Numerical Simulation of an Inverted Perovskite Solar Cell Using a SiOx Layer as Down-Conversion Energy Material to Improve Efficiency and Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Structure
2.2. Numerical Method
2.3. Simulation Parameters
3. Results and Discussion
3.1. Absorption Coefficient of Perovskite Layer
3.2. Effect of Perovskite Layer Thickness
3.3. Effect of Perovskite Layer Defect Density and Interface Defects
3.4. Effect of Series Resistance and Shunt Resistance
3.5. Effect of Operating Temperature on Device Characterization
3.6. Photovoltaic Properties of Silicon-Rich Oxide ()
3.7. Simulated J-V Characteristics Curve, External Quantum Efficiency, and Energy Band Diagram
3.8. Comparison between Experiment and Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chao, L.; Niu, T.; Gao, W.; Ran, C.; Song, L.; Chen, Y.; Huang, W. Solvent Engineering of the Precursor Solution toward Large-Area Production of Perovskite Solar Cells. Adv. Mater. 2021, 33, 2005410. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luo, X.; Zhou, Y.; Li, Y.; Qui, Q.; Xie, T. Recent Advances in Inverted Perovskite Solar Cells: Designing and Fabrication. Int. J. Mol. Sci. 2022, 23, 11792. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, B.; Chen, Y.; Guo, C. Advances of Commercial and Biological Materials for Electron Transport Layers in Biological Applications. Front. Bioeng. Biotechnol. 2022, 10, 900269. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Zhao, Y.; Zhang, X. Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Front. Electron. 2021, 2, 712785. [Google Scholar] [CrossRef]
- Mohanty, I.; Mangal, S.; Jana, S.; Singh, U.P. Stability factors of perovskite (CH3NH3PbI3) thinfilms for solar cell applications: A study. Mater. Today Proc. 2021, 39, 1829–1832. [Google Scholar] [CrossRef]
- Imani, S.; Seyed-Talebi, S.M.; Beheshtian, J.; Guang Diau, E.W. Simulation and characterization of CH3NH3SnI3-based perovskite solar cells with different Cu-based hole transporting layers. Appl. Phys. A 2023, 129, 149. [Google Scholar] [CrossRef]
- Karna, L.R.; Upadhyay, R.; Ghosh, A. All-inorganic perovskite photovoltaics for power conversion efficiency of 31%. Sci. Rep. 2023, 13, 15212. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, W.; Zheng, J.; Zhu, L.; Mo, L.; Li, Z.; Hu, L.; Hayat, T.; Alsaedi, A.; Zhang, C.; et al. Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex. ACS Appl. Mater. Interface 2017, 9, 26958–26964. [Google Scholar] [CrossRef]
- Datt, R.; Bishnoi, S.; Lee, H.K.H.; Arya, S.; Gupta, S.; Gupta, V.; Tsoi, W.C. Down-conversion materials for organic solar cells: Progress, challenges, and perspectives. Aggregate 2022, 3, e185. [Google Scholar] [CrossRef]
- Datt, R.; Bishnoi, S.; Hughes, D.; Mahajan, P.; Singh, A.; Gupta, R.; Arya, S.; Gupta, V.; Tsoi, W.C. Downconversion Materials for Perovskite Solar Cells. Sol. RRL 2022, 6, 2200266. [Google Scholar] [CrossRef]
- Vivaldo, I.; Carrillo, J.; López, O.; Jiménez, S.; Martínez, J.; Murias, D.; López, J.A. Study of the photon down-conversion effect produced by thin silicon-rich oxide films on silicon solar cells. Int. J. Energy Res. 2016, 33, 23–40. [Google Scholar] [CrossRef]
