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Abstract: Fusion welding causes joint deterioration when joining aluminum alloys, which limits the
use of aluminum alloy components in high-end equipment. This paper focuses on an overview of how
to achieve high-strength aluminum alloy welded joints using welding/plastic deformation composite
forming technology. The current technology is summarized into two categories: plastic deformation
welding and plastic deformation strengthening. Plastic deformation welding includes friction stir
welding, friction welding, diffusion welding, superplastic solid-state welding, explosive welding, and
electromagnetic pulse welding. Plastic deformation strengthening refers to the application of plastic
deformation to the weld seam or heat-affected zone, or even the whole joint, after welding or during
welding, including physical surface modification and large-scale plastic deformation technology.
Important processing parameters of plastic deformation welding and their effects on weld quality
are discussed, and the microstructure is described. The effect of plastic deformation strengthening
technology on the microstructure and performance evolution, including the hardness, tensile strength,
fatigue property, residual stress, and hot cracking of aluminum alloy welded joints, and its evolution
mechanism are systematically analyzed. Finally, this paper discusses the future development of
plastic deformation strengthening technology and anticipates growing interest in this research area.

Keywords: aluminum alloy; plastic deformation strengthening; plastic deformation welding;
mechanical property

1. Introduction

As a green metal, aluminum (Al) alloy has been widely used in the automotive and
aerospace industries due to its excellent formability, low density, and high specific strength.
The manufacturing of aluminum alloy components, such as aircraft propellers, aircraft
skins, vehicle frames, and car bumpers, often requires welding [1,2]. However, due to
the high thermal conductivity and linear expansion coefficient of Al alloys, the traditional
welding process is prone to porosity, hot cracking, low plasticity, and low joint strength,
which limits the use of traditional welding methods [3].

The main strengthening mechanism of high-strength aluminum alloys, represented
by 2xxx, 6xxx, and 7xxx, is precipitation hardening [4,5]. In the fusion welding process,
such as gas tungsten arc welding (TIG), metal inert gas welding (MIG), laser beam welding
(LBW) and cold metal transfer welding (CMT), the high-temperature thermal cycle causes
the dissolution, transformation, and coarsening of the precipitation phase [6]. They weaken
the hardening effect of the original precipitation phase in the matrix, resulting in aging
softening of the heat-affected zone (HAZ) [7,8]. To avoid welding hot cracking, low-strength
filler wires are usually employed for welding high-strength aluminum alloys, which results
in lower properties for the fusion zone (FZ) [9]. In addition, high heat input leads to coarse
grain and vaporization of the strengthening elements in the FZ, which reduces the content

Materials 2023, 16, 7672. https://doi.org/10.3390/ma16247672 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16247672
https://doi.org/10.3390/ma16247672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-5430-9762
https://doi.org/10.3390/ma16247672
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16247672?type=check_update&version=1


Materials 2023, 16, 7672 2 of 28

of precipitated phases and further degrades the properties of the FZ [10]. Therefore, the
softening of the HAZ and the deteriorated properties of the FZ together result in the poor
mechanical properties of high-strength aluminum alloy fusion welded joints. Table 1 lists
the tensile properties of high-strength aluminum alloy butt joints welded by the fusion
welding method, where a significant reduction in joint strength and elongation (El) occurs.
The joint efficiency is the ultimate tensile strength (UTS) ratio between the joint and base
metal (BM).

Table 1. Summary of the tensile properties of the high-strength aluminum alloy butt joints welded by
the fusion welding method.

Base Metal Welding
Method

UTS of
BM (MPa)

Elongation
of BM

UTS of
Joint (MPa)

Elongation
of Joint (%)

Joint Efficiency
(Joint/BM, %) Ref.

AA2024 LBW 463 14.9 364 2.4 78.6 [11]
AA2A12 CMT 300 16 220 10.0 73.3 [12]
AA2060 LBW 495 13.9 304.4 7.6 61.5 [13]
AA2519 MIG 479 11.2 275 3.0 57.4 [14]
AA6022 LBW 233 28.5 170 2.5 72.9 [15]
AA6N01 CMT 309 12.6 215 10.6 69.6 [16]
AA6082 MIG 310 6.0 178 4.7 57.4 [17]
AA7075 TIG 578 12.2 300 1.8 51.9 [18]
AA7075 LBW 495 16.2 328 2.5 66.3 [19]
AA7N01 MIG 406 16.3 289 4.7 71.2 [20]
AA7A52 Laser-MIG 475 14.4 317 3.7 66.7 [21]

Great efforts have been made to improve the microstructure and mechanical proper-
ties of Al alloy welded joints. By applying irreversible plastic deformation to the metal,
researchers have demonstrated that plastic processing can cause grain deformation and
distortion in the deformed zone, increase dislocation density, and induce fine-grain hard-
ening and precipitation hardening [22]. The works suggest that plastic deformation plays
an important role in reducing porosity, hot cracking, and other casting defects [23,24].
In addition, it can also effectively improve the mechanical properties of metals, such as
the tensile strength, microhardness, and wear resistance. Therefore, the combination of
welding and plastic deformation is attractive.

