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Abstract: In underwater laser beam machining (ULBM), water provides a cooling effect by reducing
the influence of the laser heat source, which makes ULBM more suitable for marking, cutting, and
postprocessing than laser beam machining (LBM). Because the laser heat source not only affects the
substrate temperature, but also heats the water, this study analyzes how the cooling effect occurs
when water is heated. In this study, the heat-transformed zones in ULBM and heated underwater laser
beam machining (HULBM) were improved by approximately 33% and 24%, respectively, compared to
LBM at 400 W. In addition, the heat-affected zones in ULBM and HULBM improved by approximately
15% and 9%, respectively, compared to LBM. The hardness of ULBM and HULBM was higher than
that of LBM. Based on these results, it was confirmed that water can reduce the effect of the laser heat
source and improve the mechanical properties. Experiments will be conducted on the underwater
laser beam machining of various substrates, such as Inconel718 and Ti-6Al-4V, in a future study.
In addition, experiments will be conducted on the underwater laser beam machining of various
substrates using a cooling system that can lower the temperature of water.

Keywords: underwater laser beam machining; heating system; heat-affected zone; mechanical
property; 304 stainless steel

1. Introduction

The automobile and aerospace industries are constantly advancing, and research
on postprocesses such as laser heat sources, plasma, and end mills has, therefore, been
continuously conducted. After producing the parts, a postprocessing step is essential
to improve the quality of the surface of the parts. Plasma and end-mill processes have
disadvantages, such as a high initial cost, a low process efficiency, and tool damage.
In contrast, the laser heat source can be adjusted to the appropriate power for various
materials. Furthermore, if there is no failure of parts or equipment, they can be maintained
semi-permanently without needing repair [1–4].

Laser beam machining (LBM) involves focusing a laser beam on a small area of a
substrate surface and manufacturing parts. Owing to their high power density and energy
efficiency, LBM processes have been utilized in various technologies such as marking,
drilling, cutting, and microprocessing. However, during the LBM process in air, such as in
the heat-affected zone (HAZ), cracks are often observed owing to high thermal gradients.
In addition, the laser process efficiency is very low during LBM in air. To overcome these
disadvantages, research has been conducted on liquid-assisted LBM, such as underwater
laser beam machining (ULBM) [5,6].
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ULBM utilizes water from the surface of the substrate as a coolant for LBM. Figure 1
illustrates a schematic of the ULBM process. ULBM has advantages in that the deformation
of the substrate by the laser heat source is reduced, and the mechanical properties are
improved by reducing the HAZ. However, the laser power is reduced by the absorption
and transmission of the laser beam by water, and the bubbles generated during the process
disturb the scan of the laser heat source. To solve these problems, research on underwater
laser beam machining is important [7,8].
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Figure 1. Conceptual diagram of underwater laser beam machining process.

ULBM processes have been studied using different types of lasers and various ma-
terials. Maharjan et al. performed underwater laser ablation, utilizing a fiber laser, on
bearing steel with respect to the surface morphology and microstructure [9]. Marla et al.
investigated the fundamental mechanisms of underwater laser ablation using a Nd:YAG
laser [10]. Tangwarodomnukun et al. reported underwater laser ablation with flowing
water using a nanosecond pulse laser on a titanium alloy for cut quality and thermal
damage [11].

In this study, we analyzed the cooling effect using water in a container at different
temperatures. The cooling effect of water can reduce the thermal deformation of the parts
and improve the quality of the parts. Additionally, the productivity of the parts can be
improved by shortening the production time of the parts. However, the temperature of
water will be increased due to the heat conduction of the material and the laser heat source
if the postprocess of the parts continues for a long time. We attempted to analyze the
characteristics of ULBM with water playing a cooling role in HULBM. Figure 2 illustrates
a schematic of the ULBM process with the thermostat of the heating system in a water
container. The water temperature increased when the process was performed for a long
time. Because of the increased water temperature caused by the laser heat source, water’s
efficiency as a coolant decreased. By comparing the water temperatures of 20 ◦C and
40 ◦C, it was verified that the water temperature affected the results of ULBM and heated
underwater laser beam machining (HULBM). This study attempted to determine whether
water can act as a coolant when the water temperature increases and analyze the effect of
increasing water temperature on the length of the HAZ layer.
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Figure 2. Schematic diagram of HULBM process.

