Corrosion-Resistive ZrO2 Barrier Films on Selected Zn-Based Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of the Samples
- -
- System ZN: Zn–Ni (10 wt.%)—sub-layer; ZrO2—top layer;
- -
- System ZC: Zn–Co (3 wt.%)—sub-layer; ZrO2—top layer.
2.2. Investigations with SEM/EDX Methods
2.3. AFM Studies and Hydrophobicity Measurements
2.4. Chemical and Phase Compositions
2.5. XRD Analyses
2.6. Electrochemical Tests
2.7. Data Reproducibility and Corrosive Medium
3. Results
3.1. SEM and EDX Measurements
3.2. AFM Analyses and Surface Hydrophobicity
3.3. XRD Analyses
3.4. XPS Analyses
3.5. Electrochemical Tests
3.5.1. Measurement of the Polarization Resistance
3.5.2. Potentiodynamic Polarization Curves of Fresh Samples
3.5.3. Long Period Test (25 Days in Test Medium) of the Samples Presented by Potentiodynamic Polarization Curves
3.5.4. Open-Circuit Potential (OCP)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lovchinov, K.; Gergova, R.; Alexieva, G. Structural, Morphological and Optical Properties of Nanostructured ZrO2 Films Obtained by an Electrochemical Process at Different Deposition Temperature. Coatings 2022, 12, 972. [Google Scholar] [CrossRef]
- Stambolova, I.; Dimitrov, O.; Vassilev, S.; Yordanov, S.; Blaskov, V.; Boshkov, N.; Shipochka, M. Preparation of newly developed CeO2/ZrO2 multilayers: Efffect of tthe treatment temperature on the structrure and corrosion performance of stainless steel. J. Alloys Compd. 2019, 806, 1357–1367. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, Z.; Mu, R.; He, L.; Liu, G. Y–Er–ZrO2 thermal barrier coatings by EB-PVD: Thermal conductivity, thermal shock life and failure mechanism. Appl. Surf. Sci. Adv. 2021, 3, 100043. [Google Scholar] [CrossRef]
- Rezek, J.; Vlček, J.; Houška, J.; Čapek, J.; Baroch, P. Enhancement of the deposition rate in reactive mid-frequency ac magnetron sputtering of hard and optically transparent ZrO2 films. Surf. Coat. Technol. 2018, 336, 54–60. [Google Scholar] [CrossRef]
- Bjormander, C. CVD deposition and characterization of coloured Al2O3/ZrO2 multilayers. Surf. Coat. Technol. 2006, 201, 4032–4036. [Google Scholar] [CrossRef]
- Mehar, S.; Sapate, S.G.; Vashishta, N.; Rathod, A.; Bagde, P. Tribological performance of plasma sprayed Al2O3-TiO2-ZrO2 ceramic coating. Mater. Today Proc. 2021, 45, 4737–4741. [Google Scholar] [CrossRef]
- Garg, N.; Bera, S.; Mangamma, G.; Mittal, V.K.; Krishnan, R.; Velmurugan, S. Study of Fe2O3-ZrO2 interface of ZrO2 coating grown by hydrothermal process on stainless steel. Surf. Coat. Technol. 2014, 258, 597–604. [Google Scholar] [CrossRef]
- Dimitrov, O.; Stambolova, I.; Vassilev, S.; Lazarova, K.; Simeonova, S. Surface and Optical Properties of Gd-Doped ZrO2 Nano Films. Mater. Proc. 2021, 4, 4. [Google Scholar] [CrossRef]
