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Abstract: Thin-walled and thick-walled microcellular moldings were obtained by MuCell® technol-
ogy with nitrogen as a supercritical fluid. 2 mm thick polyamide 6 (PA6) with 30% wt. glass fiber
(GF) samples were cut from automotive industrial elements, while 4 mm, 6 mm, and 8.4 mm thick
moldings of PA6.6 with 30% wt. GF were molded into a dumbbell shape. The internal structure
was investigated by scanning electron microscopy (SEM) and X-ray computed microtomography
(micro-CT) and compared by numerical simulations for microcellular moldings using Moldex3D®

2022 software. Young’s modulus, and tensile and impact strength were investigated. Weak me-
chanical properties of 2 mm thick samples and excellent results for thick-walled moldings were
explained. SEM pictures, micro-CT, and simulation graphs revealed the tendency to decrease the cell
size diameter together with increasing sample thickness from 2 mm up to 8.4 mm.

Keywords: polymer–matrix composites; mechanical properties; porous materials; X-ray computed
microtomography; numerical simulations

1. Introduction

The global industrial tendency is to reduce the mass of all means of transport to reduce
carbon dioxide and other greenhouse gas emissions. Although common thermoplastic
materials are being criticized for their influence on the environment after their life cycle,
there are still no better recyclable materials than polymer composites with a much lower
density and comparable strength to metals. Reinforced engineering thermoplastics are often
an alternative material for aluminum and steel because of their high strength, modulus,
chemical, and thermal resistance. According to the Plastics Europe report, the European
automotive industry is the third biggest end-use market with 8.6% of the total demand
for European plastics converters, which is 50.3 million tons (in full) in the year 2022 [1].
Polypropylene (PP) and polyamides (PA) are the automotive industry’s most applied ther-
moplastics. Long and short glass and carbon fibers can reinforce the mechanical strength
of both materials, which negatively influences their density and processability. Therefore,
applying chemical blowing agents [2,3] or physical processes like MuCell®, IQ Foam®

or Ku-FizzTM enables obtaining microcellular structures, causing mass reduction [4,5].
Numerous microcellular polymers and composites like polyolefins, polycarbonates, and
polyesters find their applications in the automotive industry and other industries [6,7].
Fibers can act as heterogeneous cell nucleants, reducing cell diameter and increasing cells
density in a volume, which leads to a uniform cellular structure and better mechanical
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properties of products [8]. Since fiber orientation, cell diameter, and distribution influ-
ence products’ mechanical properties, there is interest in investigating materials’ internal
structure [9].

Sample preparation either for SEM or optical microscopy is not straightforward with
thick-walled (thicker than 4 mm) samples of polyamides reinforced with glass fiber [10].
Because of cell deformation, the invasive sample preparation process can be even more
difficult for foamed pieces. Therefore, X-ray computed microtomography (micro-CT) is
becoming a more popular non-destructive method of internal structure observations. Many
radiographic projections, called shadow projections, are captured at different angular po-
sitions, transversal cross-sections (slices) are reconstructed, and the 3D analysis of the
investigated material can be performed. Even though sample preparation does not require
special treatment, there are many difficulties in proper image reconstruction and the inter-
pretation of results, especially in systems with three phases: polymeric matrix, pores filled
with gas, and glass fibers [11]. There are numerous X-ray computed microtomography in
situ investigations of fatigue tests of solid PA6 and PA66 reinforced with glass fibers [12–18]
or ex situ observations of glass fibers [19–21] and woven textiles [22–24]. The evolution of
voids in non-reinforced PA during tensile tests was investigated by micro-CT as well [25,26].
In most cases above, articles present results obtained by synchrotron radiation, which gives
a much better X-ray beam than commercial microtomography, resulting in higher resolu-
tion (0.65–0.7 µm), no need for beam hardening, and minor artifacts. SEM and micro-CT
techniques reveal a typical skin–shell–core structure in the case of PA reinforced with glass
fibers [8,13]. In contrast, the microcellular form has an additional transition layer [8,27,28],
which causes such a three-phase structure to be even more complicated to investigate using
the commercial micro-CT apparatus applied in this research.

It should be stressed that most publications about foamed polyamide reinforced
with GF describe moldings in the shape of 1.5–4 mm thick plates, which would even-
tually become standard specimens [8,27,29,30]. Those papers present structural effects
depending on the sample’s geometrical features and processing conditions of microcellular
injection molding (MIM) technology. The average pore size for samples in this thick-
ness is between 50 and 100 µm [27,29,31], and the number of cells in the PA composite
is 2.78–17.2 × 107 cells per cm3 [30]. Glass fibers are oriented parallel to the melt flow
direction [5,8,30–32] in a shell/transition zone while perpendicular in a core region, which
applies to different polymer matrixes and fillers [9,33,34].