- Ojeda-Durán, E.; Monfil-Leyva, K.; Carrillo-López, J.; Benítez-Lara, A.; García-Salgado, G.; Luna-López, J.A. Down-Conversion Effect Created by SiOx Films Obtained by HFCVD and Applied over Pn-Junctions. Silicon 2019, 11, 2087–2093. [Google Scholar] [CrossRef]
- Chen, K.; Hu, Q.; Liu, T.; Zhao, L.; Luo, D.; Wu, J.; Zhang, Y.; Zhang, W.; Liu, F.; Russel, T.P.; et al. Charge-Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Adv. Mater. 2016, 28, 10718–10724. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361, 527–532. [Google Scholar] [CrossRef]
- Verschraegen, J.; Burgelman, M. Numerical modeling of intra-band tunneling for heterojunction solar cells in scaps. Thin Solid Films 2007, 115, 6276–6279. [Google Scholar] [CrossRef]
- Burgelman, M.; Decock, K.; Kheli, S.; Abass, A. Advanced electrical simulation of thin film solar cells. Thin Solid Films 2013, 535, 296–301. [Google Scholar] [CrossRef]
- Burgelman, M.; Decock, K.; Niemegeers, A.; Verschraegen, J.; Degrave, S. SCAPS Manual; University of Gent: Gent, Belgium, 2021. [Google Scholar]
- Ghosh, B.; Nasir, S.; Chee, F.; Routray, S.; Saad, I.; Mohamad, K. Numerical study of nSi and nSiGe solar cells: Emerging microstructure nSiGe cell achieved the highest 8.55% efficiency. Opt. Mater. 2022, 129, 112539. [Google Scholar] [CrossRef]
- Ghosh, A.; Dipta, S.; Nikor, S.; Saqib, N.; Saha, A. Performance analysis of an efficient and stable perovskite solar cell and a comparative study of incorporating metal oxide transport layers. J. Opt. Soc. Am. B 2020, 37, 1966–1973. [Google Scholar] [CrossRef]
- Umar, A.; Sadanand; Singh, P.K.; Dwivedi, D.K.; Algadi, H.; Ibrahim, A.A.; Alhammai, M.A.M.; Baskoutas, S. High Power-Conversion Efficiency of Lead-Free Perovskite Solar Cells: A Theoretical Investigation. Micromachines 2022, 13, 2201. [Google Scholar] [CrossRef]
- Lakhdar, N.; Hima, A. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 2020, 99, 109517. [Google Scholar] [CrossRef]
- Sabbah, H.; Arayro, J.; Mezher, R. Simulation and Investigation of 26% Efficient and Robust Inverted Planar Perovskite Solar Cells Based on GA0.2FA0.78SnI3-1%EDAI2 Films. Nanomaterials 2022, 12, 3885. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, T.; Rahaman, I.; Karmakar, S.; Halim, M.A.; Sarkar, P.K. Thickness optimization and the effect of different hole transport materials on methylammonium tin iodide (CH3NH3SnI3)-based perovskite solar cell. Emergent Mater. 2023, 6, 175–183. [Google Scholar] [CrossRef]
- Gan, Y.; Bi, X.; Liu, Y.; Qin, B.; Li, Q.; Jiang, Q.; Mo, P. Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies 2020, 13, 5907. [Google Scholar] [CrossRef]
- Basyoni, M.S.S.; Salah, M.M.; Mousa, M.; Shaker, A.; Zekry, A.; Abouelatta, M.; Alshammari, M.T.; Al-Dhlan, K.A.; Gontrand, C. On the Investigation of Interface Defects of Solar Cells: Lead-Based vs. Lead-Free Perovskite. IEEE Access 2021, 9, 130221–130232. [Google Scholar] [CrossRef]
- Ouslimane, T.; Et-taya, L.; Elmaimouni, L.; Benami, A. Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material. Heliyon 2021, 7, e06379. [Google Scholar] [CrossRef] [PubMed]