- Lopez-Ibanez, R.; Martin, F.; Ramos-Barrado, J.R.; Brucker, F.; Leinen, D. Oxide barrier coatings on steel strip by spray pyrolysis. Surf. Coat. Technol. 2004, 188–189, 675–683. [Google Scholar] [CrossRef]
- Romero-Pareja, R.; Lopez-Ibanez, R.; Martin, F.; Ramos-Barrado, J.R.; Leinen, D. Corrosion behaviour of zirconia barrier coatings on galvanized steel. Surf. Coat. Technol. 2006, 200, 6606–6610. [Google Scholar] [CrossRef]
- Romero-Pareja, R.; Martin, F.; Ramos-Barrado, J.R.; Leinen, D. Study of different inorganic oxide thin films as barrier coatings against the corrosion of galvanized steel. Surf. Coat. Technol. 2010, 204, 2060–2063. [Google Scholar] [CrossRef]
- Lopez-Ibanez, R.; Martin, F.; Ramos-Barrado, J.R.; Leinen, D. Large area zirconia coatings on galvanized steel sheet. Surf. Coat. Technol. 2008, 202, 2408–2412. [Google Scholar] [CrossRef]
- Ha, S.; Lee, H.; Lee, W.-Y.; Jang, B.; Kwon, H.-J.; Kim, K.; Jang, J. Effect of Annealing Environment on the Performance of Sol–Gel-Processed ZrO2 RRAM. Electronics 2019, 8, 947. [Google Scholar] [CrossRef]
- Koch, G.; Brongers, M.; Thomson, N.; Virmani, Y.; Payer, J. Corrosion Cost and Preventive Strategies in the United States; NACE International: Washington, DC, USA, 2016. [Google Scholar]
- Zhao, G.; Zhang, W.; Zhao, M. Investigation of Metal Coated D32 Steel Corrosion in Marine Environment. Intern. J. Electrochem. Sci. 2022, 17, 220134. [Google Scholar] [CrossRef]
- Boshkov, N.; Petrov, K.; Vitkova, S.; Nemska, S.; Raichevski, G. Composition of the corrosion products of galvanic coatings Zn-Co and their influence on the protective ability. Surf. Coat. Technol. 2002, 157, 2–3. [Google Scholar] [CrossRef]
- Gao, F.; Mu, J.; Bi, Z.; Wang, S.; Li, Z. Recent advances of polyaniline composites in anticorrosive coatings: A review. Prog. Org. Coat. 2021, 151, 106071. [Google Scholar] [CrossRef]
- Raviprabha, K.; Bhat, R.S. Corrosion inhibition of mild steel in 0.5 M HCL by substituted 1,3,4-oxadiazole. Egypt. J. Pet. 2023, 32, 1–10. [Google Scholar] [CrossRef]
- Adamson, A.W.; Gast, A.P. Physical Chemistry of Surfaces, 6th ed.; John Wiley & Sons: New York, NY, USA, 1997; pp. 347–380. [Google Scholar]
- Gondal, M.A.; Fasasi, T.A.; Baig, U.; Mekki, A. Effects of Oxidizing Media on the Composition, Morphology and Optical Properties of Colloidal Zirconium Oxide Nanoparticles Synthesized via Pulsed Laser Ablation in Liquid Technique. J. Nanosci. Nanotechnol. 2018, 18, 4030–4039. [Google Scholar] [CrossRef]
- Kadhum, A.H.; Mohamad, A.B.; Hammed, L.A.; Al-Amiery, A.A.; San, N.H.; Musa, A.Y. Inhibition of mild steel corrosion in hydrochloric acid solution by new cumarin. Materials 2014, 7, 4335–4348. [Google Scholar] [CrossRef]
- Ghasemi, T.; Shahrabi, A.A.; Oskuie, H.H.; Sanjabi, S. Effect of heat treatment on corrosion properties of sol–gel titania–ceria nanocomposite coating. J. Alloys Compd. 2010, 504, 237–242. [Google Scholar] [CrossRef]