The aim of the work was to determine the influence of the thickness of porous moldings
(including molding with a thickness above 4 mm) obtained using the MuCell® method
on the distribution and pore size of PA moldings filled with 30% glass fibers. The effect
of structural anisotropy on the mechanical properties was examined. In the structural
studies, unlike other researchers, a commercial microtomography was used to verify the
obtained results, and a comparative analysis was performed in the same cross-sections of
the pore distribution using SEM and FEM analysis, and due to the fact that it is difficult
to apply to this type of material, it was related to numerical simulation using Moldex3D®

2022 software (CoreTech Systems, Chupei, Taiwan).

2. Materials and Methods

Four different sample thicknesses were investigated in this article: 2 mm, 4 mm, 6 mm,
and 8.4 mm. A 2 mm thick sample was cut from the large-scale industrial element, w
element, while 4 mm, 6 mm, and 8 mm thick samples were obtained in the laboratory
injection mold. For clarity, features characterizing each sample are summarized in Table 1.
The authors chose samples that, independently of gas-adding parameters, obtained the
most similar density reduction (c.a. 5 wt%), which is also included in the below table.
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Table 1. Samples analyzed in the presented article.

Sample
Thickness, mm Material Density

Reduction, %

2 PA6 30GF (Akulon K224-HG6)
(DSM, Heerlen, The Netherlands) 5.1

4 PA66 30GF (Technyl AR 130GF)
(Solvay, Brussels, Belgia) 5.5

6 PA66 30GF (Technyl AR 130-1)
(Rhodia, La Defence, France) 5.3

8.4 PA66 30GF (Technyl AR 130-1)
(Rhodia, La Defence, France) 5.3

2.1. Materials

Preparation of 2 mm thick samples

Samples in the 1.9–2.1 mm thickness range were cut from industrial elements of
680 × 100 mm dimensions produced for automotive applications (Figure 1). Polyamide
6 Akulon K224-HG6 (DSM, Heerlen, The Netherlands) contained 30 wt% of short glass
fibers (GF) and showed 1350 kg/m3 density and a melting point of 220 ◦C. This material
was applied to produce industrial elements. Polyamide was dried for 4 h at 105 ◦C in a
vacuum chamber before polymer processing.
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Figure 1. Industrial automotive element with marked places (red frames) from which 2 mm thick
samples were cut and analyzed.

Preparation of 4 mm thick samples

Polyamide 66 Technyl AR 130GF (Solvay, Brussels, Belgium) with 30 wt% short glass
fibers was applied for 4 mm thick samples. The polymer density was 1370 kg/m3, and
the melting point was 260 ◦C. Polyamide was dried for 4 h at 80 ◦C in a vacuum chamber
before processing.

Preparation of 6 mm and 8.4 mm thick samples

Both 6 mm and 8.4 mm samples were prepared from polyamide PA66 GF30 Technyl
AR 130/1 (Rhodia, La Defence, France) containing 30 wt% of short glass fiber. Polyamide
density was 1370 kg/m3, and the melting point was 263 ◦C. Before polymer processing, the
material was dried for 4 h in a vacuum chamber at 80 ◦C.

Detailed information about applied materials is presented in Table 2.

Table 2. General information about the materials used in the research.

Sample
Thickness,

mm

Density,
kg/m3

MFI,
g/10 min

Tensile
Modulus,

MPa

Stress
at Break,

MPa

Charpy
Impact Strength,

kJ/m2

2 1350 30 6000 110 110
4 1370 34 6000 95 65
6 1370 34 6300 95 35

8.4 1370 34 6300 95 35
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2.2. Testing Specimen and Sample Preparation
2.2.1. Foamed Specimen Preparation

Since four different moldings are injected under different mold and processing pa-
rameters, the essential processing parameters are summarized in Table 3 to clarify the
differences between the samples. The obtained moldings had a surface free of sink marks
on the surface (Figure 2).

Table 3. Injection molding processing parameters applied to produce samples of different thicknesses
in MuCell® technology.

