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Abstract: The so-called population balance model (PBM) is the most widely used approach to describe
the grinding process. The analysis of the grinding data is carried out using—among others—the one-
size fraction BII method. According to the BII method, the breakage parameters can be determined
when a narrow particle size fraction is used as feed material to the mill. However, it is commonly
accepted that these parameters are influenced by changing the particle size distribution in the mill.
Thus, this study examines the breakage parameters through kinetic testing in different natural-
size distribution environments generated by closed-cycle grinding tests that simulate industrial
milling conditions. The differentiation of the milling environments was accomplished using various
reference sieves in the closed-cycle tests. The experimentally determined breakage parameters were
back-calculated and then used to simulate the closed-cycle tests using the MODSIMTM software.
Additionally, the energy efficiency was evaluated based on the specific surface area of the grinding
products and the energy consumption. The results of the kinetic tests showed that the breakage rate
of the coarse particles increases as the aperture size of the reference sieve decreases, and consequently,
the content of fines in the mill increases. The back-calculated breakage parameters can be reliably
used to simulate closed-cycle circuits, thus helping control industrial milling operations.

Keywords: grinding kinetics; breakage parameters; closed-cycle circuit; energy efficiency; particle
size distribution; simulation

1. Introduction

Comminution is the process of size reduction widely used in many industrial sec-
tors, including mineral processing. Its main purpose is to produce the desired size and
liberate the minerals of interest from other invaluable constituents so that they can be
efficiently separated [1]. However, comminution, especially grinding, is the most energy-
intensive process in mining operations, accounting for more than 50% of the total energy
used [2–4]. Also, grinding is characterized by low efficiency and high carbon emissions.
This has led mining companies to set targets to be more environmentally friendly and
significantly reduce their operational carbon footprint, typically by up to 30–40% over
the next 10–15 years [5]. These targets will require mining companies to develop new
alternative technologies and operate by promoting green and climate-smart practices [6,7].

In grinding, for instance, many efforts have been made over the past 150 years to
improve the efficiency of the process. The mathematical models proposed in the scientific
literature start with the historical empirical energy-size reduction relationships (referred to
as laws of comminution) of Rittinger, Kick and Bond [8], while in recent years, much atten-
tion has been paid to the machine learning techniques, including artificial neural networks
(ANNs) [9]. ANNs are inspired by the brain structure and consist of several elements called
neurons. In addition, kinetic models derived from population balance considerations have
garnered a significant amount of interest. The so-called population balance model (PBM),
which uses two functions, namely the breakage rate (or selection function) Si and breakage
function bi,j, provides the fundamental size–mass balance equation for fully mixed batch
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grinding operations [10–12]. Its advantages, including process control and scale-up of
laboratory tests to industrial mills, have been highlighted by numerous studies [13–16].
The PBM considers that the breakage rate Si of size class i is time-invariant, and grinding
follows a first-order law expressed as [17,18],

dmi(t)
dt

= −Si·mi(t) (1)

or
mi(t) = mi(0)·exp(−Si·t) (2)

where mi(t) and mi(0) are the mass fractions for size class i at grinding time t and 0,
respectively.

According to Austin et al. [12], the breakage rate Si (min−1) can be described by a
power function of particle size, as shown in Equation (3),

Si = αT ·xα·qi (3)

where αT and α are parameters that depend on the milling conditions and the properties of
the material, respectively, while x is the particle size of size class i. qi is a correction factor
that defines the region of the breakage, i.e., normal breakage and abnormal breakage region.
In the abnormal breakage region, particles are too large to be properly nipped by the media,
and deviation from the first-order breakage occurs. qi is calculated from Equation (4),

qi =
1

1 + (x/µ)Λ (4)

where µ is a parameter that depends on milling conditions, and Λ is a positive parameter
that indicates how fast the breakage rate decreases as feed size increases.

Austin et al. [12] defined primary breakage as the distribution of the particles produced
before any of the particles are further broken inside the grinding mill. The set of primary
particles produced can be represented by the breakage function bi,j, which is the mass
fraction of size interval j broken into size interval i. The breakage function is usually
represented in cumulative form, Bi,j, which defines the mass fraction of material broken
from size j, which appears less than the upper size of size interval i.