- Holgado, J.P.; Pérez-Sánchez, M.; Yubero, F.; Espinós, J.P.; González-Elipe, A.R. Corrosion resistant ZrO2 thin films prepared at room temperature by ion beam chemical vapor deposition. Surf. Coat. Technol. 2002, 151–152, 449–453. [Google Scholar] [CrossRef]
- Jothi, K.J.; Balachandran, S.K.; Mohanraj, K.; Prakash, N.; Subhasri, A.; Santhana Gopala Krishnan, P.; Palanivel, K. Fabrications of hybrid Polyurethane-Pd doped ZrO2 smart carriers for self-healing high corrosion protective coatings. Environ. Res. 2022, 211, 113095. [Google Scholar] [CrossRef] [PubMed]
- Stambolova, I.; Stoyanova, D.; Shipochka, M.; Boshkova, N.; Eliyas, A.; Simeonova, S.; Grozev, N.; Boshkov, N. Surface Morphological and Chemical Features of Anticorrosion ZrO2–TiO2 Coatings: Impact of Zirconium Precursor. Coatings 2021, 11, 703. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Y.; Hu, R.; Lin, C.; Sun, L.; Vogler, E.A. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids Surf. B 2015, 125, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Tian, J.; Dai, J.; Wang, X. Corrosion resistance of three layer superhydrophobic composite coating on carbon steel in seawater. Electrochim. Acta 2013, 97, 409–419. [Google Scholar] [CrossRef]
Sample | LCS | LCS /Zn | LCS /Zn–Ni | LCS /Zn–Co | LCS/Zn–Ni- ZrO2 (ZN) | LCS/Zn–Co- ZrO2 (ZC) |
---|---|---|---|---|---|---|
WCA (°) | 92 | 122 | 97 | 95 | 93 | 90 |
Rp (nm) | 59 | 69 | 68 | 117 | 131 | 9.5 |
Ra (nm) | 46 | 56 | 53 | 92 | 105 | 7.4 |
Sample | Ecorr, V | Icorr, A.cm−2 |
---|---|---|
Zn | −1.065 | 1.8 × 10−5 |
Zn–Co/ZrO2 | −0.895 | 6.5 × 10−6 |
Zn–Ni/ZrO2 | −0.868 | 7.6 × 10−6 |
Sample | Ecorr, V | Icorr, A.cm−2 |
---|---|---|
Zn | −1.029 | 1.8 × 10−5 |
Zn–Co/ZrO2 | −0.763 | 1.6 × 10−6 |
Zn–Ni/ZrO2 | −0.748 | 1.7 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stambolova, I.; Stoyanova, D.; Shipochka, M.; Boshkova, N.; Simeonova, S.; Grozev, N.; Avdeev, G.; Dimitrov, O.; Boshkov, N. Corrosion-Resistive ZrO2 Barrier Films on Selected Zn-Based Alloys. Materials 2023, 16, 7673. https://doi.org/10.3390/ma16247673
Stambolova I, Stoyanova D, Shipochka M, Boshkova N, Simeonova S, Grozev N, Avdeev G, Dimitrov O, Boshkov N. Corrosion-Resistive ZrO2 Barrier Films on Selected Zn-Based Alloys. Materials. 2023; 16(24):7673. https://doi.org/10.3390/ma16247673
Chicago/Turabian StyleStambolova, Irina, Daniela Stoyanova, Maria Shipochka, Nelly Boshkova, Silviya Simeonova, Nikolay Grozev, Georgi Avdeev, Ognian Dimitrov, and Nikolai Boshkov. 2023. "Corrosion-Resistive ZrO2 Barrier Films on Selected Zn-Based Alloys" Materials 16, no. 24: 7673. https://doi.org/10.3390/ma16247673
APA StyleStambolova, I., Stoyanova, D., Shipochka, M., Boshkova, N., Simeonova, S., Grozev, N., Avdeev, G., Dimitrov, O., & Boshkov, N. (2023). Corrosion-Resistive ZrO2 Barrier Films on Selected Zn-Based Alloys. Materials, 16(24), 7673. https://doi.org/10.3390/ma16247673