IM Parameters 2 mm 4 mm 6 mm 8.4 mm

filling pressure, MPa 112.9 70 70 70
melt temperature, ◦C 285 285 285 285

holding pressure, MPa 20 16 14 14
holding time, s 0.3 0.3 0.3 0.3

mold temperature, ◦C 90 90 90 90
cooling time, s 28 30 50 50
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Figure 2. Tensile testing samples at four different thicknesses: 2 mm; 4 mm; 6 mm, and 8.4 mm (from
left to right). 2 mm thick samples were cut from the industrial element (red frame and arrow) while
4 mm; 6 mm and 8 mm thick were directly injection molded.

Molding of 2 mm thick samples

Large-scale industrial elements were obtained via the microcellular injection molding
process at the Graform company (Bydgoszcz, Poland). An Engel Victory 500 (Engel, Schw-
ertberg, Austria) injection molding machine and MuCell® technology (Trexel, Wilmington,
MA, USA) were used in this process. Injection molding parameters are summarized in
Table 3. A hydraulic press was used to cut tensile test specimens from large-scale elements
according to PN-EN ISO 527-2:2012 [35].

Molding of 4 mm thick samples

The MuCell® process was carried out in a four-cavity laboratory injection mold to
produce tensile testing samples according to the PN-EN ISO 527-2:2012 [35] standard.
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16 × 2.1 mm gap gates were applied. A hydraulic Victory 500 injection molding machine
(Engel, Schwertberg, Austria) was used in the microporous injection tests. Injection molding
parameters are summarized in Table 3.

Molding of 6 mm and 8.4 mm thick samples

6 mm and 8.4 mm molded pieces, here described as thick-walled samples, were
produced using an Engel Victory 500 (Engel, Schwertberg, Austria) injection molding
machine, in a four-cavity injection mold [28]. MuCell® technology (Trexel, Wilmington,
MA, USA) was applied as a microcellular injection process. The dimensions of obtained
6 mm and 8.4 mm thick molded pieces were 1.5 and 2 times higher compared to PN-
EN ISO 527-2:2012 [35] type 1B samples, respectively. 24 × 4.2 mm and 21 × 4.1 mm
(wide × deep) gap gates were applied for 8.4 mm and 6 mm specimens, respectively, in the
mold cavity [28]. Injection molding parameters are summarized in Table 3.

2.2.2. Sample Preparation for SEM and Micro CT Analysis

The structural properties, mainly pore size and its distributions were investigated by
Scanning Electron Microscopy (SEM) (JEOL, Tokyo, Japan) and X-ray computed micro-
tomography (micro-CT) (Bruker, Kontich, Belgium) images. All images were taken from
the central part of the measurement zone. Samples were prepared for SEM analysis by
mechanical breaking after keeping the sample for 1 min in liquid nitrogen. To obtain a
flat, undeformed surface for SEM, samples of 4 mm, 6 mm, and 8.4 mm thickness were
notched on the longer sides before being hit and broken. Therefore, the skin layer of those
thick samples was analyzed on the short edges, which are marked with white, dashed lines
in Figure 3. The 2 mm samples were cut from a large element, so it was not possible to
examine the skin on the shorter side. Sample surfaces were sputter-coated with platinum
for 30 s before being placed in the SEM chamber. X-ray computed microtomography was
used to investigate the pieces, with the X-ray beam perpendicular to the polymer flow
direction. For an 8.4 mm thick sample, a piece of a size of c.a. 1 mm3 was cut to obtain
higher-resolution images (Figure 3).
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Figure 3. Sample preparation for SEM and X-ray micro-CT of samples with different thicknesses.
Black arrows show surfaces investigated by SEM and X-ray beam hitting the sample. Observed skin
layers are marked with a white dashed line. Smaller pieces were additionally cut from the core and
edges of 8.4 mm thick sample, C and A, B, respectively. Flow direction is marked, except for a 2 mm
thick sample, for which a polymer melt flow is explained in the other part of the article.

2.3. Measurements of Density and Mechanical Properties

Mechanical properties of all samples were investigated using a tensile test machine
Z030 (Zwick/Roell, Ulm, Germany) according to PN-EN ISO 527-2:2012 [35]. The machine
is equipped with a measuring head with a load capacity of 30 kN. The impact strength
was measured for all samples at 23 ◦C according to PN-EN ISO 179-2:2020-12 [36] (Charpy
impact test) by using a HIT50 Pendulum Impact Tester (Zwick/Roell, Germany) with a
pendulum of 25 J or 50 J (in case of 8.4 mm samples thickness). For 8.4 mm thick samples
the fracture took place at the shorter edge. The density of the samples was measured
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by a hydrostatic method with methanol as the immersion liquid. AD50 (Axis, Poland)
laboratory scales were used.

