortega-Nieto, C.; Losada-García, N.; Prodan, D.; Furtos, G.; Palomo, J.M. Recent advances on the design and applications of antimicrobial materials. Nanomaterials 2023, 13, 2406. [Google Scholar] [CrossRef] [PubMed]
- Huseien, G.F.; Hamzah, H.K.; Sam, A.R.M.; Khalid, N.H.A.; Shah, K.W.; Deogrescu, D.P.; Mirza, J. Alkali-activated mortars blended with glass bottle waste nano powder: Environmental benefit and sustainability. J. Clean. Prod. 2020, 243, 118636. [Google Scholar] [CrossRef]
- Zhang, P.; Ling, Y.; Wang, J.; Shi, Y. Bending resistance of PVA fiber reinforced cementitious composites containing nano-SiO2. Nanotechnol. Rev. 2019, 8, 690–698. [Google Scholar] [CrossRef]
- Jindal, B.B.; Sharma, R. The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review. Constr. Build. Mater. 2020, 252, 119028. [Google Scholar] [CrossRef]
- Zidi, Z.; Ltifi, M.; Ayadi, Z.B.; Mir, L.E.; Nóvoa, X.R. Effect of nano-ZnO on mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Nawaz, M.; Heitor, A.; Sivakumar, M. Geopolymers in construction-recent developments. Constr. Build. Mater. 2020, 260, 120472. [Google Scholar] [CrossRef]
- Nur, Q.A.; Sari, N.U. Development of geopolymers composite based on metakaolin-nano ZnO for antibacterial application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 180, 012289. [Google Scholar] [CrossRef]
- Qiu, L.; Dong, S.; Ashour, A.; Han, B. Antimicrobial concrete for smart and durable infrastructures: A review. Constr. Build. Mater. 2020, 260, 120456. [Google Scholar] [CrossRef]
- Li, H.; Zou, Y.; Jiang, J. Synthesis of Ag@ CuO nanohybrids and their photo-enhanced bactericidal effect through concerted Ag ion release and reactive oxygen species generation. Dalton Trans. 2020, 49, 9274–9281. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Liu, H.; Samal, M.; Yun, K. Synthesis of ZnO nanoparticles-decorated spindle-shaped graphene oxide for application in synergistic antibacterial activity. J. Photochem. Photobiol. B Biol. 2018, 183, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Novais, R.M.; Seabra, M.P.; Labrincha, J.A. Porous geopolymer spheres as novel pH buffering materials. J. Clean. Prod. 2017, 143, 1114–1122. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, X.; Liu, Y. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites. Constr. Build. Mater. 2018, 190, 150–163. [Google Scholar] [CrossRef]
- Paul, S.C.; Van Rooyen, A.S.; van Zijl, G.P.; Petrik, L.F. Properties of cement-based composites using nanoparticles: A comprehensive review. Constr. Build. Mater. 2018, 189, 1019–1034. [Google Scholar] [CrossRef]
- Farjadian, F.; Abbaspour, S.; Sadatlu, M.A.A.; Mirkiani, S.; Ghasemi, A.; Hoseini-Ghahfarokhi, M.; Hamblin, M.R. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect 2020, 5, 10200–10219. [Google Scholar] [CrossRef]
- Lertcumfu, N.; Jaita, P.; Thammarong, S.; Lamkhao, S.; Tandorn, S.; Randorn, C.; Tunkasiri, T.; Rujijanagul, G. Influence of graphene oxide additive on physical, microstructure, adsorption, and photocatalytic properties of calcined kaolinite-based geopolymer ceramic composites. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125080. [Google Scholar] [CrossRef]
- Prodan, D.; Moldovan, M.; Furtos, G.; Saroși, C.; Filip, M.; Perhaița, I.; Carpa, R.; Popa, M.; Cuc Varvara, S.; Popa, D. Synthesis and characterization of some graphene oxide powders used as additives in hydraulic Mortars. Appl. Sci. 2021, 11, 11330. [Google Scholar] [CrossRef]
- Kırgız, M.S.; Mirza, J.; Cuc, S.; Prodan, D.; Saroşi, C.; Perhaiţă, I.; Popa, M. Physico-Antibacterial Feature and SEM Morphology of Bio-Hydraulic Lime Mortars In-corporating Nano-Graphene Oxide and Binary Combination of Nano-Graphene Oxide with Nano Silver, Fly Ash, Zinc, and Titanium Powders. Buildings 2023, 13, 172. [Google Scholar] [CrossRef]