The values of Bi,j are estimated from the size distribution at short grinding times using
as initial feed a narrow particle size fraction j (the one-size fraction BII method), as shown
in Equation (5) [19],

Bi,j =
log[(1 − Pi(0)/(1 − Pi(t))]

log
[(

1 − Pj+1(0)/
(
1 − Pj+1(t)

] (5)

where Pi(t) is the mass fraction less than size xi of size interval i at time t.
Bi,j can also be fitted to an empirical function (Equation (6)),

Bi,j = Φj·
(

xi−1

xj

)γ

+ (1 − Φj)·
(

xi−1

xj

)β

(6)

where xj is the top size of size interval j, Bi,j is the cumulative breakage function, and Φj, γ
and β are parameters that depend on the properties of the material; Φj and β show how
rapidly fractions close to feed size are reduced to a lower size, while γ characterizes the
relative mass of fines produced after breakage.

Industrial mills typically operate in a closed circuit with a classifier to prevent fine
particles from entering the mill and control the size of the final product. In this respect, the
effect of classification efficiency and circulating load on the efficiency of closed grinding
circuits (i.e., its capacity to produce the desired final product) has been the subject of
research for many years [20–22]. Among other classifiers, hydrocyclones are the most
widely used in the mineral processing industry due to their simplicity and cost-saving [23].
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However, one of the inherent limitations of hydrocyclone operation is its inefficiency in
eliminating fine mineral particles in the coarse product, which affects mill performance [6].

Towards understanding the milling process, the effect of operating parameters on
milling efficiency has been examined in recent years [24,25]. Other studies have reported
that the breakage rate of particles varies significantly with the size distribution of the mill
hold-up. In this respect, Austin and Bagga [19] investigated the dry grinding kinetics of
several cement clinkers and two coals using a laboratory ball mill. They reported that the
breakage rate of particles slows down due to the cushioning action of fines on the coarser
particles during dry grinding. On the other hand, Gupta [26] analyzed the grinding of
mixtures of coarse and fine fractions using limestone and quartz as test materials. He
reported that the breakage rate of coarse particles increases with an increasing proportion
of fine particles. Rajamani and Guo [27] performed wet grinding tests using limestone
and estimated the breakage rates for all individual size classes. Using the G-H method
proposed by Kapur [28], they observed that the breakage rate increased or decreased with
time for all size classes, and this variation depended on the size distribution of the initial
feed. Fuerstenau et al. [29] investigated the breakage rate of feeds consisting of mono-
sized (10 × 14 mesh) dolomite with various proportions of fines (−100 mesh) after dry
grinding tests in a ball mill. These researchers stated that the breakage rate of 10 × 14 mesh
fraction increases as the amount of −100 mesh material in the feed increases. Similar results
were observed in Verma and Rajamani’s study [30]. They reported that the hydrocyclone
operation could be intentionally adjusted to recirculate some of the fines as the breakage
rate of coarse material increases in the presence of fines.

The research discussed above was found to be limited to discovering the overall effect
of the fines present in a mill on the breakage rate of coarse particles. In fact, these researchers
have used mono-sized fractions and several proportions of fine material as the starting feed
in the mill. According to Gupta [16], the size distributions generated by grinding mono-
sized fractions are not representative of those obtained during industrial milling operations.
In such lab-scale grinding environments, coarse particles grind at rates different from those
observed in full-scale operations characterized by a natural-size distribution environment.
Thus, this study aims to determine the breakage parameters in various natural-size distribu-
tion environments generated by closed-cycle grinding tests using different reference sieves.
These natural-size distributions obtained after equilibrium conditions simulate industrial
milling conditions. The Moly-Cop Tools™ v.1.0 software was used to back-calculate the
breakage parameters obtained from the tests. Then, these parameters were entered into the
MODSIMTM software to simulate the closed-cycle grinding process.

2. Materials and Methods

In the present study, two materials, namely marble and quartzite, obtained from
West Crete, Greece, were used. The marble samples are composed of calcite (95 wt.%)
and dolomite (4 wt.%), while quartzite is composed of quartz (90 wt.%) and some mica
(5 wt.%). The porosity and density determined with the use of the Archimedes method [31]
were, respectively, 0.3% and 2.72 t/m3 for marble and 0.9% and 2.59 t/m3 for quartzite.
Since marble’s hardness on the Mohs scale is much lower (ranging from 3 to 4) compared
to that of quartzite (ranging from 7 to 8), it is expected that they will behave differently
during grinding. Other properties affecting the grinding behavior of the test materials,
e.g., uniaxial compressive strength and modulus of elasticity, are outlined in a previous
study [32]. The received samples were homogenized by the cone and quarter method, and
a representative amount was crushed to less than 3.35 mm using a Fritsch-type jaw crusher.