2.4. SEM and Micro-CT Analysis

The sample surface was investigated using a JEOL 5600 electron microscope (JEOL,
Tokyo, Japan) at 1 kV acceleration voltage after sputter-coating with a platinum layer. Each
sample was scanned from the left to the right edge, and pictures of 35× and
150× magnification were joined together in order to estimate the thickness of the skin
layer and average pore size and pore size distribution. Images were analyzed by using
ImageJ 1.53k software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda,
MD, USA).

A sample of 2 mm thickness was investigated by Bruker SkySkan 1173 X-ray micro
computer tomography (Kontich, Belgium), while 4 mm, 6 mm, and 8.4 mm samples were
analyzed by Bruker SkyScan 1272 X-ray micro-computed tomography (Kontich, Belgium).
Projections were reconstructed by the NRecon program, the analysis was performed using
the CT Analyzer program, while the 2D and 3D visualization of glass fiber orientation was
obtained by DataViewer and CTvox programs by Bruker.

2.5. Moldex3D® Simulation of MIM Process

The Foam Injection Molding module by Moldex3D® (CoreTech System Co., Ltd.,
Chupei, Taiwan) software was used to calculate an average cell size and cell density.
The selection of this software was based on previous experiences with FEM analysis of
pore growth [37]. Injection molding process parameters used for simulation conduction
correspond to the conditions used for experimental samples. The bubble growth model
used to predict the porous structure of the sample was the Han and Yoo model. The mesh
parameters used to convert 3D models to finite elements are presented in Table 4. To
obtain reliable results, the criterion was adopted that further increasing the number of finite
elements did not significantly affect the simulation results. On this basis, the size of the
mesh was determined. The analyzed results were read with the use of eleven measurement
points distributed evenly through the thickness of the analyzed part. Depending on the
element’s geometry, the distance between successive measurement points was equal to 10%
of the part’s thickness.

Table 4. Mesh parameters used for simulations conduction with the use of the Moldex3D® software.

Parameter 2 mm 4.2 mm 6 mm + 8.4 mm

Solid mesh elements 1,038,216 78,387 141,605
Surface mesh elements 196,920 14,162 26,806

Mesh size (mm) 2.72 2.475 2.475
Mesh boundary layers 3 3 3

3. Results and Discussion
3.1. SEM Pictures Analysis

Analysis of 2 mm thick samples

In Figure 4, a scanning electron microscopy picture shows a 2 mm thick sample cross-
section. A white dashed line shows the skin layer, a distance between the sample edge and
the first pores observed by SEM. One side’s skin layer is about 500 µm, 25% of the total
sample thickness. The upper pictures present 150x magnification, with clearly seen pores
of an average size of 56.21 ± 10.61 µm based on ImageJ software analysis. Throughout the
cross-section of the core part, many pores with a size of up to 85 µm are visible and can act
as notches during mechanical properties investigations. Compared to pore diameters of
other polyamide samples reported in the literature, these are the large-sized pores existing
in thin-wall moldings, which can partly explain the weak mechanical properties of 2 mm
thick samples [27,29]. The black arrow (Figure 4a) marks the hole after removing a glass
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fiber, whose dark color, regular shape, and diameter distinguish it from a pore marked
with a white arrow.
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Figure 4. Scanning electron microscopy pictures of a 2 mm thick sample. White dashed lines show
the distance from the sample edge to the first cells (marked by white arrows) observed by SEM. The
chosen regions of the sample cross-section (d) at the upper skin layer (a), bottom skin layer (b), and a
sample core (c) at 150× magnification are marked with red frames. The empty hole after removing
the single glass fiber is marked with a black arrow (a).

Analysis of 4 mm thick samples

In the case of a 4 mm thick sample, the observed skin layer (Figure 5) is around 700 µm.
Comparing it to the sample width (10 mm), it is about 7%. Based on ImageJ 1.53k software
analysis, the average pore size is 18.41 ± 9.06, µm which means that for a twice-as-thick
sample (compared to 2 mm thick), pores are 67.25% smaller. Regions within the skin layer
show better glass fiber orientation in the flow direction (y-axis) (Figure 5a,c) compared to
more randomly oriented fibers in a core (Figure 5b).