Up to now, two main research approaches have been used in welding/plastic defor-
mation hybrid forming technology. Firstly, the welding methods that directly utilize plastic
deformation include friction stir welding (FSW) [25,26], friction welding (FW) [27,28], diffu-
sion bonding (DB) [29,30], superplastic solid-state welding [31,32], explosive welding [33],
and electromagnetic pulse welding (EMPW) [34]. Previous studies have shown that by
optimizing process parameters, the strength of welded joints can reach more than 80% of
the base metal [35,36]. Secondly, the post-welding treatment applies a certain amount of
plastic deformation to the weld or the surrounding area, i.e., plastic deformation in the
weld zone [37–39]. For example, in the case of high-strength aluminum alloy represented
by the 7xxx series, some studies have shown that the joint strength is only 50% to 65%
of the base metal when joined by traditional fusion welding methods [40,41]. Even with
laser welding, electron beam welding, laser-arc hybrid welding, etc., the joint strength can
only reach ~79% [10,42,43]. The plastic deformation in the weld zone, such as rolling, can
increase the joint strength by about 24% [44].

This paper comprehensively reviews the detailed research progress and results of
welding/plastic deformation composite forming technology in terms of the microstruc-
ture evolution and mechanical properties of the welded joints of Al alloy. First, this
paper introduces various plastic deformation welding methods. Then, plastic deformation
strengthening methods, including physical surface modification and large-scale plastic de-
formation technology, are also reviewed. Important processing parameters and their effects
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on weld quality are discussed, and the microstructure is described. The mechanical properties
of welds, including the hardness, tensile strength, and fatigue strength, are also examined.

2. Plastic Deformation Welding
2.1. Friction Stir Welding

Friction stir welding is a solid-state joining process with relatively simple equipment.
The principle of FSW is shown in Figure 1. In this joining technique, under the influence
of the rotating pressure from the pin, the softened material experiences plastic flow, fills
the cavity generated by the movement of the tool, and forms the weld. The weld zone
comprises distinct regions, including the stir zone (SZ), the thermomechanical-affected
zone (TMAZ), the heat-affected zone, and the base metal. The SZ features equiaxed grains,
while those in the TMAZ and HAZ are partially recrystallized and appear less uniformly
sized compared with those in the SZ.
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Figure 1. Basic working principle of FSW [45].

The mechanical properties of FSW-processed joints are influenced by process parame-
ters such as the rotation speed of the welding tool [46], welding speed, and down force. The
very low rotation speed results in lower heat input and defects such as cracks and pinholes
in the friction stir zone, resulting in lower tensile properties. As the speed increases, the heat
input increases. An elevated temperature results in grain enlargement, which in turn leads
to poorer tensile properties. As a result of the lack of bounding, the UTS decreases while
the behavior of tensile strength and ductility mirror each other, resulting in a decrease in
ductility [47]. A higher welding speed leads to inadequate and improper mixing of materi-
als, and the cavity defect occurs in the SZ, which leads to stress concentration, decreases the
loading area, and reduces the tensile strength [48,49]. On the other hand, the microhardness
and tensile strength of the joint tend to increase as the welding speed decreases. The down
force helps to maintain contact between the FSW tool and the metal surface. Decreased
downforce leads to tunnel defects due to reduced heat input. Consequently, both the UTS
and microhardness are reduced. Conversely, a heat input above the desired level results in
worm holes and local thinning of the weld plate, which reduces UTS and ductility [50–52].
The following equation can calculate the heat input per unit [53]:

Q =
4
3

π2αµPR3 ω

v
(1)

where Q is the heat input per unit, α and µ are the heat input efficiency and friction
coefficient, respectively, P is the rotating pressure, R is the radius of the shoulder, ω is the
rotation speed, and v is the welding speed. Researchers [54,55] found that with the increase
in the ω/v ratio, the joint strength and elongation initially increase, followed by a decrease.
Optimal performance can only be achieved when the ω/v value is moderate.
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The shape of the stirring pin and shoulder [56] and the assembly gap of the plate [57]
also affect the performance of the joint, as shown in Figure 2. The shape of the stirring tool
influences recrystallization and grain growth behavior by affecting the heat input, force and
torque, and material flow [48,58]. The presence of a gap in the plate reduces the material
availability at the interface, which affects the heat input and material flow in the vicinity
of the tool pin profiles. The UTS, YS, and strain continue to decrease with increasing gap
width. If the gap is too large, the material transferred by the tool will not completely fill
the cavity formed by the forward movement of the pin [59,60]. Despite the large influence
of process parameters, the FSW method can still obtain excellent aluminum alloy welded
joints, and Table 2 shows the mechanical properties of FSW aluminum alloy butt joints.
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Table 2. Summary of the tensile properties of FSW aluminum alloy butt joints.

Materials UTS of BM (MPa) El of BM (%) UTS of Joint (MPa) El of Joint (%) Joint Efficiency (%) Ref.

AA2A14 469 9.7 344 9.1 73.3 [57]
AA2219 435 5.3 315 3.3 72.4 [63]
AA5083 304 23.1 303 19.0 99.6 [64]
AA6061 331 11.7 237 5.2 71.6 [65]
AA6082 293 8.1 195 5.9 66.6 [66]
AA7075 556 18.2 445 7.6 80.0 [67]