Three series of grinding tests were carried out using a laboratory scale ball mill (D × L
= 204 mm × 166 mm) that operated at N = 66 rpm (1.1 Hz), corresponding to 70% of its
critical speed (Figure 1). The charge of the mill consisted of 77 balls of 25.4 mm diameter
and density of 7.85 t/m3, corresponding to the ball filling volume J = 20%. The material
filling volume was kept at f c = 4% (215 mL), corresponding to 351.5 g and 342.5 g of marble
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and quartzite, respectively. The flow chart of the experimental procedure is shown in
Figure 1.
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Figure 1. Flow chart of the experimental procedure.

In the first series, closed-cycle grinding tests were performed with a 250% circulating
load to simulate industrial milling operations. According to the procedure followed, each
initial feeding sample with a size less than 3.35 mm was fed into the mill and ground for an
arbitrary number of mill revolutions (e.g., 50–100 revolutions, depending on the hardness
of the material). After the first cycle, the product was sieved to the reference size, and the
undersize was weighed and removed. The oversize plus an amount of fresh feed were
combined to obtain the initial material volume filling of 4%. Then, this combined material
was returned to the mill for the second grinding cycle. The weight of undersize produced
per mill revolution (Gpr1) for the first cycle was calculated using Equation (7). For the
second cycle, the number of required mill revolutions (n2) was calculated by considering
250% circulating load, according to Equation (8) [33].

Gpr1 =
Wp1 − (WF1·U)

R1
(7)

n2 =

(
WF1
3.5

)
− (WP1·U)

Gpr1
(8)

where R1 is the number of revolutions for the first cycle, U is the percentage of undersized
material in the fresh feed, and WF1 and WP1 are the weights of the fresh feed and the
product (undersized material) for the first cycle, respectively. The process was repeated
until the weight of undersize produced per revolution (Gpr) reached the steady state
(equilibrium) conditions in the three last cycles. The final value of Gpr was calculated as
the average of the last three cycles. It is mentioned that the closed-cycle grinding tests
of the first series were conducted using three specific reference sieves, namely 300 µm,
150 µm and 75 µm. Then, the particle size distributions (PSDs) of the final products at
equilibrium conditions were determined using a Malvern type S Mastersizer (particle
size range between 0.05 and 850 µm) and laser diffraction (LD) technique. The resulting
PSDs were evaluated and compared with respect to the material type and reference sieve
used. It is also noted that since the sieving procedure was used to determine the particle
size distributions of the feeding materials, the resulting product size distributions were



Materials 2023, 16, 7687 5 of 18

corrected for comparison purposes using the apparent shape factor (ASF) calculated for
each material, as described in a previous study [34].

For the second series, the ground product of the final cycle was sieved again to each
reference size (300 µm, 150 µm and 75 µm), and the undersize was weighed and removed.
Then, an equal mass of fresh feed was added to the oversize (circulating load), and the
combined material was used for the tests. This combined material can be considered as
the feed to the industrial mill after equilibrium conditions are reached. As a result, three
different feeding materials (abbreviated as EFMs) were generated for marble and quartzite,
and their grinding behavior was investigated based on kinetic modeling approaches. For
this purpose, grinding tests were carried out for various grinding times, and the breakage
rate of the top-size fraction, i.e., −3.35 + 2.36 mm, was determined for the two types of
material. Therefore, these tests enable the evaluation of the breakage rate parameters for
materials with natural-size distributions obtained after equilibrium conditions, thereby
simulating industrial grinding systems.

In the third series of tests, the initial samples of the two types of materials (particle size
less than 3.35 mm) were sieved using a series of sieves to prepare four mono-sized fractions,
namely −3.35 + 2.36 mm, −1.7 + 1.18 mm, −0.850 + 0.600 mm and −0.425 + 0.300 mm.
Then, tests were carried out for various grinding times under the same conditions followed
in the previous tests, i.e., N = 66 rpm, J = 20% and f c = 4%. The products obtained after
each grinding time were wet-sieved using a series of screens for the determination of PSD.
The results of breakage analysis were examined and compared with those obtained when
EFMs were used as feeding materials to the mill.

The specific surface area (SSA) of the grinding products was measured using both
LD and Brunauer–Emmett–Teller (BET) nitrogen adsorption techniques. LD uses the Mia
theory of light scattering to determine PSDs, assuming a volume-equivalent sphere model,
whereas BET measures the actual surface area of solids based on the physical adsorption of
gas molecules on their surface [35,36]. According to the LD technique, the SSA of sample
materials is estimated using Equation (9),

Sw =

(
f
k

)
· 1
ρp·D[3, 2]

(9)

where Sw is the specific surface area, ρp is the particle density, D[3,2] is the mean surface
area (Sauter mean diameter), and f, k are the surface and volume coefficients (for spheres
f/k = 6).