2. Materials and Methods
2.1. Equipment Specification

The equipment comprised a laser heat source, a water container, a focusing head, a
moving platform, and a heating system. Figure 3 presents a schematic of the experimental
equipment. A 1080 nm wavelength fiber laser (RFL-C1000-CW, Raycus Co., Ltd., Wuhan,
China) was the laser source. The maximum output power was 1000 W with ±1.5% stability,
and the output power tunability was from 10 to 100%. In addition, a fiber laser chiller
(CWF-1000BN, S&A, Guangzhou, China), which can prevent unnecessary heat loss waste
and maintain a constant laser wavelength, was adopted. The evaporator had a capacity of
15 L and a maximum flow rate of 70 L/min, and the temperature stability was ±0.5 ◦C. A
water container with dimensions of 500 × 280 × 220 mm (x, y, z) was employed to minimize
the rust from utilizing stainless-steel materials. The laser heat source was delivered to
the surface of the 304-stainless-steel substrate by focusing the laser beam through a lens
with a focal length of 300 mm, which generated a 0.5 mm diameter spot on the surface. A
304-stainless-steel substrate with dimensions of 200 × 200 × 15 mm (x, y, z) was utilized
in the water container, which was fixed on the platform in the x–y plane. Compared to
Inconel 718 and Ti-6Al-4V substrates, the thermal conductivity of a stainless-steel substrate
is low. Additionally, the corrosion resistance of 304 stainless steel 304 is higher than that of
Inconel 718 and titanium. Based on these reasons, 304-stainless-steel material was selected
to analyze the cooling effect of water. The moving platform comprised a human–machine
interface (HMI) controller with a programmable logic controller. A digital thermostat (DH-
5562A1-CA, dhesys Co., Ltd., Busan, Republic of Korea) was adopted as the heating system.
The heating system comprised a controller that could be set to a minimum temperature
below 0 ◦C and a maximum temperature above 100 ◦C. The temperature of water was
maintained within the 1–30 ◦C range.
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2.2. Experiment Composition

To compare and analyze the HAZ produced at different temperatures, different tem-
peratures of water were selected in the water container. The laser beam was scanned
along the surface to produce a single line of 30 mm on the sample by utilizing various
processing parameters. Table 1 presents the LBM, ULBM, and HULBM parameters of
the experimental setup. The distance between the laser heat nozzle and the surface of
the substrate was fixed at 10 mm to maximize the efficiency of the laser power reaching
the substrate. Depending on the water temperature, the laser power decreases in ULBM
and HULBM because of absorption and transmission. To set the laser power to reach the
substrate surface in the same experimental setup, the laser power was adjusted to suit the
situation. A generally known laser power efficiency calculation was adopted because the
calculation differs depending on the experimental conditions. When using the heating
system, the water temperature was set to 40 ◦C. When the water is higher than 40 ◦C,
bubbles are generated as the water heats up and smoke produced by the heating of water
can interfere with the laser path. The temperature of the water was maintained within
±2 ◦C. For example, if the water temperature was set to 50 ◦C, the heating system would
turn on when the water temperature was lower than 48 ◦C.

In contrast, the heating system would turn off when the water temperature was higher
than 52 ◦C. As the heating system was not used, the water temperature was set to 20 ◦C. This
is because, when the temperature of the water is lower than 20 ◦C, the water can solidify
into ice and the experimental setup may be changed. The experiments were repeated
more than three times under the same conditions to compare the differences among the
three cases.

Table 1. TLBM, ULBM, and HULBM parameters of experimental setup.