The performance of the joints can be further improved by external auxiliary means.
As shown in Figure 3a, the application of forced cooling (including gas cooling and water
cooling [68]) during the welding process can inhibit the dissolution of precipitated phases
and the coarsening of grains by shortening the influence time of the high temperature.
Compared with natural cooling, the UTS can be increased by 10% [69]. By presetting a
Zn particle interlayer in the gap between the butt plates of AA6082 aluminum alloy, the
FSW-processed joint can have a higher microhardness. Although the tensile strength of
the joint without the interlayer is comparable, it has better fracture toughness [70,71]. It
is mainly due to the formation of an Al-Zn solid solution and due to grain refinement
caused by the dispersion of Zn particles [72]. In addition, the Cu interlayer can have a
similar purpose [73]. As shown in Figure 3b, ultrasonic assistance plays an important role
in the FSW of aluminum alloys with dissimilar metals by breaking continuous Al pieces
into small Al pieces or particles, with the result that small Al pieces and their surrounding
intermetallic compounds (IMCs) are dispersed in the SZ [74,75]. As the ultrasonic power
increases, the tensile strength increases first and then decreases [76,77].
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While friction stir welding enables high-quality welding of aluminum alloys, the weld-
ing tool remains a significant challenge that significantly limits its application. Advances in
tool material and design are needed to improve affordability and robustness and to expand
the processing window. In addition, tool wear is a critical issue. Despite recent progress in
this area, further investigation is required into the wear mechanisms and impact of tool
debris on the performance characteristics of the processed material.

2.2. Friction Welding

Friction welding is a solid-state joining process that consists of the microscopic joining
of the contact surfaces of the parts at temperatures below their melting points. The joining
mechanism of friction welding is friction, plastic deformation, extrusion, and recrystalliza-
tion [79–81]. As shown in Figure 4, heat is generated by friction between the two surfaces,
which causes the contact surfaces to become thermoplastic. The parts are then driven
toward each other with sufficient force to form a metallurgical bond [82–84]. Friction
welding is conducive to avoiding the process defects that tend to occur in fusion welding.
Its joints have the advantage of high mechanical properties. However, friction welding
depends on the workpiece rotation, and it is applicable to bar, tubes, and other rotating
body welding scenarios; welding non-circular cross-sections is more difficult.
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The rotation speed plays an important role in the microhardness distribution of
the joints. Higher rotation speeds and a longer burn of length result in higher tensile
strengths [86,87]. For AA6061 aluminum alloy, the local tensile strength at the same
location increases and then decreases with the increase in rotation speed. At the same time,
the microhardness of the joint also changes with the increase in rotation speed and even
shows the opposite distribution at 500 rpm and 1500 rpm [88]. Friction time also determines
the mechanical properties of the joint, as shown in Figure 5. Shorter friction times result
in lower heat input and make it more challenging for the aluminum alloy to achieve the
thermoplastic state [89]. When the reaction between the materials involved is insufficient,
non-coalescence cracks can occur [81]. However, the growth of IMC layers was promoted by
increasing the friction time, and thicker IMCs will also deteriorate the mechanical properties
of the joint. Under this condition, increasing the friction pressure could significantly reduce
the IMCs’ thickness of the joint and improve the tensile strength of the joint [83,90]. In
addition, the uneven distribution of friction pressure and temperature leads to an uneven
distribution of IMCs. An enormous amount of IMCs appeared in the half-radius zone and
the periphery zone, but much fewer IMCs appeared in the central zone [90]. To control the
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thickness of IMCs, in addition to optimizing the welding process [91], it can be achieved by
adding a suitable interlayer to the substrate [92].
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The grain and second-phase particle evolution of aluminum alloys during friction
welding is also heterogeneous and affects the final properties of the joint. High temperatures
and severe plastic deformation lead to recrystallization, resulting in significant grain
refinement in the friction interface zone [93]. In addition, the larger second-phase particles
in the base metal are destroyed as fractures by the frictional force and are thus more
uniformly distributed in the weld zone. This contributes to the increase in microhardness
in this region [87]. The TMAZ is a mixed microstructure of fine and coarse grains due
to insufficient recrystallization caused by low heat input [89], and a significant volume
fraction of the second phase is dissolved in the matrix near the streamline [83]. Table 3 lists
the summary of the tensile strength of friction welded joints.
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Table 3. Summary of the tensile strength of friction welded joints.

Materials FW Method UTS of BM (MPa) UTS of Joint (MPa) Joint Efficiency (%) Ref.

AA2024 Continuous drive FW 502 462 92.0 [93]
AA2139 Linear FW 487 452 92.8 [94]
AA2024 Continuous drive FW 450 390 86.7 [95]
AA6061 Rotary FW 335 295 88.1 [88]

Semi-solid metal 7075 Rotary FW / 105 / [87]
AA5A33/AZ31B Continuous drive FW 352/271 101 37.3 [83]

2.3. Diffusion Welding

Diffusion bonding is a low-temperature welding process in which both heat and
pressure are applied to the joint, resulting in surface micro-deformation, as shown in
Figure 6. It is primarily used to join dissimilar metals [96].

Materials 2023, 16, x FOR PEER REVIEW 8 of 28 
 

 

insufficient recrystallization caused by low heat input [89], and a significant volume frac-
tion of the second phase is dissolved in the matrix near the streamline [83]. Table 3 lists 
the summary of the tensile strength of friction welded joints. 

Table 3. Summary of the tensile strength of friction welded joints. 

Materials FW Method UTS of BM (MPa) UTS of Joint 
(MPa) 

Joint Efficiency (%) Ref. 

AA2024 Continuous drive FW 502 462 92.0 [93] 
AA2139 Linear FW 487 452 92.8 [94] 
AA2024 Continuous drive FW 450 390 86.7 [95] 
AA6061 Rotary FW 335 295 88.1 [88] 

Semi-solid metal 7075 Rotary FW / 105 / [87] 
AA5A33/AZ31B Continuous drive FW 352/271 101 37.3 [83] 

2.3. Diffusion Welding 
Diffusion bonding is a low-temperature welding process in which both heat and 

pressure are applied to the joint, resulting in surface micro-deformation, as shown in Fig-
ure 6. It is primarily used to join dissimilar metals [96]. 