The power of the mill, P (kW), was calculated using Equation (10), proposed by
Bond [37,38],

P = 7.33·J·Nr·(1 − 0.937·J)·ρb·L·D2.3·
(

1 − 0.1
29−10·Nr

)
(10)

Once the power of the mill over a grinding period t is calculated, the specific energy ε
(kJ/kg) (energy input E (kJ) per unit mass m (kg) of the feed) can be defined as

ε =
E
m

=
P·t
m

(11)

Regarding the closed-cycle grinding tests, ε (kJ/kg) is calculated by taking into consid-
eration the average weight of undersize produced per second (Gps) of the last three cycles,
according to Equation (12),

ε =
P

Gps
(12)

The breakage parameters, i.e., αT, α, µ, Λ, Φj, γ and β, were back-calculated using
the Moly-Cop Tools™ v.1.0 software. The software includes a set of easy-to-use Excel
spreadsheets that use all the differential equations of the population balance model for
the calculation of Si and Bi,j parameters [15]. The simulation of the closed-cycle grinding
process was carried out using MODSIMTM academic version 3.6.25 [39,40]. MODSIMTM is
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based on population balance modeling and allows the simulation of integrated mineral
processing circuits. It has been widely used for process design and optimization and as
an academic tool as well. Also, this simulator can up-scale results to a full-scale mill, and
therefore, the breakage parameters determined in the laboratory batch test can be used as
input data.

3. Results and Discussion
3.1. First Series of Tests
3.1.1. Examining the Fitting Accuracy of the Particle Size Distribution Models

Figure 2a,b and Figure 3a,b present the PSDs of the final products for marble and
quartzite, respectively, at equilibrium conditions when three reference sieves were used,
namely 300, 150 and 75 µm. The mathematical simulation of the grinding products was
carried out using the Rosin–Rammler (RR) and Gates–Gaudin–Schuhmann (GGS) distri-
bution models [41]. The mathematical description of these models can also be found in a
previous study [42]. In this regard, non-linear least square fitting from the Solver tool of
Microsoft Excel was used, and the model parameters were estimated. Models comparison
was carried out using evaluation indices, i.e., root mean square error (RMSE), adjusted
correlation coefficient (R2 adj.) and standard error (SE) [43]. As seen in these figures,
models have significantly different fitting capabilities; RR is a particularly suitable model
to describe the PSD of the final products, while GGS provides very low accuracy. This is
consistent with the results of Table 1, which show that R2 adj. ranged from 0.998 to 0.999
and 0.884 to 0.962 when, respectively, RR and GGS models were fitted to the experimental
data. The highest fitting accuracy of RR was also indicated by the lower RMSE (ranging
from 1.32 to 2.52) and SE (ranging from 1.22 to 2.15) values; the respected values for the
GGS model ranged from 7.21 to 15.02 and 6.22 to 14.55.

Table 1. Statistical analysis of the accuracy of the fitting particle size distribution models (RR and
GGS) on the final grinding products for marble and quartzite at equilibrium conditions.

Model Index
Marble Quartzite

−300 µm −150 µm −75 µm −300 µm −150 µm −75 µm

RR
R2 adj. 0.997 0.998 0.998 0.999 0.999 0.997
RMSE 2.52 1.91 2.08 1.38 1.32 2.25

SE 2.00 1.71 1.87 1.33 1.22 2.15

GGS
R2 adj. 0.967 0.931 0.884 0.962 0.918 0.878
RMSE 6.45 10.29 14.39 7.21 11.57 15.02

SE 6.22 9.95 13.94 6.87 11.16 14.55
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RR and GGS are considered the two most common distribution models that are
often used to describe the PSDs in mineral processing operations. However, GGS is
often preferred in certain applications, such as coal processing, while the RR is useful
for monitoring grinding operations for highly skewed distributions [44,45]. According to
Taşdemir and Taşdemir [46], the GGS model describes the PSDs obtained by low-energy
events better, i.e., jaw and cone crushing, while the RR model is more suitable for PSDs
obtained by high-energy events, i.e., hammer crushing and ball milling.

