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Appendix A - 2D Lattice

In this Appendix, the elastic properties of several chosen 2D lattice are plotted. The
Homogenized elastic tensor of the following lattices shown in Figure Al are tabulated in
Table Al. The tabulated tensors are based on voxels that are generated as a single layer
with an additional periodicity added out of plane. Considering this periodicity means that
the single layer is equivalent to a fully tessellated geometry that has infinite depth in the
out of plane direction. The tabulated tensors are obtained by fitting a third order
polynomial for each of the tensor entries where the volume fraction varies from 0.1 to 0.9.
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Figure Al: (3.122), and (4.6.12) cells with non-orthogonal periodic basis. The representative volume
element of the unit cell is shown as red voxels.
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The discretized geometry shown in Figure A1l is shown for multiple volume fraction
in Figure A2. In this Figure, it can be seen how the geometry of the lattice changes as the
volume fraction increases. This sort of filling is one of the main causes of the difference
between the theories that use the Euler-Bernoulli beam formulations of homogenization,
because it cannot predict the interactions of the geometry within the lattice. The stiffness
tensor for the selected lattices in Figure A2 are tabulated in Table Al.
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Figure A2: Evolution of selected 2D latices as the volume fraction increases




Table Al: Homogenized elastic tensor coefficients (based on Equation Error! Reference source not
found.) and correlation coefficient for the polynomial fit for chosen 2D lattices

Cl 1 CZ 2 C3 3 C4-4- CS 5 666 Cl 2 Cl 3 CZ 3

p® 0776 0.835 0291 -0.017 0.118 0.098 0.811 0476 0.494
p? 0228 0.182 -0.082 0443 0.084 0.103 -0.659 -0.129 -0.143

0294 0266 1134 -0.052 0.183 0.18 0.386 0.204 0.196

p
2
312 (2D) R 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.999 0.999

3 0670 0631 0.281 -0.119 0.088 0.122 0.909 0474 0.462
2 0336 0380 -0.072 0540 0.123 0.080 -0.757 -0.126 -0.113

p 0228 0223 1.106 -0.073 0.165 0.177 0382 0.183 0.181
4612(2D)  p 1000 1.000 1.000 0999 1.000 1.000 0.998 1.000 1.000

E1l

Voxelized Eyy propeties for 3.4.6.4 (2D) Voxelized E3; propeties for 3.4.6.4 (2D)
90 500

Voxelized G propeties for 3.4.6.4 (2D) Voxelized NU;; propeties for 3.4.6.4 (2D)
90° .

\

/

0

|

lﬂﬂ”K -
h\
& 315°

2700
— p=030 — p=050 — p=070 p=0.90 — =030 — p=050 — p=070 p=0.90
— p=040 —— p=080 —— p=0.80 — p=040 — p=060 — p=0.80

V12
p=03 p=03 \ /)
6 e — p=030 — p=050 A— p=070 p=0.90 — p=030 — p=0.50 — p=0.70 p=0.90
—— p=0.40 —— p=060 —— p=080 — p=040 —— p=0860 —— p=0.80
p =05 p=105
p=07 p=07
p=09 p=109

Figure A3: 2D and 3D anisotropy plots for 3.4.6.4 Lattice.

Applying the tensor rotations discussed for the elastic tensors, the 3D anisotropy
plots can be obtained even for 2D lattices, with an assumption of infinite depth in the out
of plane direction imposed by the periodicity boundary conditions. Due to the infinite
depth assumption, the asymptotically homogenized stiffness along the out of plane
direction has the most stiffness for 2D lattice and varies linearly with the relative density
of the lattice. The variation of the 2D and the 3D anisotropy plots for some elastic
properties of 3.4.6.4 lattice are shown in Figure A3. The 3D anisotropy plots are not to
scale, and the individual rings in the 2D anisotropy plots corresponds to a horizontal
planar intersection of the 3D anisotropy plots.
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Figure A4: List of all 2D lattice topologies and its corresponding periodic basis.

Normalized E;; vs. volume fraction for 2D lattice




Normalized E,; vs. volume fraction for 2D lattice
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Normalized G13 vs. volume fraction for 2D lattice
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Appendix B - 3D Lattice

In this section the homogenized elastic tensor coefficients of chosen 3D lattices are
presented in Table B1. The 2D and 3D anisotropy plot of elastic properties for body
centered lattice (called X grid) is shown in Figure B1.

Table B1: Homogenized elastic tensor coefficients (based on Equation Error! Reference source not
found.) and correlation coefficient for the polynomial fit for chosen 3D lattices.

Cl 1 CZ 2 C3 3 C4-4- CS 5 C66 Cl 2 Cl 3 CZ 3

p® 1452 1452 1452 0335 0335 0.335 0.768 0.768 0.768
p? -0543 -0.543 -0.543 -0.079 -0.079 -0.079 -0517 -0517 -0.517

p 0369 0369 0369 0.125 0.125 0125 0232 0232 0232
XCrossGrid R 0999 0999 0999 1.000 1.000 1.000 0.994 0994 0.994

p® 0.628 0.628 0.628 0.046 0.046 0.046 0.740 0.740 0.740
p? 0455 0455 0455 0369 0369 0.369 -0.339 -0.339 -0.339

p 0244 0244 0244 -0.015 -0.015 -0.015 0.177 0177 0.177
Vintiles 3D) R 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

p® 1612 1612 1612 0192 0192 0.192 0.801 0.801 0.801
p? -0.604 -0.604 -0.604 0.107 0.107 0.107 -0.463 -0.463 -0.463

p 0376 0376 0376 0.101 0.101 0101 0222 0222 0222
Octet (3D) R 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.998
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Figure B1: 2D and 3D anisotropy plots for X lattice (3D)
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Normalized E;1 vs. volume fraction for 3D lattice
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Normalized Es3 vs. volume fraction for 3D lattice
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Normalized Gi3 vs. volume fraction for 3D lattice

Normalized G,3 vs. volume fraction for 3D lattice
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Normalized NU;> vs. volume fraction for 3D lattice
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Normalized NU,3 vs. volume fraction for 3D lattice
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Appendix C - 3D Sandwich Lattice

In this Appendix, the elastic properties of several chosen 3D Sandwich lattice are
plotted. For the sandwich panels, a periodicity in the z direction is assumed, thus the
elastic properties of the 3D sandwich panels in this section are assumed to be stacked.

The variation of the 3D lattices with sandwich panels are plotted. For the sandwich
panels, a periodicity in the z direction (sandwich plate normal) is assumed, thus the elastic
properties that are plotted in this section are for sandwich panels that are assumed to be
stacked. For all the geometries in this section, the thickness of the sandwich panel is held
constant at a unit of 0.05 of the cell length. The 2D and 3D anisotropy plot of elastic
properties for X lattice.

Normalized Eq; vs. volume fraction for 3D Sandwich lattice
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Normalized E,; vs. volume fraction for 3D Sandwich lattice
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Normalized Gi, vs. volume fraction for 3D Sandwich lattice
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Normalized G,3 vs. volume fraction for 3D Sandwich lattice
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Normalized NU,3 vs. volume fraction for 3D Sandwich lattice
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