 
Figure 6. Schematic diagram of the diffusion bonding apparatus [97]. 

Higher bonding temperatures and longer bonding times lead to grain coarsening and 
the formation of brittle IMCs, which reduces joint strength and increases interfacial hard-
ness. Al and Mg alloys mainly form brittle IMCs such as Mg2Al3 and Mg17Al12 at the dif-
fusion interface [30,98–100], whereas Al and Ti alloys mainly form IMCs such as Al3Ti, 
TiAl, AlTi3, and AlCu2Ti [101]. The thickness of the IMCs increases with the increase in 
the bonding temperature and holding time, resulting in a decrease in the joint strength. 
The plastic collapse of the asperities of the bonding surface leads to intimate contact, 
which compensates for the embrittlement due to the intermetallic phases. However, as the 
thickness of the IMCs increases, the resulting embrittlement overbalances the positive ef-
fects of the improved coalescence of the faying surfaces. As a consequence, there is a con-
tinuous decrease in joint strength and an increase in brittleness [96,102]. As shown in Fig-
ure 7a,b, the thickness of IMCs at the joint interface greatly relies on the bonding temper-
ature and time [97]. Higher temperatures lead to thicker IMCs, whereas lower tempera-
tures result in incomplete coalescence of the diffusion surfaces due to the metal’s high 
flowability. It is worth noting that the yield strength (YS) of the base materials remains 
high [101]. 

Figure 6. Schematic diagram of the diffusion bonding apparatus [97].

Higher bonding temperatures and longer bonding times lead to grain coarsening
and the formation of brittle IMCs, which reduces joint strength and increases interfacial
hardness. Al and Mg alloys mainly form brittle IMCs such as Mg2Al3 and Mg17Al12 at the
diffusion interface [30,98–100], whereas Al and Ti alloys mainly form IMCs such as Al3Ti,
TiAl, AlTi3, and AlCu2Ti [101]. The thickness of the IMCs increases with the increase in
the bonding temperature and holding time, resulting in a decrease in the joint strength.
The plastic collapse of the asperities of the bonding surface leads to intimate contact,
which compensates for the embrittlement due to the intermetallic phases. However, as
the thickness of the IMCs increases, the resulting embrittlement overbalances the positive
effects of the improved coalescence of the faying surfaces. As a consequence, there is a
continuous decrease in joint strength and an increase in brittleness [96,102]. As shown
in Figure 7a,b, the thickness of IMCs at the joint interface greatly relies on the bonding
temperature and time [97]. Higher temperatures lead to thicker IMCs, whereas lower
temperatures result in incomplete coalescence of the diffusion surfaces due to the metal’s
high flowability. It is worth noting that the yield strength (YS) of the base materials remains
high [101].
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Figure 7. SEM back-scattered electron images showing the interfacial layer of a specimen
annealed [96,103] (a) for different times and (b) at different temperatures. Microhardness
profiles (c) of the Al-Cu, Al-Ag (10 µm)-Cu, and Al-Ni (50 µm)-Cu joints, of which the bonding
parameters are 520 ◦C/10 MPa/60 min, 460 ◦C/15 MPa/60 min, and 520 ◦C/15 MPa/60 min, respec-
tively; microhardness profiles of (d) the Al-Ni (20 µm)-Cu and Al-Ni (50 µm)-Cu joints, of which the
bonding parameters are 500 ◦C/10 MPa/60 min.

The main difficulty in diffusion bonding lies in controlling the intermetallic compound
of the diffusion interface. The addition of an interlayer is considered a viable method
for diffusion bonding. This is because the composition of the interlayer can be flexibly
adjusted to meet the requirements of the phase composition and mechanical properties
of the joints [104], as shown in Figure 7c,d. Commonly used interlayers include Cu [99],
Ni [105], Sn [106], Ag [103], etc. Diffusion bonding of Al-Li alloys can be performed using
pure aluminum as an interlayer. The diffusion of alloying elements at the diffusion interface
improves the integrity and mechanical properties of the interface. Both the shear strength of
the joint and the hardness of the diffusion interlayer are observed to increase considerably
with an increase in the bonding temperature.
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2.4. Superplastic Solid-State Welding

The metal material can easily realize the intimate contact of the solid surface and the
diffusion of atoms on both sides of the interface in the superplastic state. Superplastic
solid-state welding uses this superplasticity to achieve the joining of the material [107].
Solid-state welding based on superplastic alloys can be classified into superplastic fric-
tion welding [108,109], superplastic pressure welding [110,111], and superplastic form-
ing/diffusion bonding (SPF/DB) [112,113].

By sealing the test sheets in a plastic bag filled with argon gas, smaller deformations
and shorter holding times can be used to bond Al-alloys in air. The primary factors affecting
this process are the nature of the oxide layer on the surface and the stability of the grain
structure [114,115]. The bondability of superplastic aluminum alloys in air is also mainly
affected by the surface roughness of the sheets. The void status caused by a particular
surface roughness would affect the void closure rate, in which atomic diffusion is the
dominant mechanism. Therefore, plates with higher surface roughnesses would require
longer bonding times [116].