Analysis of 6 mm thick samples

A scanning electron microscopy cross-section for a 6 mm thick sample is shown in
Figure 6. The skin layer, meaning the distance to the first observed cells, is estimated to
be around 800 µm, compared to the sample width of 15 mm, giving 5.3% on each side. At
150× magnification, fiber orientation can be observed even better in the range of a skin
layer (Figure 6a,c). In contrast, more chaotic fibers positioning can be seen in the core region
of a sample (Figure 6b). The average pore size based on ImageJ 1.53k software analysis is
15.73 ± 4.13 µm.

Analysis of 8.4 mm thick samples

Due to the height (18.6 mm) and width of the 8.4 mm thick sample, the combined SEM
pictures of the whole sample cross-section was challenging to present in one image, so only
regions of a skin layer on both sides and core region are shown in Figures 7a, 7c and 7b,
respectively. The thickness of a skin layer estimated as 1.2 mm is the highest compared
to other samples and, compared to the sample width of 20 mm, gives 6% on each side.
SEM pictures reveal fiber orientation along the polymer melt flow within the skin layer
(Figure 7a,c), while fiber disorientation is observed in the core part (Figure 7b). The average
pore size is slightly higher compared to the 6 mm thick sample, which is 17.98 ± 5.08 µm.
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Figure 6. Scanning electron microscopy pictures of a 6 mm thick sample. White dashed lines show
the distance from the sample edge to the first cells (white arrows) observed by SEM. The chosen
regions of the sample cross-section (d) at the left-edge skin layer (a), right-edge skin layer (c), and a
sample core (b) at 150× magnification are marked with red frames.
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Figure 7. Scanning electron microscopy pictures of 8.4 mm thick sample’s region from the left edge
(a), core (b), and right edge (c). White dashed lines show the distance from the sample edge to the
first noticed pores (white arrows) observed by SEM. The first observed pore from the left-side sample
edge is magnified in a red-framed picture.

Based on previous analyses and observations, a reasonably wide transition zone for
6 mm and 8.4 mm thick samples shows glass fibers oriented in the flow direction [28,38]. A
comparison of sample skin layers is presented in Figure 8, showing increasing skin layer
thickness for 2 mm, 4 mm, 6 mm, and 8.4 mm thick pieces. The thinnest 2 mm sample has a
relatively larger skin-layer thickness compared to its overall thickness (approx. 25% for one
side). The skin layer’s thickness increase does not correlate with the moldings’ thickness
change. The fastest cooling rate for a molded part’s cross-section is seen in a 2 mm part,
resulting in the lowest likelihood of forming a fine-pored structure. Four-times-thicker
molding, compared to a 2 mm thick one, reveals only two-times-higher skin-layer thickness
with no cells.

Figure 9 shows histograms of pore size diameter based on ImageJ 1.53k software
analysis of SEM pictures. The analysis was performed manually by exploiting the presence
of clearly recognizable cells. The most frequent pores for a 2 mm thick sample are within
the 50–60 µm diameter, and the maximum observed size reaches 85 µm. It was hard to
indicate pores smaller than 30 µm. In all the other samples’ thicknesses, there is a fraction of
tiny pores below 10 µm, which is close to or even less than glass fiber diameter. Pictures of
4 mm, 6 mm, and 8.4 mm thick samples reveal a maximum pore size within the 35–45 µm
range, which shows a considerable difference compared to 2 mm thick samples.
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Figure 8. Comparison of skin layer thickness for different samples with marked distance from the
edge to the first cells observed by SEM.
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Figure 9. Histograms of pore size diameter for 2 mm (a), 4 mm (b), 6 mm (c) and 8.4 mm (d) sample
thicknesses based on the SEM pictures analyzed by ImageJ software. Comparison of sample skin
thickness for different samples. Average pore size values are marked in the upper right corners.

3.2. X-ray Microtomography Analysis

Comparing micro-CT to SEM results, the tendency for average pore size depending
on sample thickness is similar. The highest, 32.59 µm pore diameter values are for 2 mm
thick sample, and 28.37 µm, 16.87 µm, and 23.95 µm diameter for 4 mm, 6 mm, and 8.4 mm
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samples, respectively. Values from micro-CT are single results without std dev since this is
the result generated by CTAn software, version 1.16.4.1 after the 3D analysis option.

Figure 10 presents reconstruction layers in the left column and binarized pictures in a
right column. The reconstructed images show the whole cross-section of a sample before
choosing the region of interest (ROI) for further binarization. The ROI was selected as
close as possible to the original sample edge. For the 8.4 mm thick sample, an additional
piece was cut from the sample core and analyzed at a higher resolution, as presented in
Figure 10e.
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Figure 10. Single cross-sections of 2 mm (a), 4 mm (b), 6 mm (c) and 8.4 mm (d) sample thicknesses
after X-ray microtomography data reconstruction (left column) and binarization (right column).
8.4 mm thickness sample was additionally analyzed after cutting a 1 mm3 piece from the sample
core (e).