Material LBM UBLM HULBM

Laser power (W) 200, 400 200, 400 200, 400
Scan speed (mm/s) 2 2 2

Water temperature (◦C) N/A 20 40
Water depth (mm) N/A 1 1

2.3. Heating System

The heating system required time to heat the water before the experiment was con-
ducted. When the heating system was switched on, the water was heated and the heat was
gradually transferred to the water surface by the thermostat. Finally, the heating system
was turned off when the set water temperature was reached. Figure 4 presents a graph
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of the time required to heat the water. As mentioned in the experiment composition, the
water temperature, using the heating system, was set to 40 ◦C in HULBM. The maximum
water temperature due to deviation was 42 ◦C, and the minimum was 38 ◦C. It took about
10 min to heat the water until it reached 40 ◦C.
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3. Results
3.1. Surface Analysis

Four water layer thicknesses were adopted in this experiment (Table 1). Before the
laser was turned on, the three-axis (X, Y, Z) feed system was placed for the experiments
with the HMI controller. The laser was turned on while the process was conducted in the
direction and length set by the feed system. Table 2 presents the results of the experiments
comparing the three conditions. A clear scanned line can be observed for the 0 mm and
1 mm water layer. However, an unprocessed scanned line was observed for the 2 mm water
layer, and no distinct scanned line was observed for the 3 mm water layer. It is estimated
that it would be impossible to observe the scanned line if the water layer thickness was
greater than 5 mm. This is because the larger the water layer thickness, the greater the
amount of laser heat source absorbed and reflected by the water. Consequently, the laser
power efficiency is reduced. This suggests that it is important to set an appropriate water
layer thickness.

Figure 5 presents an analysis of the distance between the heat-transformed zones.
The heat-transformed zone was measured from the end of the laser path to the edge,
where it began to be charred by heat. Based on the experimental results, the average
length between the heat-transformed zones was calculated by measuring at three random
locations. When the laser power was 200 W, the heat-transformed zones were 0.377, 0.317,
and 0.349 mm in LBM, ULBM, and HULBM, respectively. When the laser power was 400 W,
the heat-transformed zones were 0.649, 0.433, and 0.495 mm in LBM, ULBM, and HULBM,
respectively. Figure 6 presents the graph illustrating the results of the difference in the heat-
transformed zone measurement in LBM, ULBM, and HULBM. The cooling effect of water
on the heat-transformed zone was verified by comparing LBM and ULBM. In HULBM,
the difference in the heat-transformed zone from ULBM was smaller than that from LBM.
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This means that heated water at 40 ◦C had a cooling effect in HULBM. In addition, when
comparing the laser powers of 200 and 400 W, water affected the heat-transformed zone
more. This implies that the deformation of the substrate by the laser heat source was
reduced, suggesting that the mechanical properties of these parts can be improved [12,13].
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HULBM at 200 W (f) and 400 W (g). Except for water temperature, the remaining experimental
conditions were the same.
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Table 2. Cont.

Water Layer Thickness (mm) Surface of Substrate Characteristic of the Line

3
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3.2. Depth Analysis

Figure 7 presents a schematic of the characteristics of the feed system, which were
compared at different speeds. In Case A, the feed system in which the laser head was
located was fast, and the laser heat source transferred to the surface of the substrate was
insufficient. Therefore, ULBM was not performed because there was almost no convective
phenomenon on the surface between the water and the laser beam. In Case B, the feed
system was slow. An excessively large amount of laser heat was transferred to the surface
of the substrate, making precise processing difficult. In addition, the number of bubbles
generated by the heating water increased, which interfered with the current of the laser
beam. Therefore, considering these two cases, the transfer speed of the appropriate feed
system is important.
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Figure 7. Schematic of characteristics of feed system with slow speed (a) and fast speed (b).