The RR model parameters, i.e., size modulus and distribution modulus (uniformity
index), were also estimated with respect to the reference sieve to characterize the PSDs
of the final products for marble and quartzite at equilibrium conditions. As shown in
Figure 4a,b, the size modulus increases, while the uniformity index decreases with the
increase in the reference sieve size. These results indicate that the finer the product size, the
higher the uniformity index value, and the PSD becomes narrower. Very strong correlations
(R2 values are greater than 0.93 and equal to 1.00 for marble and quartzite, respectively)
are obtained with the use of exponential functions between size modulus or uniformity
index and the reference sieve size. In industrial operations, ball mills are usually in closed
circuits with a classifier, and the interaction between them affects the grinding-product size
when equilibrium conditions are reached. Also, closed-cycle laboratory grinding tests that
simulate industrial milling conditions use reference sieves that play the role of the industrial
classifier. Therefore, these correlations (Figure 4) allow for investigating how the grinding
product size changes when considering different laboratory reference sieve sizes or cut
sizes in industrial operations. Magdalinović [47] performed locked-cycle grinding tests
following the Bond test procedure [37,48]. The materials used were copper ore, andesite
and limestone. He stated that a linear relationship exists between the reference sieve size
and the 80% passing size of the grinding product after equilibrium conditions are reached.
Despite using different materials and test conditions, his results are relatively close to those
of the present study.

3.1.2. Calculation of Specific Surface Area and Energy Efficiency

Table 2 shows the specific surface area of the grinding products at equilibrium con-
ditions determined by either BET or LD techniques for marble and quartzite. For each
grinding product, the specific energy consumption ε was also calculated using Equation (12).
The median size d50 was determined using Equation (9) and assuming spherical particle
shape (f/k = 6). It is shown that the energy consumption ε for quartzite is higher than for
marble. This can be attributed to the difference in hardness between the two materials
(3–4 for marble and 7–8 for quartzite on the Mohs scale). Regarding the SSA, the results
show that the BET technique, which takes into account various factors, including the geom-
etry of pores and the presence of cracks, provides, in all cases, a much higher SSA compared
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to that obtained with the LD technique. In this respect, BET is regarded as the most fun-
damental bulk surface area measurement technique; however, it is time-consuming and
requires meticulous sample preparation [49,50]. By comparing the two materials tested, it
is evident that the SSA of the grinding products of marble compared to that of quartzite is
higher when considering the same reference sieve size. This is explained by the fact that
marble produces the largest amount of fine particles, which significantly contributes to SSA.
As also seen in Figure 5a, the SSA (BET) of marble grinding products increases sharply
from 1105 to 1852 m2/kg when the specific energy increases from 17.9 to 54.7 kJ/kg, while
a gradually increasing trend was observed for quartzite. As a result, the energy efficiency
(Ef), defined as the SSA per unit of specific energy consumption (slope at each point of
the curves), is affected by the type of material tested. In this respect, the energy efficiency
for marble grinding is 57 to 113% higher than that of quartzite. The weight of undersize
produced per revolution at equilibrium conditions (referred to as grindability index, Gpr)
as a function of energy efficiency Ef is shown in Figure 5b. It is observed that strong
correlations (R2 = 0.95) between Gpr and Ef are obtained with the use of linear functions.
The results show that for the production of a certain amount per mill revolution, marble
exhibits a higher energy efficiency compared to quartzite. However, the rate of production
(as observed from the slope of the straight lines) for quartzite is more pronounced. This is
in line with previous findings that excess fine particles produced during marble grinding
enhance the cushioning effect and reduce grinding efficiency [51].
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Table 2. Specific surface area and energy efficiency of the final products at equilibrium conditions.

Material
Product Size BET LD d50 ε Ef

µm m2/kg m2/kg µm kJ/kg m2/kJ

Marble
−300 1105 245 96.2 17.9 61.8
−150 1149 296 61.2 28.8 39.9
−75 1852 556 26.7 54.7 33.8

Quartzite
−300 716 127 91.9 24.7 29.1
−150 905 202 55.0 35.5 25.4
−75 1142 313 32.4 72.0 15.9

