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Abstract: This study investigates the mixed-mode I/II fracture behavior of O-notched diagonally
loaded square plate (DLSP) samples containing an edge crack within the O-notch. This investigation
aims to explore the combined effects of loading rate and mode mixity on the fracture properties of
steel 304L, utilizing DLSP samples. The DLSP samples, made from strain-hardening steel 304L, were
tested at three different loading rates: 1, 50, and 400 mm/min, covering five mode mixities from pure
mode I to pure mode II. Additionally, tensile tests were performed on dumbbell-shaped specimens
at the same loading rates to examine their influence on the material’s mechanical properties. The
findings revealed that stress and strain diagrams derived from the dumbbell-shaped samples were
largely independent of the tested loading rates (i.e., 1–400 mm/min). Furthermore, experimental
results from DLSP samples showed no significant impact of the loading rates on the maximum load
values, but did indicate an increase in the ultimate displacement. In contrast to the loading rate,
mode mixity exhibited a notable effect on the fracture behavior of DLSP samples. Ultimately, it was
observed that the loading rate had an insignificant effect on the fracture path or trajectory of the
tested DLSP samples.

Keywords: mixed-mode ductile fracture; steel 304L; loading rate effect; mode mixity

1. Introduction

In recent years, numerous studies have investigated the failure behavior of engineering
components, considering the presence of notches and cracks [1–7]. While notches are
sometimes intentionally designed in engineering parts [2,4,6,8–17], cracks are invariably
considered undesirable. Cracks typically form during the manufacturing process or the
operational life of a component, diminishing the load-bearing capacity of structures and
consequently shortening their lifespan. Crack faces in components can experience loading
in three distinct modes: pure mode I, involving tensile loading; pure mode II, characterized
by shear loading; and pure mode III, associated with tear loading [18]. Additionally,
they can encounter complex combinations of mixed-mode I/II, I/III, and II/III loading
conditions [2]. Brittle or unstable fractures, which result from rapid crack growth, typically
occur in brittle and quasi-brittle materials. Conversely, ductile or stable fractures, arising
from slow crack growth, usually manifest in ductile materials that exhibit significant plastic
deformation near the crack tip. As brittle fracture poses a greater risk than ductile fracture,
substantial research efforts have focused on understanding brittle fracture in engineering
materials and structures in recent years. Among engineering materials, thin-walled ductile
sheets made of steel, aluminum, and other metallic materials are consistently utilized in the
construction of various structures, notably in vehicles within the automotive and aerospace
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industries [13,16,19]. Given the extensive application of thin-walled metallic sheets, it
is imperative to research and study the ductile fracture behavior of thin-walled metallic
materials utilized in different sectors. Sheet metal forming is a crucial process in car body
manufacturing, playing a central role in shaping and fabricating various components of a
vehicle’s exterior [20–28]. This process involves transforming flat sheets of metal, typically
steel or aluminum, into three-dimensional parts, which constitute the framework of a car
body, by various techniques, such as stamping, deep drawing, and hydroforming. The
primary objective of sheet metal forming in car manufacturing is to create components
with precise dimensions and a high structural integrity. In sheet metal forming processes,
the phenomenon of fracture, also known as sheet metal fracture or tearing, is a critical
concern that can adversely affect the quality and integrity of formed components [25].
Fracture occurs when the metal sheet undergoes excessive deformation, resulting in the
development of cracks or defects. Therefore, one key aspect of the fracture phenomenon
in sheet metal forming is excessive deformation. Fracture often occurs when the sheet
metal undergoes deformation beyond its material limits, leading to localized thinning
and stretching. Additionally, the type of external applied loads or mode mixity can affect
the fracture phenomenon in the sheet metal process, which can be divided into pure
tensile, pure shear or a combination of tensile and shear loading conditions [29–32]. For
example, shear fracture occurs along shear planes and is common in materials with low
ductility, while the necking phenomenon, especially in regions with a high deformation,
can make the material more susceptible to fracture. In addition to the mentioned factor,
the speed of loading or loading rate is another important parameter that can affect the
sheet metal forming process [22,23,25]. Higher loading rates, such as those encountered in
rapid-forming processes, can increase the likelihood of fracture. In this regard, knowledge
about the material properties for moderate loading rates from 1–500 mm/min, which is
0.016–8.3 mm/s [21], is therefore necessary for standard sheet metal forming processes.
Therefore, it is necessary to enhance the specifications of the formability of materials,
particularly considering the influence of the loading rate and mode mixity.