The critical point in the resulting data from micro-CT is, first of all, a scanning proce-
dure and resolution. For all samples, the authors tried to scan the entirety of all samples to
observe the entire spectrum of a cross-section, but the resolution was low, ranging from
11 µm image pixel size up to 5 µm.

In CTAn software, the higher the resolution, the more accessible it was to cut the
pores from the background [39,40]. Those pores close to the glass fiber diameter can be
distinguished in the SEM pictures, while binarization makes it more challenging in the
CTAn program. Choosing the threshold values is based on comparing the original image
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after reconstruction with the binarization picture after changing threshold values. The
result can be discussed mainly for low-resolution images and a lot of noise.

A thresholding method is essential and critical in obtaining accurate results [39,41].
This method divides an image into two phases: cells and matrix. Therefore, it is challenging
to distinguish glass fiber, especially with a low contrast between matrix and glass and low
resolution. The thresh-holding method can produce a lot of noise, which may mistakenly
be classified as a pore.

Example cross-sections of a 2 mm thick sample viewed using the DataViever program
by Bruker are shown in Figure 11. The z-axis refers to the thickness of the automotive
element. Reconstructed pictures enable us to observe glass fiber orientation in a core
(Figure 11b) and close to the sample surface (Figure 11c). A chaotic direction is seen in the
center, and similarly, a clear orientation can be challenging to find in cross-sections close to
the surface.
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Figure 11. Cross-sections (z-x) for a 2 mm thick sample with visible pores (a). Cross-sections along
the y-axis at points (A, B) refer to sample core (b) and close to the sample surface (c).

Figure 12 presents the pore size distribution resulting from micro-CT analysis, which
can be compared to SEM analysis by ImageJ. For the 2 mm thick sample, most pores are
within 36–46 µm, which is lower than the corresponding ImageJ results. In the case of a
4 mm thick sample, a 21–27 µm cell size is the dominating value which is 10 µm higher
compared to the average SEM picture. The 6 mm and 8.4 mm thick samples are much
more uniform. Fractions of 7.54–22.62 mm and 11.00–33.00 mm are c.a. 90% volume for
thick pieces. X-ray computed microtomography of a 1 mm3 piece cut from the sample core
reveals a more accurate pore size distribution (Figure 12c), where c.a. 50% in the volume
are pores of 7.5–12.5 µm.

Three small pieces (c.a. 1 mm3) were cut from the sample 8.4 mm thick at the two
surfaces, and the sample core and marked as A, B, and C, respectively (Figure 3). 2D and
3D visualizations obtained by DataViewer and CTvox are presented in Figure 13. The
orange arrow marks polymer melt flow. The bottom row shows the 3D visualization of all
three pieces. Glass fibers are oriented parallel to the melt flow in the case of pieces A and B,
while in the core part, fibers are more disoriented.
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Figure 12. Pore size distributions for different sample thickness based on X-ray microcomputed
tomography results. The 8.4 mm thick sample was additionally analyzed for smaller piece cut from
the sample core (8.4 mm—C).

The distributions and pore sizes confirmed by SEM and micro-CT methods result
from several reasons. In the case of samples with the smallest thickness of 2 mm, it should
be remembered that they were obtained by cutting from a large-molded part, in places
away from injection points. The flowing polymer melt cooled faster, its viscosity increased,
and high-shear stresses caused smaller pores to merge into larger, irregular complexes.
An additional factor in the formation of an irregular porous structure was the fact that a
poreless, quickly solidified skin layer constituted almost 50% of the molded part thickness.
The small volume of the material in the melt state did not provide good conditions for the
formation of fine and regular cells.

For the remaining moldings, the pore distribution is similar because the shape of
gaps and cavities in the molds are similar. The thickest molded parts (6 and 8.4 mm) were
formed in the same injection mold. Therefore, it can be concluded that in this case, the
melt flow speed was significantly higher in the case of a smaller-thickness molding, which
probably resulted in a reduction in the average size of the gas pores in the structure of these
moldings. This is consistent with the effects described in papers [30,42,43]. For this reason,
among others, the size of the pores in the 6 mm molding was lower than in the 8.4 mm
moldings, which disturbed the linear relationship between the thickness of the molding
and the size of the pores.
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Figure 13. Cross-sections for 8.4 mm thick sample pieces cut from sample edges (column (A) and (B))
and sample core (column (C)). The upper row (a) shows the x-z plane, and the middle row (b) shows
the y-z plane. The bottom row (c) presents 3D visualization of the orientation of the fibers.