3.2. Second Series of Tests
3.2.1. PSDs of the Equilibrium Feeding Materials

Figure 6a,b present the PSDs of the oversized material (or circulating load) after the
last cycle where equilibrium conditions were reached for marble and quartzite, respectively.
The circulating loads obtained using three reference sieve sizes (300 µm, 150 µm and 75 µm)
were combined with the corresponding fresh feeds, and the generated mixture materials
(referred to as equilibrium feeding materials, EFMs) were subjected to short grinding time
tests to study the grinding kinetics. As seen in Figure 7a,b, the greater percentage of the
feeding materials are coarser than the reference sieve size, while a small amount of fine
particles originating from the fresh feeds is observed.
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The PSDs of the equilibrium feeding materials and the products as a function of
grinding time for the two materials tested are shown in Figure 8a,b. These figures, which
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are used as an example, correspond to the reference sieve size of 300 µm. It is obvious
that more fine particles are produced as grinding proceeds, and the product particle size
distribution curves acquire a similar shape. However, among other factors, such as the type
of material and operating conditions [52], the feed size distribution in batch grinding affects
the shape of curves and the production of fine particles. In this respect, Figure 9a,b present
the mass % of −106 µm fraction produced as a function of grinding time when different
reference sieve sizes (300 µm, 150 µm and 75 µm) were used in closed-cycle grinding tests.
It is shown that the use of either 300 or 150 µm reference sieve in closed-cycle tests results
in essentially the same production of fine particles for both materials tested. Also, the slope
of the plots (Figure 9a,b), which indicates the production rate of fines, is slightly higher
when using 300 or 150 µm reference sieve in closed-cycle tests compared to that of the
75 µm sieve. This shows that feed size distributions with varying proportions of fines can
affect the breakage rate of particles. Given that the increase in breakage rates in industrial
production processes has important implications, it is considered crucial to investigate the
effect of fines content on the grinding kinetics.
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3.2.2. Modeling of Grinding Kinetics of Equilibrium Feeding Materials

Figure 10a,b show in normal-log plots the mass % remaining in the −3.35 + 2.36 mm
fraction as a function of grinding time for marble and quartzite under the assumption that
grinding obeys a first-order law, i.e., the breakage rate Si is independent of time [12]. This
fraction represents the top-size class of the equilibrium feeding materials in closed-cycle
grinding tests and the effect of the reference sieve size (300 µm, 150 µm or 75 µm) on the
breakage rate Si (min−1), obtained from the slopes of the straight lines, was investigated. It
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is evident that the breakage rate of the top-size class of the feeding materials increases as
the aperture size of the selected reference sieve decreases, and consequently, the content of
fines in the mill increases. The results are consistent with earlier research [29,53], which
showed that the presence of fines in the mill increases the breakage rate of the coarse
fraction, resulting in more efficient grinding. However, in those studies, the feeds to the
mill consisted of mixtures of coarse fractions and fines in various proportions, in contrast
to this study, where feed size distributions of closed-cycle grinding tests at equilibrium
conditions were used.
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Figure 10. First-order plots of the mass % remaining in the −3.35 + 2.36 mm top-size class vs. grinding
time in equilibrium feedings of closed-cycle tests for (a) marble and (b) quartzite when different
reference sieve sizes were used.

Figure 11 shows the variation in breakage rates of the −3.35 + 2.36 mm size class with
reference sieve size for the closed-cycle equilibrium feedings of marble and quartzite. It
is observed that the breakage rate values of the top-size class of marble are higher than
those of quartzite. The marble breakage rate was 1.55 min−1 using the 300 µm reference
sieve and reached 1.86 min−1 when the 75 µm sieve size was used; an increase of 20%
was observed. Regarding the top-size class of quartzite, its breakage rate increased by
33.3%, from 0.75 min−1 to 1.0 min−1, when the reference sieve size was reduced from
300 µm to 75 µm. The small increase in the breakage rate of the top-size class of marble can
be attributed to the cushioning effect of fines on the coarse particles when their amount
exceeds certain limits [19,51]. In this case, the impact forces are ineffective, and the breakage
rate is reduced.
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3.3. Third Series of Tests
3.3.1. Determination of Breakage Parameters

In this series of tests, four mono-sized fractions, namely−3.35 + 2.36 mm, −1.7 + 1.18 mm,
−0.850 + 0.600 mm and −0.425 + 0.300 mm, were ground in a laboratory ball mill for various
grinding times, i.e., 0.5, 1, 2 and 4 min. Since grinding exhibits first-order behavior, the
breakage rate Si was determined from the first-order plots of the mass (%) remaining vs.
grinding time for different mono-sized feed fractions. The determined Si values for each
feed fraction were used in Equations (3) and (4), and the kinetic parameters, i.e., αT, α, µ
and Λ, were calculated using a non-linear regression technique. This technique finds the
best-fit values of the model parameters by minimizing the square of the differences between
the experimental and the predicted values. Figure 12 shows the evolution of the Si values
versus the upper feed size on a log–log scale, while Table 3 presents the values of breakage
rate parameters for each material tested. Figure 12 shows that the variation of breakage rate
values with feed size follows a known trend for both materials. Si increases with increasing
feed size up to a certain particle size (referred to as the optimum size) and then drops as
the size becomes coarser because the particles are too big to be properly nipped and broken
by the grinding media used [54,55]. Thus, for each material, there is an optimum feed size
(xm) at which the breakage rate obtains its maximum value (Sm). The xm, Sm values are
2.98, 1.83 and 2.00, 1.29 for marble and quartzite, respectively. The values of the parameters
shown in Table 3, namely Si/3.35 (i.e., the breakage rate of −3.35 + 2.36 mm fraction) and
αT, show that marble is ground at a higher rate than quartzite.
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Table 3. Values of breakage parameters for each material tested.