SPF/DB is a technique that utilizes the superplasticity of materials and diffusion
bonding to form complex-shaped hollow metal parts or honeycomb structures and is
particularly suitable for forming and joining two or more sheets [112,113], as shown in
Figure 8. The solid surface oxide film limits the SPF/DB of aluminum alloy. The interlayer
diffusion method and the organic coating method [117] enable obtaining reliable joints
whose strength and microstructure match the parent material [118]. Additionally, surface
roughness impacts SPF/DB [119]. A large surface roughness results in an insufficient
contact area at the bonding interface, while a small surface roughness causes microplastic
deformation that cannot break the oxide layer [120].
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2.5. Explosive Welding

Explosive welding uses detonation waves to cause high-speed impacts on metal plates,
causing localized melting or plastic deformation at the contact surface and producing a
tight joint between the materials. It is particularly suitable for joining dissimilar metals
and laminated composites [122–124], as shown in Figure 9. The joining mechanism at the
interface is the result of a combination of pressure welding, diffusion welding, and local
fusion welding. The bonding of explosive welding is instantaneous, and the collision speed
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of the material can reach 300–800 mm/s. Because the atoms at the joint interface do not
have enough time to diffuse, the formation of brittle intermetallic compounds is severely
limited [125]. The metallic jet and the waveform interface are the main characteristics of
the explosive welding interface. The metallic jet depends on the adjustment of the impact
velocity and angle, which can break and remove the oxide film on the surface of the sheets,
which is conducive to diffusion and metallurgical bonding.
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Figure 9. (a) Explosive welding device of the clad tube. (b) TA1/Al clad tube prepared by explosive
welding. (c,d) Morphology of the TA1/Al clad tube [123].

The microhardness of the interface of the explosive welded joint of 7A52 Al alloy and
AZ31 Mg alloy is much higher than that of the matrix on both sides. As the distance from
the interface increases, the microhardness of the matrix on both sides rapidly decreases to
its microhardness range, indicating that there is severe plastic deformation at the interface.
However, the work-hardening layer is thin, only a few microns [126]. Because the interface
of the explosive welded joint is bonded primarily by mechanical interlocking, the strength
of the interface is less than that of friction stir welded or other fusion welded joints. Low
explosive mass and high explosive density are advantageous to increase the wavelength
and wave amplitude of the interface, reduce the thickness of intermetallic compounds and
the number of microcracks [127–129], and improve the strength of the welded plates.

2.6. Electromagnetic Pulse Welding

Electromagnetic pulse welding uses electromagnetic force to drive the welding ma-
terials to impact at high speed, promoting surface fracture and material removal at the
impact point. This forms a deformed and rough fresh surface, as shown in Figure 10. The
two plates are rapidly diffused under local high-temperature and high-pressure conditions
to achieve ultra-fast joining [129]. The main forms of EMPW are tube welding and plate
welding. EMPW does not produce a heat-affected zone and can greatly reduce the forma-
tion of intermetallic compounds at the joint interface [130]. This technique is suitable for
joining similar or dissimilar materials. The interface bonding characteristics determine the
mechanical properties of the EMPW-processed joint and the optimization design of the
welding process window. The wavy morphology is the main interface feature of EMPW.
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In addition, there are straight interfaces, transition zones, porous structures, and other
features [129].
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Figure 10. (a) Schematic diagram of resistance spot welding with a cover plate. (b) SEM images of
the weld cross-section at the A5052/SUS304 interface [131].

Whether the wavy-like interfacial features appear is directly related to the properties
of the weld material itself. The aluminum–aluminum interface mainly shows a wave-like
interface, while the aluminum–steel interface and aluminum–copper interface mainly show
straight interfaces [33]. The impact velocity increases as the discharge energy increases,
and the wavelength and wave amplitude of the interface are determined by the impact
velocity between the weld materials [34,131,132]. At the same time, as the discharge energy
increases, the thickness of the intermetallic compound at the interface also increases. When
the thickness increases to a certain extent, many microcracks and pores are generated [133],
which is not conducive to the mechanical properties of the joint.

3. Plastic Deformation Strengthening
3.1. Physical Surface Modification

Small deformation physical surface modification, such as mechanical shot peening
(MSP), laser shot peening (LSP), and ultrasonic impact treatment (UIT), has been recog-
nized as a promising post-weld treatment method. As shown in Figure 11, the impact of
projectiles, shock waves, and other accelerating media on the surface of the workpiece
causes the metal to undergo cyclic plastic deformation, thereby hardening the surface and
subsurface of the workpiece [134].