- Gholami-Milani, A.; Ahmadi-Kandjani, S.; Olyaeefar, B.; Kermani, M.H. Performance analyses of highly efficient inverted all-perovskite bilayer solar cell. Sci. Rep. 2023, 13, 8274. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.S.; Shahahmadi, S.A.; Wadi, M.A.A.; Chelvanathan, P.; Asim, N.; Misran, H.; Hossain, M.I.; Amin, N.; Sopian, K.; Akhtaruzzaman, M. Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik 2019, 182, 1204–1210. [Google Scholar] [CrossRef]
- Roy, P.; Sinha, N.K.; Khare, A. An investigation on the impact of temperature variation over the performance of tin-based perovskite solar cell: A numerical simulation approach. Mater. Today Proc. 2020, 39, 2022–2026. [Google Scholar] [CrossRef]
- Shamna, M.S.; Nithya, K.S.; Sudheer, K.S. Simulation and optimization of CH3NH3SnI3 based inverted perovskite solar cell with NiO as Hole transport material. Mater. Today Proc. 2020, 39, 1246–1251. [Google Scholar] [CrossRef]
- Rana, A.; Sharma, P.; Kumar, A.; Pareek, S.; Waheed, S.; Singh, R.K.; Karak, S. Understanding the Correlation Between Temperature Dependent Performance and Trap Distribution for Nickel Oxide Based Inverted Perovskite Solar Cells. IEEE Trans. Electron Devices 2021, 68, 3907–3913. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, A.; Vashistha, N.; Garg, K.K.; Singh, R.K. Defect states influencing hysteresis and performance of perovskite solar cells. Sol. Energy 2020, 211, 345–353. [Google Scholar] [CrossRef]
- Abdy, H.; Aletayeb, A.; Kolahdouz, M.; Soleimani, E.A. Investigation of metal-nickel oxide contacts used for perovskite solar cell. AIP Adv. 2019, 9, 015216. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Zhou, Y.; Yu, C.; Hua, Y.; Yu, Y.; Li, R.; Lin, X.; Chen, R.; Wu, H.; et al. Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells. J. Am. Chem. Soc. 2021, 143, 7759–7768. [Google Scholar] [CrossRef] [PubMed]
- Isoe, W.; Mageto, M.; Maghanga, C.; Mwamburi, M.; Odari, V.; Awino, C. Thickness Dependence of Window Layer on CH3NH3PbI3-xClx Perovskite Solar Cell. Int. J. Photoenergy 2020, 2020, 8877744. [Google Scholar] [CrossRef]
- Zhu, H.; Balaban, A.T.; Klein, D.J.; Zivkovic, T.P. Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering. Opt. Mater. 2020, 105, 109897. [Google Scholar] [CrossRef]
- Singh, P.; Rivindra, N.M. Temperature dependence of solar cell performance-an analysis. Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Devi, C.; Mehra, R. Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide). J. Mater. Sci. 2019, 54, 5615–5624. [Google Scholar] [CrossRef]
- Gan, Y.; Zhao, D.; Qin, B.; Bi, X.; Liu, Y.; Ning, W.; Yang, R.; Jiang, Q. Numerical Simulation of High-Performance CsPbI3/FAPbI3 Heterojunction Perovskite Solar Cells. Energies 2022, 15, 7301. [Google Scholar] [CrossRef]
- Du, H.J.; Wang, W.C.; Zhu, J.Z. Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B 2016, 25, 108802. [Google Scholar] [CrossRef]
- Lei, Y.; Xu, Y.; Wang, M.; Zhu, G.; Jin, Z. Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small 2021, 17, 2005495. [Google Scholar] [CrossRef]
- Haque, M.M.; Mahjabin, S.; Khan, S.; Hossain, M.I.; Muhammad, G.; Shahiduzzaman, M.; Sopian, K.; Akhtaruzzaman, M. Study on the interface defects of eco-friendly perovskite solar cells. Sol. Energy 2022, 247, 96–108. [Google Scholar] [CrossRef]