Material
Si/3.35 αT α µ Λ Φj γ β

min−1 min−1 mm

Marble 1.81 1.09 0.90 3.71 3.10 0.63 0.73 3.30

Quartzite 0.95 0.88 0.84 2.76 3.15 0.73 0.85 3.30

The breakage function Bi,j parameters, i.e., Φj, γ and β, were calculated from the size
analysis of the products at short grinding times. According to the one size fraction BII
method, the values of Bi,j can be determined when a narrow particle size fraction is used as
feed material to the mill and the selected grinding time results in a 20% to 30% material that
is broken out from the top-size fraction [12]. In this respect, Bi,j values were determined
by fitting the experimental data to Equation (5), while the Φj, γ and β parameters were
determined from Equation (6) using a non-linear regression technique. It is also stated that a
back-calculation method with Moly-Cop Tools™ v.1.0 software was employed to determine
the breakage parameters shown in Table 3. Three size distributions (−1.7 + 1.18 mm,
−0.850 + 0.600 mm and −0.425 + 0.300 mm) were used as input in Moly-Cop Tools™ at
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three grinding times (0.5, 1 and 2 min), and the best combination of αT, α, µ, Λ, Φj, γ
and β was determined. In order to obtain accurate estimates, the number of parameters
was reduced by keeping constant those generally considered to be characteristic of the
material, i.e., α and β. Then, other parameters that give the best fit between experimental
and reproduced size distributions were calculated. Figure 13a,b compare the experimental
and reproduced size distributions of marble and quartzite obtained at different grinding
times for the −0.850 + 0.600 mm feed size. The results indicate that very good fitting
curves are obtained for the −0.850 + 0.600 mm feed fraction when the breakage parameters
derived from the Moly-Cop Tools™ (Moly-cop Chile S.A., Santiago, Chile) were used. The
R2 adj. ranged from 0.996 to 0.999 for both materials tested. A very good match was also
observed between the experimental and predicted PSDs for the other feed fractions, namely
−1.7 + 1.18 mm and −0.425 + 0.300 mm.
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3.3.2. Effect of Fines Accumulation on Breakage Rate of Coarse Particles

Figure 14a,b show the first-order plots of the mass % remaining in the mono-size
fraction −3.35 + 2.36 mm as a function of grinding time for the materials tested. These
figures also show, for comparison, the first-order plots of the top-size class −3.35 + 2.36 mm
in equilibrium feedings of closed-cycle tests when a reference sieve size of 75 µm was used.
The results show that the breakage rates Si of the mono-size fraction −3.35 + 2.36 mm,
obtained from the first-order plots, are lower than those of the same fraction (top-size
class) in closed-cycle tests when a 75 µm reference sieve was used. The breakage rates for
the top-size class of marble and quartzite are 1.86 and 1.00 min−1, respectively, while the
corresponding rates for the mono-size fractions are 1.69 and 0.95 min−1. This indicates
that the presence of fines, particularly for marble, is beneficial for grinding coarse frac-
tions. However, as was previously noted, an excessive amount of fine particles in the mill
enhances the cushioning action. Nevertheless, the results should raise questions about
effective grinding in closed-circuit operations. In these operations, the mill is in a closed
circuit with a classifier, and the goal is to increase the circuit’s capacity while minimizing
the amount of fines that are returned to the mill. However, the reduction in fines in the
mill may result in a decrease in the breakage rate [27,29,53], which would increase the
circulating load. The latter has the effect of reducing the circuit capacity. The importance
of classification in closed-cycle grinding operations has been reported in several previous
studies [56–58].
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Figure 14. First-order plots of the mass % remaining in the −3.35 + 2.36 mm size class (mono-size
fraction) vs. grinding time for (a) marble and (b) quartzite. For comparison, the first-order plots of
the top-size class in equilibrium feedings of closed-cycle tests using a reference sieve size of 75 µm
are also shown.