Extensive research has been conducted on the effect of loading rates on the tensile
properties of thin-walled metallic sheets. Green et al. [33] investigated the impact of loading
rates on the tensile stress, flow stress, and elongation of SAE1008 steel sheet metal forming.
They demonstrated the high sensitivity of these parameters to loading rates. Taduka
et al. [34] examined the formability of a thin sheet of Mg–8.5Li–1Zn through uniaxial tensile
tests and reported a significant increase in elongation at failure, even at lower loading
rates. In another study, Srinivas and Kamat [35] explored the effect of loading rates on the
tensile properties and fracture toughness of mild steel. They observed that the tensile yield
strength remained independent within small ranges of loading rates. However, beyond
these rates, the tensile yield strength increased with the loading rate. Additionally, they
found an increase in the mode I fracture toughness with an increase in the loading rate.
Other researchers have also studied the influence of mode mixity on the ductile fracture
behavior of thin-walled steel and aluminum sheets. Torabi et al. [36] conducted a study
that investigated the effect of mode mixity on the ductile fracture behavior of cracked
aluminum and steel sheets. Their research focused on materials exhibiting considerable
plastic deformation and highlighted the significant influence of mode mixity on the fracture
resistance of these sheets.

A review of the literature indicates a scarcity of investigations regarding the simul-
taneous effects of loading rates and mode mixity on the tensile properties and ductile
mixed-mode fracture behavior of thin-walled steel sheets with considerable plastic defor-
mation. The primary objective of this study is to experimentally investigate the effect of
loading rates on the tensile properties and mixed-mode fracture behavior of thin-walled
steel sheets. Specifically, the focus is on stainless steel 304L, known for exhibiting signifi-
cant non-linear plastic deformations. This investigation considers mode mixities ranging
from pure mode I to pure mode II crack deformations. In this context, dumbbell-shaped
samples and O-notched diagonally loaded square plate (DLSP) samples containing an
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edge crack were employed for performing tensile and mixed-mode fracture tests under
different loading rates, specifically 1, 50, and 500 mm/min. The results reveal that the
tensile and fracture properties of the tested stainless steel 304L with large non-linear plastic
deformations remain independent of loading rates (1–400 mm/min). However, mode
mixity significantly influences fracture behavior. In other words, maximum loads remain
consistent and ultimate displacements increase slightly when changing the loading mode
from pure mode I to pure mode II. It should be noted that the findings of this research
align with the outcomes presented in [36]. Torabi et al. [36] investigated the mixed-mode
I/II fracture behavior of aluminum thin-walled sheets with a small plastic deformation,
while the current research delves into high plastic deformation and loading rate changes in
steel sheets.

2. Experimental Study
2.1. Material and Specimen

Figure 1 shows the tensile test samples used, according to the ASTM E8 [36] standard.
For fracture testing, DLSP (O-notched diagonally loaded square plate) samples were
utilized. The DLSP sample was first introduced by Torabi et al. [36] to analyze the mixed-
mode ductile fracture behavior of thin-walled metallic materials. In this study, we adopted
this specimen to investigate the loading rate dependency of mixed-mode ductile fracture
behavior in thin-walled steel 304L sheets. As shown in Figure 2, the DLSP sample resembles
a square, thin sheet of steel with a length of 2W. The desired square-shaped components
along with their central grooves were cut using a two-dimensional numerical control
computer in the form of a laser with oxygen, applied on a 1 mm thick plate. Subsequently,
a wire cutter equipped with a 0.25 mm diameter wire was used to create symmetrical
pre-cracks with a length of a. Figure 2 displays the geometry of the DLSP sample with
pre-cracks, depicting its geometric parameters and associated boundary conditions. The
values of the geometric parameters, including 2w, 2a, the specimen’s thickness, and the
hole’s diameter, were 100, 60, 1, and 8 mm, respectively. Additionally, the angle of rotation
of the crack in relation to the loading direction, denoted as alpha (α), assumed values of 0◦

for pure mode I, 15◦, 30◦, and 50◦ for mixed-mode I/II, and 67◦ for pure mode II degrees.
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The crack tip parameters, including the dimensionless mode I (YI
∗) and mode II (YI I

∗)
stress intensity factors (shown below) and mode mixity for the DLSP sample, are provided
in Table 1 from Ref. [36] and can be described as follows:YI

∗ = KI
P

Wt

√
πa
2

YI I
∗ = KI I

P
Wt

√
πa
2

YI
∗, YI I

∗ = Function (a/W, α) (1)

M =
2
π

tan−1
(

YI
∗

YI I
∗

)
(2)

where P is the applied load, W and t are the specimen width and thickness, and KI and KI I
are the stress intensity factors.