3.3. Moldex3D® Simulation Results

Pore sizes for Moldex3D® simulation show much higher results than SEM pictures
analysis and micro-CT results (Figure 14). Those results are based on theoretical equations
and do not consider all the circumstances occurring in such a complex process as micro-
cellular injection molding. For example, the simulation software does not consider the
plasticization phase, which was proved to have a large impact on the microcellular structure
and properties of injection molded parts [44,45]. As a result, the pore size calculated by
finite elements methods cannot be expected to match the actual values perfectly. However,
the tendency in a pore size diameter depending on sample thickness is very similar to the
results of micro-CT (Table 5). In all the considered cases, the pore size in the core area of the
sample, calculated by Moldex3D®, was about 2.5 times larger than the average pore size
obtained in the micro-CT analysis. These prove the validity of obtained micro-CT results
and the observed pore size values as a function of sample thickness.

Figure 15 shows cell size distribution as a function of distance from the molding’s
central point. Regardless of the thickness tested, the largest pores were observed in the core
region of the sample. All the curves indicate an upward trend of cell size value measured
from the surface to the core region of molding. Based on the simulation results, the finest
pores were observed with a 6 mm thick sample. A similar effect was observed on micro-CT
and SEM images. All the testing methods observed a corresponding relation between cell
size and sample thickness.
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Figure 14. Simulated pore sizes in marked places for 2 mm (a), 4 mm (b), 6 mm (c) and 8.4 mm
(d) sample thickness along the line from one to opposite sample edge.

Table 5. Thickness of a skin layer and average pore size measured by SEM, by X-ray microtomography,
and simulated by Moldex3D® 2022 software for four different samples thicknesses.

Sample
Thickness,

mm

Skin Layer
Thickness (by

SEM), mm

Avr. Pore Size
(by SEM), µm

Avr. Pore Size
(by µCT), µm

Pore Size in the
Core Part (by

Moldex3D®), µm

2 ~0.5 56.21 ± 10.61 32.59 74.21
4 ~0.7 18.41 ± 9.06 28.37 71.44
6 ~0.8 15.73 ± 4.13 16.87 44.59

8.4 ~1.2 17.98 ± 5.08 23.95 60.28
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The orientation of glass fibers was also numerically analyzed. This factor and the
geometry of the porous structure determine the final mechanical properties of injection
moldings [4]. Figure 16 shows the fiber orientation toward the longitudinal axis of the test
specimens (parallel to the tensile axis), determined by injection simulations. The results
can take values from 0 to 1, where the highest value means complete alignment in the
considered direction, and 0 means perpendicular alignment to the axis. The results show
an unfavorable fiber orientation for a 2 mm thick molding. Here, the maximum orientation
value recorded concerning the longitudinal axis was approximately 0.5. With the other
samples tested, this parameter reached the value of 0.8. Exceptionally high values of this
orientation were observed in the 8.4 mm thick moldings. The strongly oriented fibers in the
tensile direction are visible both in the transition and skin layers. This phenomenon was
not observed for the thicknesses equal to 4 mm and 6 mm, where the orientation in the skin
layer is weaker than in the transition layer. However, a 6 mm thick specimen exhibited a
higher fiber orientation than a 4 mm thick specimen.
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used in the strength tests: (a) 2 mm (cut-out cross-section), (b) 4 mm, (c) 6 mm, (d) 8.4 mm (the more
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Strength properties complement extensive structural studies of porous polyamide
composites reinforced with glass fiber. Thick-walled 6- and 8.4 mm samples are character-
ized by a very high value of tensile strength (Rm) and Young’s modulus (E) determined in
the tensile test (Figures 17 and 18).

The highest strength and Young’s modulus for 6 mm thick moldings are caused by the
smallest gas pores in the structure of these moldings. The high flow rate of the polymer
melt caused the small pore size for these samples. Wang [30] and his team showed that
changing the injection speed can cause significant changes in the mechanical properties
of molded parts produced using microcellular injection molding technology. Błędzki et al.
conducted similar tests [46].
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and 8250 MPa for 2 mm, 4 mm, 6 mm, and 8.4 mm thick samples, respectively.