3.4. Simulation of the Closed-Cycle Grinding

The simulation of the closed-cycle grinding for marble and quartzite was performed
using the MODSIMTM simulator. Figure 15 shows the flow chart implemented in this
simulator. The unit model MILL available in MODSIMTM was selected as the mill model.
MILL is the simplest model for the ball mill, which is based on standard Austin’s models
(Equations (3)–(6)) and does not need any details of the mill geometry. Thus, the breakage
parameters, i.e., αT, α, µ, Λ, Φj, γ and β, determined by the back-calculation method using
the Moly-Cop Tools™ (Table 3), were used as initial input in the unit model MILL of
the simulator. The mean residence time of the particles in the mill must also be given.
Regarding the screen, the model SCRN was used to simulate the closed-cycle grinding. In
this model, three variables are required, namely screen opening, efficiency (90% is used as
default) and surface water % on screen oversize.
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Figure 15. Flow chart of simulated closed-cycle grinding implemented in the MODSIMTM simulator.

According to the procedure, the feed size distribution to the circuit was entered in
MODSIMTM, and the product PSDs obtained from the simulation were compared with the
experimental ones. Firstly, the residence time of the particles in the mill that gives the best
fit between the experimental and the reproduced size distributions of the final products
was determined. In this regard, the optimum residence time of 2.2 min was determined in
the case of marble when a reference sieve of 300 µm was used in the closed-cycle grinding
simulation. The simulation was then validated by the results obtained using other reference
sieves, i.e., 150 and 75 µm, keeping all input parameters constant. Figure 16a,b show the
simulation results using the MODSIMTM simulator compared to the experimental data
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obtained from the laboratory grinding tests for marble and quartzite. It is clearly shown
that the simulator could predict the product PSDs in closed-cycle grinding operations with
high accuracy. This is consistent with the high R2 adj. values determined; R2 adj. was in
the range of 0.995 to 0.999 for both materials tested.
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4. Conclusions

In this study, closed-cycle grinding tests were performed to examine the effect of the
size-distribution environment on the breakage parameters of two test materials, namely
marble and quartzite. These tests evaluated and compared the final products under
equilibrium conditions with respect to the material type and reference sieve utilized.

Regarding the evaluation of the final products, it was found that the RR distribution
model could accurately characterize the PSDs, whereas the GGS provides very low accuracy.
The adjusted correlation coefficient (R2 adj.) ranged from 0.998 to 0.999 and 0.884 to 0.962
when the RR and GGS models, respectively, were fitted to the experimental data. In
addition, it was revealed that the size modulus or uniformity index of the RR model is very
well correlated (R2 values are greater than 0.93) with the reference sieve size. Based on the
BET-specific surface area measurements of the grinding products and energy consumption,
the energy efficiency for marble was found to be 57 to 113% higher compared to quartzite.
The grindability index (g/rev) was also very well correlated (R2 = 0.95) with the energy
efficiency for both materials tested using linear functions.

When the equilibrium feeding materials (EFMs) obtained from different reference sieve
sizes were subjected to short-time grinding tests, it was found that the size-distribution
environment affects the breakage rate of particles. The use of 300 or 150 µm reference sieves
resulted in a slightly higher production rate of fines (−106 µm) than the use of a 75 µm sieve.
In addition, it was found that the breakage rate of the top-size class (−3.35 + 2.36 mm) of the
EFMs increases with decreasing sieve aperture size, indicating the beneficial effect of fines
on milling efficiency. In general, the breakage rate values for marble were higher compared
to quartzite. However, in the case of marble, a smaller increase (20% vs. 33.3%) with a
decreasing sieve aperture size was observed, and this was attributed to the cushioning
effect when fines exceeded certain limits.

Based on the one-size fraction BII method, it was shown that the variation of breakage
rate values with feed size follows a well-known trend for the test materials. The breakage
rate increases with increasing feed size up to a specific size, but above this size, it decreases
sharply. By comparing the first-order plots of the top-size class (−3.35 + 2.36 mm) of EFS
with the mono-size fraction −3.35 + 2.36 mm, it was found that the breakage rate of this
size class is higher for the feeds generated from the closed-cycle tests, for both materials
tested. This also indicates the increase in grinding efficiency when fine particles are present
inside the mill.
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Regarding the simulation of the closed-cycle grinding for marble and quartzite, it
was found that the back-calculated breakage parameters derived by the Moly-Cop Tools™
software could be reliably used as initial input in the MODSIMTM simulator. It was
confirmed that for both materials, MODSIMTM could be a valuable tool for the simulation
of closed-cycle grinding operations, as a very good agreement was observed between the
experimental and simulated particle size distributions of the final products. The approach
can also be used to scale up laboratory results to larger-scale grinding operations and
study several factors affecting the process, thereby reducing the cost of experimentation
and optimization. Future studies should aim to predict the results of pilot and full-scale
grinding circuits under different operating conditions based on data from laboratory-scale
grinding tests.
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