Physical surface modification is a cold-working process that produces a large number
of non-equilibrium grain boundaries and high-density dislocations on the surface of the
workpiece. MSP can improve the microhardness of the surface of the stirred zone of the
6061 aluminum alloy FSW-processed joints by 45 HV and 60 HV at the Almen strengths of
0.18 mmA and 0.24 mmA, respectively [134]. The application of MSP resulted in substantial
strain hardening on the crown side, whereby Almen intensities of 0.24 mmA achieved a
maximum increase in microhardness of 120 Hv. Conversely, the maximum microhardness
on the root side was only 75 HV. Similarly, the microhardness of laser-welded joints was
increased from 70 HV to 82.9 HV by LSP. However, it remained lower than the value of
120 HV for BM [135]. Additionally, LSP treatment resulted in a tendency for the surface
microhardness of joints to shift from non-uniform distribution to uniform distribution
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at various locations [136]. Heat treatment based on physical surface modification can
further improve the mechanical properties of aluminum alloy welded joints. UIT alone can
increase the surface microhardness of 7A52 aluminum alloy welded joints by 42.7%, while
the combination of an aging treatment can increase the surface microhardness of joints by
59.1% [137].
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However, the effective depth of physical surface modification is very limited, which is
mainly limited to the surface layer of the sample, as shown in Figure 12. The maximum
effective depth of MSP and UIT amounts to approximately 60 µm [134,137]. Conversely,
LSP provides a significantly more profound effective depth, with a potential of up to circa
500 µm [135]. Moreover, the microhardness of the joint exhibits a sharp decline as one
moves farther away from the top surface [137,138]. The change in joint microhardness
is due to the change in joint microstructure. As shown in Figure 12, the physical surface
modification technique can obtain fine grains on the surface of welded joints. As shown
in Figure 13, at the initial stage of surface impact treatment, a large number of disloca-
tions are formed inside the original grains. Then, low-angle grain boundaries (LAGBs)
are formed through dislocation entanglement, followed by high-angle grain boundaries
(HAGBs), which absorb movable dislocations. This culminates in the creation of new,
smaller grains [136,139]. The microstructure of the joint surface shows a gradient distribu-
tion along the thickness direction, and the grain size increases with increasing distance from
the top surface until it reaches the initial size before surface impact treatment [138,140].
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Figure 13. Schematic illustration showing the microstructure evolution process of LY12 Al alloy
induced by multiple LSP impacts [139].

Physical surface modification plays a limited role in improving strength but plays a
more important role in improving fatigue strength, mainly due to the hardening of the
joint surface. For AA6082 aluminum alloy welded joints, shot peening can increase the
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yield strength and tensile strength of the joints by 10% and 4%, respectively. But it can
increase the fatigue strength by 38%, and its fatigue strength is even higher than the average
value of the base metal [142]. Due to the impact of projectiles, shock waves, and other
accelerating media, many micropores are generated on the joint surface, which cause high
compressive residual stresses. In fatigue tests, the high compressive residual stresses on
the joint surfaces reduce the tensile residual stresses generated by cyclic loading. This is
conducive to reducing the average residual stress in welded joints, inhibiting the formation
of fatigue cracks and reducing the crack propagation rate, thus increasing the fatigue
life [136,143].

In summary, the physical surface modification technology causes the coarse grains in
the surface layer of the joint to be gradually refined to the nanometer scale by strong plastic
deformation, and the hardness of the surface layer is greatly improved. At the same time,
the residual tensile stress in the surface layer is converted into compressive stress [144] so
that the fatigue strength of the joint is greatly improved, as shown in Table 4. However, due
to the limited depth of accelerating media action, the improvement in the tensile strength
of the joint is not obvious.

Table 4. Summary of the fatigue properties of aluminum alloy welded joints treated by physical
surface modification.

Materials Welding Method Physical Surface
Modification Test Conditions Fatigue Properties

of Welded Joint
Fatigue Properties

of Treated Joint Ref.

AA5083 TIG Shot peening 105 cycles 49 MPa 78 MPa [145]
106 cycles 28 MPa 54 MPa

AA6061-T6 TIG Warm laser
peening

172 MPa 43,703 cycles 75,683 cycles [143]120 MPa 87,850 cycles 120,809 cycles

AA6082.5-
T6 MIG Shot peening 106 cycles 100 MPa 138 MPa [142]

AA7050-
T7451 FSW Shock peening 200 MPa 10 × 105 cycles 13 × 105 cycles [136]

AA7075 LBW Ultrasonic impact 2 × 106 cycles 48.6 MPa 103.0 MPa [146]

3.2. Large-Scale Plastic Deformation Technology

The large-scale plastic deformation of joints during the welding process plays a role
in controlling weld residual stress and hot cracking [147,148]. The main cause of the
buckling deformation of welded plates is the presence of high longitudinal tensile stresses
in the weld seam and its vicinity. The application of compressive strain through plastic
deformation extends the weld seam and surrounding metal, as illustrated in Figure 14a–c.
This reduces the longitudinal residual tensile stresses and minimizes the gap between
the average longitudinal residual tensile stresses and the critical buckling stresses, thus
controlling the buckling deformation of welded plates [149]. As shown in Figure 14d, the
sufficient conditions for the welded joint to generate hot cracking can be represented by
Equation (2) [150], where ε is the actual strain in the weld zone or heat-affected zone during
the cooling process after welding and T is the temperature. The actual tensile strain of the
weld or HAZ, which is in the brittle temperature range, is represented by Equation (3),
while Equation (4) gives a criterion for avoiding hot cracking [147]. Table 5 summarizes the
large-scale plastic deformation treatments to control weld residual stress and hot cracking.
The results show that they are effective at controlling both thermal cracking and residual
stress and distortion.

dε

dT
> CST (2)

ε′ = ε− εc (3)

dε

dT
− dεc

dT
< CST (4)
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Figure 14. Geometry and rolling methods for [39,151] (a) rolling on top of the weld bead and
(b) rolling beside the weld bead with the dual flat rollers; (c) mid-thickness longitudinal resid-
ual stress after rolling on top of the weld bead and different friction coefficients between the
workpiece and the backing bar (µBB) and the roller (µR); (d) schematic diagram of welding hot
cracking generation conditions.

Table 5. Summary of the large-scale plastic deformation treatments to control weld residual stress
and hot cracking.

Deformation Technique Purpose Materials Welding Method Deformation Location Ref.