- Mohanty, I.; Mangal, S.; Singh, U.P. Influence of defect densities on perovskite (CH3NH3PbI3) solar Cells: Correlation of experiment and simulation. Mater. Today Proc. 2022, 62, 6199–6203. [Google Scholar] [CrossRef]
- Karthick, S.; Velumani, S.; Bouclé, J. Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Sol. Energy 2020, 205, 349–357. [Google Scholar] [CrossRef]
- Li, Y.; Ding, B.; Chu, Q.Q.; Yang, Y.; Wang, M.; Li, C.X.; Li, C.J. Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Sci. Rep. 2017, 7, 46141. [Google Scholar] [CrossRef] [PubMed]
- Piñón Reyes, A.C.; Ambrosio Lázaro, R.C.; Monfil Leyva, K.; Luna López, J.A.; Flores Méndez, J.; Heredia Jiménez, A.H.; Muñoz Zurita, A.L.; Severiano Carrillo, F.; Ojeda Durán, E. Study of a Lead-Free Perovskite Solar Cell Using CZTS as HTL to Achieve a 20% PCE by SCAPS-1D Simulation. Micromachines 2021, 12, 1508. [Google Scholar] [CrossRef]
- Medina, J.C.Z.; Andrés, E.R.; Ruíz, C.M.; Espinosa, E.C.; Yarce, L.T.; Galeazzi Isasmendi, R.; Trujillo, R.R.; Salgado, G.G.; Solis, A.C.; Caballero, F.G.N. Numerical Simulation and Performance Optimization of a Solar Cell Based on WO3/CdTe Heterostructure Using NiO as HTL Layer by SCAPS 1D. Coatings 2023, 13, 1436. [Google Scholar] [CrossRef]
- Coyopol, A.; Cardona, M.A.; Díaz Becerril, T.; Licea Jimenez, L.; Morales Sánchez, A. Silicon excess and thermal annealing effects on structural and optical properties of co-sputtered SRO films. J. Lumin. 2016, 176, 40–46. [Google Scholar] [CrossRef]
- Coyopol, A.; Cabañas-Tay, S.A.; Díaz Becerril, T.; García-Salgado, G.; Palacios-Huerta, L.; Morales-Morales, F.; Morales-Sánchez, A. Enhancement of the luminescence by the controlled growth of silicon nanocrystals in SRO/SiO2 superlattices. Superlattices Microstruct. 2017, 112, 534–540. [Google Scholar] [CrossRef]
- Iacona, F.; Franzò, G.; Spinella, C. Correlation between luminescence and structural properties of Si nanocrystals. J. Appl. Phys. 2000, 87, 1295–1303. [Google Scholar] [CrossRef]
- López, J.A.L.; López, J.C.; Valerdi, D.E.V.; Salgado, G.G.; Díaz Becerril, T.; Pedraza, A.P.; Gracia, F.J.F. Morphological, compositional, structural, and optical properties of Si-nc embedded in SiOx films. Nanoscale Res. Lett. 2012, 7, 604. [Google Scholar] [CrossRef]
- Swinehart, D. The Beer-Lambert Law. J. Chem. Educ. 1962, 39, 333. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status. Soidi B 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Hernández Simón, Z.J.; Luna López, J.A.; Hernández De la Luz, J.A.D.; Pérez García, S.; Benítez Lara, A.; García Salgado, G.; Carrillo López, J.; Mendoza Conde, G.O.; Martínez Hernández, H.P. Spectroscopic Properties of Si-nc in SiOx Films Using HFCVD. Nanomaterials 2020, 10, 1415. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.G.; Chiang, C.H.; Tseng, Z.L.; Nazeeruddin, M.K.; Hagfeldt, A.; Grätzel, M. High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 2015, 8, 2725–2733. [Google Scholar] [CrossRef]
- Heo, J.H.; Han, H.J.; Kim, D.; Ahn, T.K.; Im, S.H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602–1608. [Google Scholar] [CrossRef]