- Falah, M.; MacKenzie, K.J.D. Photocatalytic Nanocomposite Materials Based on Inorganic Polymers (Geopolymers): A Review. Catalysts 2020, 10, 1158. [Google Scholar] [CrossRef]
- Long, W.J.; Wei, J.J.; Ma, H.; Xin, F. Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cement composites. Nanomaterials 2017, 7, 407. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, S.; Zheng, D.; Yang, H.; Cui, H.; Tang, W.; Li, D. Effect of graphene oxide (GO) on the morphology and microstructure of cement hydration products. Nanomaterials 2017, 7, 429. [Google Scholar] [CrossRef]
- Tran, Q.H.; Nguyen, V.Q.; Le, A. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnology 2013, 4, 033001. [Google Scholar]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Sharma, D.; Gulati, S.S.; Sharma, N.; Chaudhary, A. Sustainable synthesis of silver nanoparticles using various biological sources and waste materials: A review. Emergent Mater. 2022, 5, 1649–1678. [Google Scholar] [CrossRef]
- Kalpana, V.N.; Rajeswari, D.V. Biosynthesis of metal and metal oxide nanoparticles for food packaging and preservation: A green expertise. Food Biosynth. 2017, 293–316. [Google Scholar] [CrossRef]
- Flieger, J.; Franus, W.; Panek, R.; Szymańska-Chargot, M.; Flieger, W.; Flieger, M.; Kołodziej, P. Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules 2021, 26, 4986. [Google Scholar] [CrossRef]
- Chung, I.M.; Park, I.; Seung-Hyun, K.; Thiruvengadam, M.; Rajakumar, G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Res. Lett. 2016, 11, 1–14. [Google Scholar] [CrossRef]
- Luukkonen, T.; Yliniemi, J.; Sreenivasan, H.; Ohenoja, K.; Finnilä, M.; Franchin, G. Ag- or Cu-modified geopolymer filters for water treatment manufactured by 3D printing, direct foaming, or granulation. Sci. Rep. 2020, 10, 7233. [Google Scholar] [CrossRef]
- Raj, R.S.; Arulraj, G.P.; Anand, N.; Kanagaraj, B.; Lubloy, E.; Naser, M.Z. Nanomaterials in geopolymer composites: A review. DIBE 2022, 13, 100114. [Google Scholar] [CrossRef]
- Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mat. Sci. iSemicon. Proc. 2015, 32, 55–61. [Google Scholar] [CrossRef]
- Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Krishnakumar, C.; Arulmozhi, P.; Mahadevan, S.; Parameswari, N. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb. Pathogen. 2018, 116, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Sandeep, K.; Kushwaha, H.S.; Powar, S.; Vaish, R. Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nano needle embedded cement composites. Constr. Build. Mater. 2018, 158, 285–294. [Google Scholar] [CrossRef]
- Bica, B.O.; Staub de Melo, J.V. Concrete blocks nano-modified with zinc oxide (ZnO) for photocatalytic paving: Performance comparison with titanium dioxide (TiO2). Constr. Build. Mater. 2020, 252, 119120. [Google Scholar] [CrossRef]
- Ślosarczyk, A.; Klapiszewska, I.; Parus, A.; Lubianiec, O.; Klapiszewski, Ł. Alkali-Activated Materials Doped with ZnO: Physicomechanical and Antibacterial Properties. Materials 2023, 16, 6224. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Qi, T.; Zhou, W.; Hui, D.; Xiao, C.; Qi, J.; Zheng, Z.; Zhao, Z. A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnol. Rev. 2020, 9, 303–322. [Google Scholar] [CrossRef]
- Stefanidou, M.; Karozou, A. Testing the effectiveness of protective coatings on traditional bricks. Constr. Build. Mater. 2016, 111, 482–487. [Google Scholar] [CrossRef]
- Zhang, A.; Ge, Y.; Yang, W.; Cai, X.; Du, Y. Comparative study on the effects of nano-SiO2, nano-Fe2O3 and nano-NiO on hydration and microscopic properties of white cement. Constr. Build. Mater. 2019, 228, 116767. [Google Scholar] [CrossRef]
- Tabish, M.; Zaheer, M.M.; Baqi, A. Effect of nano-silica on mechanical, microstructural and durability properties of cement-based materials: A review. J. Build. Eng. 2022, 65, 105676. [Google Scholar] [CrossRef]