Synchronous rolling during welding
Prevent hot cracks and

improve mechanical
performance

LY12CZ TIG Both sides of the weld, the
weld beam [147,152]

Synchronous rolling during welding Prevent hot cracks LY12CZ Melt coating Both sides of the weld [150]
Synchronous rolling during welding Prevent hot cracks AA2024-T4 TIG Both sides of the weld [153]

Welding with trailing impactive rolling Control residual stress
and hot cracks LY12CZ TIG Weld bead and weld toe [148]

Welding with rotating extrusion Reduce residual
distortion AA2A12-T4 TIG Weld beam [149]

Welding with trailing peening Prevent hot cracks AA2A12 TIG Both sides of the weld [39]
Welding with hammering and rolling Prevent hot cracks and

welding distortion LY12CZ TIG Weld beam [154]

Laser roll welding Produce Al/Steel
dissimilar joints AA5052 and SPCC steel LBW Overlap area [154]

Laser roll welding Produce Al/Ti dissimilar
joints AA5052 and H4600 Ti alloy LBW Overlap area [155]

Welding with rolling Prevent distortion AMg6 Al alloy TIG Weld beam [156]

Rolling, hammering, and other large-scale plastic deformation techniques can elimi-
nate microstructure defects and significantly refine the grain and second-phase particles [44].
The major rolling treatments are shown in Figure 15. When the specimen is subjected to
deformation, the joint properties are mainly improved by the combined effect of work
hardening and fine-grain hardening [157]. On the one hand, large plastic deformation
refines the grains, increases the grain boundary area, and hinders the dislocation movement
to form a dislocation pile-up. On the other hand, during the plastic deformation of the
material, dislocation multiplication and intersection take place. The escalation of crystal
defects like vacancies, interstitials, and stacking faults amplifies the resistance to dislocation
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movement, resulting in strain hardening. As a consequence, the microhardness of each
region of the joint improves [158–160].
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The degree of work hardening caused by large plastic deformation processes is closely
related to the amount of deformation, which is mainly reflected in the strain hardening
index and hardening capacity, both of which increase with the increase in the amount of
deformation, as shown in Figure 16 [162]. The FSW 6061-T6 plates were rolled as a whole,
resulting in a rise in yield strength of the stirred joint zone from an initial 197 MPa to
299 MPa, 331 MPa, and 352 MPa, respectively, when the plates were rolled to 4 mm, 3 mm,
and 2 mm. The base material also showed a similar increase in its yield strength [162]. Cold
rolling improves the yield strength and tensile strength of aluminum alloy welded joints
but also reduces the elongation of the joints. The tensile strength of 6061 aluminum alloy
TIG welded joints is 214.4 MPa, and the elongation is 6.4%. When the excess filler metal is
cold rolled, the tensile strength of the joints is increased to 254.5 MPa, while the elongation
is reduced to 3.1% [161].
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The post-weld composite treatment process, which combines heat treatment and
rolling, could simultaneously increase the strength and plasticity of aluminum alloy welded
joints. As shown in Figure 17, the “solution treatment-partial rolling-natural aging” (SRA)
composite treatment process increased the strength and elongation of 7075-T6 Al alloy
welded joints from 336 MPa and 2.3% to 495 MPa and 13.3%, respectively. This is attributed
to precipitation hardening and work hardening interacting in different regions of the
joints [163]. The “solution treatment-artificial aging-cold rolling” composite treatment
process could improve the strength and ductility of 6061-T6 Al alloy welded joints to reach
up to 100% and 67% of the base metal, respectively [164]. Compared with the welded joints
and the base metal, the hot rolling process increases the Erichsen cupping value of 7075-T6
Al alloy welded joints by a factor of 2.3 and 1.43, respectively. In addition, the tensile
strength of the hot-rolled joints can be increased to 476 MPa when subjected to the heat
treatment process [157]. The sequence of heat treatment and rolling has a great influence on
the variation of the joint properties. Heat treatment after rolling often leads to dislocation
recovery and over-aging phenomena, which weakens the work-hardening effect.
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Table 6 summarizes the mechanical properties of the aluminum alloy welded joints
by large-scale plastic deformation technology. As can be observed, the plasticity of the
joint is greatly reduced when the entire joint is rolled, whereas rolling only the weld beam
enhances the plasticity. Furthermore, this enhancement in plasticity is even greater after
undergoing heat treatment.

Table 6. Summary of the mechanical properties of the Al alloy welded joints by large-scale plastic
deformation technology.

Deformation
Technique

Deformation
Location Materials Welding

Method
UTS of Welded

Joints
UTS of Treated

Joints
El of

Welded Joints
El of

Treated Joints Ref.

Cold rolling The whole joint AA5754 FSW 220 270 12% 5.8% [162]
Cold rolling The whole joint AA5754 FSW 225 244 / / [165]
Cold rolling The whole joint AA6061 FSW 229 369 20% 6% [158]
Cold rolling Weld beam AA7075 Laser-TIG 365 454 3.3% 6.6% [44]

Hot rolling then
heat treatment Weld beam AA7075 TIG 336 479 2.3% 3.9% [157]

Cold rolling and
heat treatment Weld beam AA7075 TIG 336 495 2.3% 13.3% [163]

Cold rolling then
heat treatment Weld beam AA6061 TIG 214 305 6.4% 9.8% [164]

Fatigue life of welded joints (cycles) Fatigue life of treated joints (cycles)
Rotation rolling Weld beam AA7050 FSW 3.6 × 105 2.2 × 106 [159]
Heat treatment

then deep rolling The whole joint AA7075 FSW 23,846 56,968 [166]
High frequency
impacting and

rolling
The whole joint AA2A12 Plasma arc 15,799 58,436 [167]