Parameters | [18] | ITO [19,20,21] | PEDOT:PSS (HTL) [22,23,24] | Perovskite CH3HN3PbI3 [25,26,27] | PCBM (ETL) [28,29,30] |
---|---|---|---|---|---|
Thickness (nm) | 90 | 100 | 40 | 300 | 80 |
Band gap, | 3.8 | 3.5 | 2.2 | 1.55 | 2.1 |
Electron affinity, | 0.950 | 2.3 | 2.9 | 3.9 | 4.1 |
Relative permittivity, | 3.9 | 9 | 2.3 | 18 | 4 |
Effective CB density of states, | |||||
Effective VB density of states, | |||||
Electron thermal velocity, | |||||
Hole thermal velocity, | |||||
Electron mobility, | 31 | 0.0002 | 3 | 0.01 | |
Hole mobility, | 50 | 0.02 | 17 | 0.01 | |
Donor concentration, | 0 | 0 | 0 | ||
Acceptor concentration, | 0 | ||||
Defect density, |
Parameters | CH3HN3PbI3 [25,31,32] | HTL/Perovskite [25] | Perovskite/ETL [25] |
Defect type Electron capture cross section Hole capture cross section Energetic distribution Reference for defect energy level Energy level with respect to reference Total density (integrated over all energies) | Neutral Gaussian Below 0.65 | Neutral Single Above 0.6 | Neutral Single Above 0.6 |
Parameters | Silver (Ag) [33,34] | ||
Work function
Surface recombination velocity of electrons Surface recombination velocity of holes | 4.26 |
Device Structure | Ref. | ||||
---|---|---|---|---|---|
ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ca/Al (experimental) | 1.03 | 20.6 | 85 | 18 | [55] |
ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Au (experimental) | 1.1 | 20.9 | 83 | 18.1 | [56] |
ITO/DMF-PEDOT:PSS/CH3NH3PbI3/PCBM/BCP/Ag (experimental) | 1.02 | 22.38 | 82 | 18.72 | [13] |
ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag (simulated) | 1.11 | 20.27 | 81.29 | 18.33 | This work |
/ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag (simulated) | 1.12 | 22.97 | 86.52 | 22.46 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paz Totolhua, E.; Carrillo López, J.; Benítez Lara, A.; Monfil Leyva, K.; Piñón Reyes, A.C.; Flores-Méndez, J.; Luna López, J.A. Numerical Simulation of an Inverted Perovskite Solar Cell Using a SiOx Layer as Down-Conversion Energy Material to Improve Efficiency and Stability. Materials 2023, 16, 7445. https://doi.org/10.3390/ma16237445
Paz Totolhua E, Carrillo López J, Benítez Lara A, Monfil Leyva K, Piñón Reyes AC, Flores-Méndez J, Luna López JA. Numerical Simulation of an Inverted Perovskite Solar Cell Using a SiOx Layer as Down-Conversion Energy Material to Improve Efficiency and Stability. Materials. 2023; 16(23):7445. https://doi.org/10.3390/ma16237445
Chicago/Turabian StylePaz Totolhua, Ezequiel, Jesús Carrillo López, Alfredo Benítez Lara, Karim Monfil Leyva, Ana C. Piñón Reyes, Javier Flores-Méndez, and José Alberto Luna López. 2023. "Numerical Simulation of an Inverted Perovskite Solar Cell Using a SiOx Layer as Down-Conversion Energy Material to Improve Efficiency and Stability" Materials 16, no. 23: 7445. https://doi.org/10.3390/ma16237445
APA StylePaz Totolhua, E., Carrillo López, J., Benítez Lara, A., Monfil Leyva, K., Piñón Reyes, A. C., Flores-Méndez, J., & Luna López, J. A. (2023). Numerical Simulation of an Inverted Perovskite Solar Cell Using a SiOx Layer as Down-Conversion Energy Material to Improve Efficiency and Stability. Materials, 16(23), 7445. https://doi.org/10.3390/ma16237445