- Wang, B.; Shuang, D. Effect of graphene nanoplatelets on the properties, pore structure and microstructure of cement composites. Mater. Express 2018, 8, 407–416. [Google Scholar] [CrossRef]
- Bhagat, M.; Anand, R.; Sharma, P.; Rajput, P.; Sharma, N.; Singh, K. Multifunctional copper nanoparticles: Synthesis and applications. ECS J. Solid State Sci. Technol. 2021, 10, 063011. [Google Scholar] [CrossRef]
- Khodaei, M.M.; Karegar, M. Synthesis and characterization of copper nanoparticles stabilized with polyvinyl pyrrolidone and its performance on the conductivity and stability of polyindole. J. Iran. Chem. Soc. 2021, 18, 863–872. [Google Scholar] [CrossRef]
- Kim, I.S.; Choi, S.Y.; Yang, E.I. Comparison of fundamental properties and durability of mortar mixed with antibacterial functional materials. Mag. Concr. Res. 2023, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Kappler, U.; Jiang, G.; Bond, P.L. The ecology of acidophilic microorganisms in the corroding concrete sewer environment. Front. Microbiol. 2017, 8, 683. [Google Scholar] [CrossRef]
- Kong, L.; Zhao, W.; Xuan, D.; Wang, X.; Liu, Y. Application potential of alkali-activated concrete for antimicrobial induced corrosion: A review. Constr. Build. Mater. 2022, 317, 126169. [Google Scholar] [CrossRef]
- Kirthika, S.K.; Goel, G.; Matthews, A.; Goel, S. Review of the untapped potentials of antimicrobial materials in the construction sector. Prog. Mater. Sci. 2022, 133, 101065. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Zhu, H.; Zhang, M.; Zheng, X.; Di, Z.; Wang, X. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci. Rep. 2014, 4, 4359. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Piao, J.G.; Auletta, J.; Hu, K.; Zhu, Y.; Meyer, T.; Liu, H.; Yang, L. Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Appl. Mater. Interfaces 2014, 6, 13183–13190. [Google Scholar] [CrossRef] [PubMed]
- Mallick, A.; Haldar, N.; Nandy, S.; Ghosh, C.K. Fabrication of Graphene, Graphene Oxide, Reduced Graphene Oxide, Fullerene (C60) and Carbon Nanotube Thin Film by Langmuir–Blodgett Method. In Handbook of Porous Carbon Materials; Springer Nature: Singapore, 2023; pp. 21–38. [Google Scholar]
- Mangadlao, J.D.; Santos, C.M.; Felipe, M.J.L.; de Leon, A.C.C.; Rodrigues, D.F.; Advincula, R.C. On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films. Chem. Commun. 2015, 51, 2886–2889. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018, 13, 3311–3327. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J. Gen. Appl. Microbiol. 2017, 63, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Jia, Z.; Xu, X.; Chen, Y.; Peng, W.; Zhang, J.; Wang, H.; Li, S.; Wen, J. Preparation of antimicrobial activated carbon fiber for adsorption. J. Porous Mater. 2022, 29, 1071–1081. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Intern. 2017, 43, 3940–3961. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Z.; Li, K.; Briseghella, B.; Marano, G.C.; Xu, J. Visible light antibacterial potential of cement mortar incorporating Cu-ZnO/gC3N4 nanocomposites. RSC Adv. 2023, 13, 9448–9456. [Google Scholar] [CrossRef]
- Sawai, J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 2003, 54, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Maiti, M.; Akbar Malik, M.; Xu, S. Development of anti-bio deteriorate sustainable geopolymer by SiO2 NPs decorated ZnO NRs. Adv. Mater. Lett. 2019, 10, 128–131. [Google Scholar] [CrossRef]
- Xie, J.; Chu, H.; Wang, L.; Fang, Y.; Xu, Y.; Liu, D.; Jiang, L. Influences of Cu-Ti amorphous alloy on the properties of mortar: Wastewater treatment and bacteria inactivation. Constr. Build. Mater. 2023, 377, 131099. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef] [PubMed]
- Buczkowska, K.E.; Ruzek, V.; Louda, P.; Bousa, M.; Yalcinkaya, B. Biological Activities on Geopolymeric and Ordinary Concretes. J. Biomed. Res. Environ. Sci. 2022, 3, 748–757. [Google Scholar] [CrossRef]