Large plastic deformation can also be applied to the additive manufacturing (AM).
Figure 18 shows the schematic diagram of hybrid deposition and micro-rolling (HDMR)
technology. As shown in Figure 18a,c,d, the cold rolling process can be carried out immedi-
ately after the deposition of each layer. As shown in Figure 18b, metal parts can also be
produced by hot rolling (the temperature exceeds its recrystallization temperature) imme-
diately after deposition. The micro-roller is mounted close behind the energy source, and
as the energy source moves forward, the trailing micro-roller continuously rolls on the top
surface of the deposited layer under high temperatures [168]. The accuracy of the HDMR
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method is significantly improved compared with the freeform deposition manufacturing
method. The microstructure of the hybrid manufacturing part becomes cellular crystals
instead of dendrites. In addition, the mechanical properties of metal parts are significantly
improved by the HDMR method compared with casting, forging, and freedom deposition.
This increase is observed in the strength and elongation of the AA5A56 aluminum alloy,
which advances from 307.8 MPa and 10.3% for free deposition to 348.7 MPa and 20.4% for
the HDMR method [169]. Table 7 lists the tensile properties of aluminum alloys for the
as-deposited and HDMR cases.
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Table 7. Tensile properties of aluminum alloys for the as-deposited and HDMR cases (where V
represents vertical direction; H represents horizontal direction).

Materials Tensile Direction UTS of
Deposited (MPa)

YS of
Deposited (MPa)

El of
Deposited (%)

UTS of
HDMR (MPa)

YS of
HDMR (MPa) El of HDMR (%) Ref.

AA2319 V 314 244 6.2 262 130 15.5 [171]H 325 250 8.5 263 135 18.6

Al-4.7 Si V 134 52 12.3 159 72 16.2 [172]

AA2319 V 267.8 109.4 14.5 293 119.9 / [173]H 296 111.3 23.0 324 122 /

Al-Cu6.3 V 260 / / 313.6 / / [174]Al-Mg4.5 V 290 / / 342.8 / /

AA2024 H 324 204 7.7 394 308 7.3 [175]V 267 186 2.4 280 273 0.5

AA5087 H 291 142 22.4 344 240 20.1 [176]

In summary, the reasons for large-scale plastic deformation technology to improve the
performance of aluminum alloy welded joints can be attributed to several aspects. First,
plastic deformation can increase the compactness of the microstructure and reduce the
number of weld pores. Second, the dislocations that are greatly increased intersect and
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shear with each other and are pinned by solute atoms and precipitated phase particles,
which increases the resistance of dislocation movement and realizes work hardening but is
also accompanied by a decrease in plasticity. Third, severe deformation or deformation at
high temperatures will cause fine-grain hardening. The combination of plastic deformation
and heat treatment can simultaneously improve joint strength and plasticity through
strengthening mechanisms such as work hardening, fine-grain hardening, and precipitation
hardening. Hybrid welding and micro-rolling technology or hybrid deposition and micro-
rolling technology can play a role in controlling residual stresses and welding hot cracking
in addition to improving the mechanical properties of components.

4. Summary

Aluminum alloys are widely used in many areas of manufacturing, and as a result,
numerous studies have been conducted on the welding of Al alloys. The key issues for
Al alloy welding are the softening characteristics and the formation of brittle intermetallic
compounds, which adversely affect the joint performance. The welding/plastic deforma-
tion hybrid technology is an important way to improve the performance of Al alloy welded
joints. Detailed research progress and results have been reported by many researchers.

Plastic deformation welding can realize the high-quality joint of aluminum alloy with
the same or dissimilar materials and can avoid the common defects in fusion welded joints.
However, the processing parameters have a great influence on the quality of the joint. First,
it affects the mixing of materials by influencing the heat input. Second, it affects the quality
of the joint by affecting the thickness and distribution of the IMC for dissimilar materials.
Some externally assisted technologies can further improve the performance of the joint,
such as forced cooling, ultrasonic assistance, and the addition of interlayers.

Plastic deformation in the weld zone improves the microstructure and mechanical
properties of the joint by introducing dislocations, sub-structures, and surface stresses.
Physical surface modification is beneficial for increasing the surface hardness of the weld-
ment, and the surface hardness of the joint can be further increased when combined with
heat treatment. This method contributes little to the strength improvement, but it can
effectively improve the fatigue strength of the joint. The disadvantages are limited effective
depth of physical surface modification and gradient hardness distribution. The hardening
degree of large-scale plastic deformation to the welded joint is related to the deformation
amount, and the plasticity of the joint will be reduced while improving the strength. The
composite process of plastic deformation and heat treatment can synergistically improve
the strength and plasticity of the joint. In addition, the use of large-scale plastic deformation
treatment during the welding process can improve the residual stress distribution of the
joint and play a role in preventing welding hot cracking.

5. Conclusions

At present, research on plastic deformation strengthening has been sufficient, but
there are still many problems to be solved. First, there is a clear need for more efforts
to achieve a synergistic improvement in the strength and plasticity of aluminum alloy
welded joints rather than simply increasing joint strength. Then, further systematic studies
need to be carried out to understand the evolution of the microstructure and mechanical
properties under the thermomechanical coupling conditions in order to avoid the negative
effects associated with cold deformation condition, such as cracking, plasticity degradation,
and low performance enhancement. Furthermore, further work is needed to develop
an integrated preparation technology for key components of high-strength aluminum
alloys based on welding/plastic deformation composite forming technology to achieve a
simultaneous completion of welding and strengthening.
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