Likewise, in the case of samples with a thickness of 4 mm, Young’s modulus is higher
than stated in the datasheet of the material supplier. Also, nitrogen influenced the results,
thanks to which thick-walled moldings without sink marks were obtained. Moreover, the
injection point location, the cavities’ shape, and the gate type resulted in a laminar flow and
the proper filling of the cavities, which caused an advantageous arrangement of the short
fibers in the melt flow direction in a significant sample volume. It was previously found that
the skin’s thickness increased with the moldings’ increasing thickness. The above-described
effects resulted in producing a multilayer composite in which the unfoamed skin layer
determined the value of Young’s modulus and tensile strength.
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Another factor contributing to the strength properties of foamed samples is that the
size of the gas pores in the core and transition zone is small compared to other papers. The
results for a sample with a thickness of 2 mm significantly differ from the others; however,
producing them from a different type of polyamide is not the reason. For PA6 GF30, the
supplier’s data sheet is very similar to PA66 GF30. Young’s modulus is the same, while
stress at break is 110 MPa and 100 MPa, respectively. The different locations of injection
points in relation to the places of sampling from a large-size molded part cause a significant
decrease in E and Rm. The simulation analysis showed that, in these places, the fibers are
mostly arranged perpendicular to the stretching direction of the samples (Figure 19). It
was the reason for such a drastic drop in the value of both parameters. Because of this
part’s geometry, it was impossible to take these samples from other places of the large-sized
moldings, primarily because of the ribs and thickness differences.
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Figure 19. Glass fibers orientation simulated in Moldex3D® software, along with cutting the samples
for mechanical testing, marked by dashed lines. The color scale shows fibers orientation, where 1 and
0 values mean parallel and perpendicular orientation to the y-axis (testing tensile force).

The increasing thickness of foamed thick-walled moldings of PA66 GF30 improved its
impact strength. The 8.4 mm thick samples needed to be notched since they did not break,
even when using the 50 J pendulum. Therefore, it is not possible to compare these results
to the others (Figure 20).

For a sample with a thickness of 6 mm, a much better impact strength was obtained
compared to the producer’s material data sheet (65 kJ/m2). Also, for 8.4 mm thick, notched
samples, the impact strength is about four times higher than in the producer’s characteristic
(6 kJ/m2). These beneficial results for thick-walled samples are due to the synergistic
interaction of two effects: good nitrogen pore distribution and their small dimensions and a
much larger cross-section of samples with a significant solid skin thickness. With the 2 mm
thick sample, the impact strength was 25% lower than that of the solid PA6 GF30 (110 MPa).
The core part had non-uniform pores with significantly larger dimensions, resulting in the
decrease in impact strength. They behaved as structural notches during impact loading,
causing the brittle fracture. This effect was limited by the fibers’ heterogeneous arrangement
in the volume of samples cut from the large-size molding.
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4. Conclusions

The research showed a strong, yet non-linear correlation between molding thickness
and geometry and pore size and distribution. The most advantageous pore size and
distribution from the mechanical properties point of view was observed for 6 mm thick
PA glass-fiber-reinforced moldings (Table 4). The pore size of thick PA66 GF30 molded
parts is smaller than that reported by other authors for thinner samples. This favorable
pore size distribution in 6 and 8.4 mm thick-walled moldings had a significant impact on
their significant mechanical properties.

Despite differences in the values of the pore size and distribution results obtained
using different methods, the commercial X-ray computed tomography method used in
the presented article was positively verified. The largest deviations were observed in the
simulation results, which may help adapt the FEM model for thick-walled moldings (above
4 mm thickness) obtained using the MIM method.

Such complex (three-phase) structures with pore size diameters even below glass fiber
diameter are challenging to investigate with commercial X-ray computed tomography
and demand properly performed scanning, selecting parameters, resolution, and skillful
data processing. The 3D data analysis results are very useful; however, it is still worth
comparing them with SEM images for the same samples.

The results of the conducted research may be the basis for encouraging the greater
use of porous structures reinforced with short fibers in thick-walled elements (typical
mechanical increase in strength by increasing the cross-section in real products). It is
especially possible since obtained thick wall moldings do not have deformations and sink
marks on the surface. Therefore, industries can apply microcellular thick-walled pieces as
an alternative to aluminum alloys, enabling them to bear high loads.

Increasing the use of lightweight polymeric moldings reduces the carbon footprint
and provides the possibility of secondary processing, closing the product life cycle, which
fulfills the demand of a circular economy.
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