- Jędrzejczak, P.; Parus, A.; Balicki, S.; Kornaus, K.; Janczarek, M.; Wilk, K.A.; Klapiszewski, Ł. The influence of various forms of titanium dioxide on the performance of resultant cement composites with photocatalytic and antibacterial functions. Mater. Res. Bull. 2023, 160, 112139. [Google Scholar] [CrossRef]
- Armayani, M.; Pratama, M.; Subaer, S. The Properties of Nano Silver (Ag)-Geopolymer as Antibacterial Composite for Functional Surface Materials. MATEC Web Conf. 2017, 97, 01010. [Google Scholar] [CrossRef]
- Popovich, J.; Chen, S.; Iannuzo, N.; Ganser, C.; Seo, D.K.; Haydel, S.E. Synthesized geopolymers adsorb bacterial proteins, toxins, and cells. Front. Bioeng. Biotechn. 2020, 8, 527. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Z.; Zhu, H.; Wang, X.; Gao, J. Effects of silane on reaction process and microstructure of metakaolin-based geopolymer composites. J. Build. Eng. 2020, 32, 101695. [Google Scholar] [CrossRef]
- Li, X.; Zheng, J.; Zheng, K.; Su, F.; Zhao, Z.; Bai, C.; Colombo, P. Rapid fabrication of coal gangue-based alkali activated foams and application as pH regulators. Mater. Lett. 2023, 338, 134020. [Google Scholar] [CrossRef]
NPs | Obtaining Methods | Sources | Effects on Geopolymers | Sources |
---|---|---|---|---|
GO | Hummers’ method Chemical exfoliation Electrochemical Exfoliation Arc discharge | [19] | Strong adhesion and a dense structure Improve the photocatalytic properties Induce an antibacterial effect Increasing flexural and compression resistance | [18] [23] [22] [24,25] |
Ag | Ball milling Electrochemical reduction Sol-gel method, Chemical reduction | [26,28] | Antibacterial properties against E. coli and enterococci bacteria The mechanical strengths depend on the NP addition mode | [4] [33] |
ZnO | Sol-gel technique Biological method | [34,35] | Antimicrobial effect against Escherichia coli, Bacillus subtilis, Aspergillus niger and Staphylococcus aureus | [35,38,39] |
Silica NPs and silica fume | Gas phase method Arc method Precipitation Sol–gel method Microemulsion, High-gravity reaction | [41] | Resistance to the water absorption of the bricks Decrease in the initial and final setting time of the matrix Preventing corrosion and increasing strength and durability of concrete | [42] [43] [43,44] |
Cu | Physical methods Chemical methods Biological methods | [46,48] | Increasing compression and flexural resistances | [48] |
Nanoparticle | Main Antibacterial Mechanism | Sources |
---|---|---|
GO | Larger sheets of GO can wrap the bacteria; “sharp” edges, could destroy the cell membrane. | [52,53,55] |
Ag | Distorting the cellular membrane; Interaction with the DNA and proteins, especially sulfur proteins. | [56,57] |
ZnO | Generating of reactive oxygen species. | [59,60,61] |
SiO2 | Zn-SiO2 nanohybrid generating reactive oxygen species | [62] |
Cu | Interaction with the DNA and proteins. | [63,64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furtos, G.; Prodan, D.; Sarosi, C.; Moldovan, M.; Łach, M.; Melnychuk, M.; Korniejenko, K. Advanced Geopolymer-Based Composites for Antimicrobial Application. Materials 2023, 16, 7414. https://doi.org/10.3390/ma16237414
Furtos G, Prodan D, Sarosi C, Moldovan M, Łach M, Melnychuk M, Korniejenko K. Advanced Geopolymer-Based Composites for Antimicrobial Application. Materials. 2023; 16(23):7414. https://doi.org/10.3390/ma16237414
Chicago/Turabian StyleFurtos, Gabriel, Doina Prodan, Codruta Sarosi, Marioara Moldovan, Michał Łach, Mykola Melnychuk, and Kinga Korniejenko. 2023. "Advanced Geopolymer-Based Composites for Antimicrobial Application" Materials 16, no. 23: 7414. https://doi.org/10.3390/ma16237414
APA StyleFurtos, G., Prodan, D., Sarosi, C., Moldovan, M., Łach, M., Melnychuk, M., & Korniejenko, K. (2023). Advanced Geopolymer-Based Composites for Antimicrobial Application. Materials, 16(23), 7414. https://doi.org/10.3390/ma16237414