Figure 8 presents a schematic of the heat transmission of the laser beam in air and
underwater. It was possible to process a more precise scan line of the laser beam during
ULBM than during LBM. This is because the inside of the substrate was affected by the
cooling effect of water in ULBM, even if the laser power efficiency reaching the surface
of the substrate was the same as in LBM. This means that it is possible in ULBM, such
as when precise processing is required or when the shape is complicated, unlike in LBM.
However, when the layer thickness of the water was greater than 3 mm, the amount of the
laser heat source absorbed by the water increased. Therefore, the layer thickness of the
water is important not only for the surface of the substrate, but also for the depth of the
process [14,15].
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3.3. HAZ

Figure 9 illustrates the analysis of the length of the heat-affected zone. The HAZ was
measured from the end of the heat-transformed zone to the edge, where the laser heat
source deformed the structure of the base metal. When the laser power was 200 W, the
HAZ was 0.653, 0.471, and 0.511 mm in LBM, ULBM, and HULBM, respectively. When the
laser power was 400 W, the HAZ was measured to be 1.175, 0.994, and 1.075 mm in LBM,
ULBM, and HULBM, respectively. Figure 10 presents a graph of the results of the difference
in HAZ measurements in LBM, ULBM, and HULBM. Compared to LBM and ULBM, the
cooling effect of water in the HAZ was verified. In HULBM, the difference between the
HAZ in ULBM was smaller than that in LBM. This means that water heated at 40 ◦C had a
cooling effect in HULBM, like the result of the heat-transformed zone difference. However,
when the laser power was 200 W, the heat-transformed zone was not significantly affected.
This is because different laser powers are required depending on the thickness of the base
metal. This means that the thicker the 304 stainless steel, the more laser power required to
reach the surface of the substrate. It is important to adjust the laser power according to the
size of the base metal [16,17].
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3.4. Vickers hardness

Figure 11 illustrates the analysis of the Vickers hardness measurements in LBM,
ULBM, and HULBM. The Vickers hardness was measured in the heat-transformed zone
using a laser path. Based on the experimental results, the average Vickers hardness was
calculated by performing measurements at three random locations. The Vickers hardness
measurements are presented in Table 3. By comparing LBM and ULBM, the cooling effect
of water on the Vickers hardness was verified. In HULBM, the Vickers hardness difference
from that in ULBM was smaller than from that in LBM. Because the Vickers hardness was
higher in ULBM and HULBM than in LBM, the material could be harder and stronger
against external forces. In addition, the process efficiency of materials can be improved by
improving their resistance.
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Table 3. Measurement of Vickers hardness in LBM, ULBM, and HULBM at 400 W.

Type Hardness (HV)

LBM 212.8 ± 2.0
ULBM 240.2 ± 3.9

HULBM 226.0 ± 1.6

Figure 12 illustrates the microstructure of the HAZ during LBM and ULBM. Based
on the results, the width of the HAZ was the largest on the top surface and gradually
decreased as the distance from the top surface increased. In addition, it was confirmed
that the length of the HAZ layer was shorter than that of LBM in ULBM. The distance and
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density between the particles in ULBM were smaller and denser than those in LBM. The
measurement of Vickers hardness was affected by this result.
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When the number of particles generated by the laser heat source increased, shear was
easily generated owing to dislocations. Even if the laser power reaching the surface of the
substrate was the same, the density of the particles increased more in ULBM and HULBM
than in LBM because of the cooling effect of water. Because of this result, shear was not
easily generated in ULBM and HULBM because of the densification of particles compared
with LBM [18].

4. Conclusions

The following conclusions were derived based on the experimental improvements in
the ULBM and HULBM compared with the LBM of 304 stainless steel.

When the water layer thickness was >2 mm, the laser scan line did not appear. In
contrast, a laser scan line appeared when the thickness of the water layer was 1 mm. In
addition, the speed of an appropriate feed system is important.

The lengths of the heat-transformed zones in ULBM and HULBM were improved by
approximately 33.28% and 23.73%, respectively, compared with that in LBM at 400 W. The
process did not perform properly because of the insufficient laser power required at 200 W.

The depth of the HAZ in ULBM and HULBM was improved by about 15.40% and
8.51% compared to LBM at 400 W. The mechanical properties were improved by arresting
the deformation of the structure using a laser heat source.

The Vickers hardness was higher in ULBM and HULBM than in LBM. The machined
stainless-steel material could be applied in various industries because its abrasion resistance,
corrosion resistance, and impact resistance were improved by external forces.
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