Table 1. Dimensionless values of mode I and mode II stress intensity factors for the DLSP specimen.

M Loading Mode α (Degree) YI* YII*

1 Mode I 0 1.21 0

0.8 Mixed-mode I/II 15 1.10 0.35

0.57 Mixed-mode I/II 30 0.78 0.61

0.24 Mixed-mode I/II 50 0.31 0.75

0 Mode II 67 0 0.58

2.2. Fracture Test

As mentioned in the previous section, the loading mode of the DLSP sample can
be altered by adjusting the alpha (α) angle. When alpha is set to zero, a pure mode I
loading is achieved, whereas an alpha angle of 67◦ corresponds to a pure mode II loading.
As mentioned before, all angles between 0◦ and 67◦ represent mixed-mode I/II loading
conditions at the crack tip. Notably, the angle of 67 degrees, denoting the conditions for
pure mode II, was derived from Torabi et al. [36]. Their extensive finite element simulations
analyzed the DLSP specimen and its mode mixity across various alpha (α) angles. Fracture
tests were conducted by subjecting cracked DLSP specimens to uniaxial uniform tension.
The loading was displacement-controlled, and three loading rates (1, 50, and 400 mm/min)
were selected for each of the five loading modes. Thus, a total of 45 tests were performed
on the DLSP samples, covering fifteen different cases, with three repetitions for each test.
Additionally, nine tests were conducted on dumbbell-shaped samples, with three repetitions
at each loading rate (1, 50, and 400 mm/min). The outcome of each fracture test includes a
load-displacement curve along with experimental observations on the specimen’s failure.

3. Results and Discussion

The mechanical tests were conducted by employing a Santam (IRAN) universal testing
machine with a loading capacity of 15 tons. Tensile and fracture loads were consistently
applied at a controlled displacement rate, facilitating both tensile and fracture tests on
dumbbell-shaped and cracked DLSP samples. The force-displacement data were precisely
recorded using a digital data logging system. The stress–strain relationships were derived
from uniaxial tension tests performed on dumbbell-shaped samples at constant crosshead
displacements of 1, 50, and 400 mm/min. This section aimed to explore the influence
of the loading rate on the tensile behavior of thin-walled stainless steel 304L sheets. In
this regard, the engineering stress and strain curves and also the fractured dumbbell-
shaped samples after tests are presented in Figures 3 and 4. As shown in Figure 4, the
changes in the stress–strain values concerning the loading rate are minimal, suggesting
only a slight shift in both stress and strain. For example, the ultimate strength (σu) values
decrease from 704 MPa to 606 MPa as the loading rate increases from 1 to 400, while the
ultimate strain (εu) values increase from 0.98% to 1.12% with the rising loading rate. The
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observed pattern in the variation of ultimate strain (εu) values with the loading rate in
the tested steel 304L sample is in accordance with the findings from a similar sample
outlined in reference [37]. Additionally, as the loading rate goes from 1 to 50 mm/min,
the yield strength (σy) decreases; however, from 50 to 400 mm/min, it shows an increase.
Nonetheless, these changes remain insignificant. Additionally, it is notable that the slope
of the stress–strain diagram in the linear region, indicating the material’s modulus of
elasticity (E), remains relatively constant despite the increase in the loading rate. This
trend suggests that the material’s softening does not change as the loading rate rises from
1–400 mm/min. Precise values for yield strength (σy), ultimate strength (σu), and ultimate
strain (εu) parameters are detailed in Table 2.
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Table 2. Mechanical properties of tested 304L steel.

Property
Loading Rate (mm/min)

1 50 400

Tensile yield strength, σy (MPa) 280 ± 4 259 ± 3.5 305 ± 3

Tensile ultimate strength, σu (MPa) 704 ± 3 635 ± 5 606 ± 4.3

Rapture strain, εu (%) 98 ± 6 105 ± 9 108 ± 8
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A view of the DLSP sample in the test setup is illustrated in Figure 5. Additionally,
Figure 6 indicates the results of force-displacement at different mode mixities including
pure mode I (Figure 6a), mixed-mode I/II (Figure 6b–d), and pure mode II (Figure 6e) and
loading rates (1, 50, 400 mm/min). According to Figures 5 and 6, it was observed that the
cracked DLSP specimen exhibited ductile fracture behavior characterized by substantial
non-linear plastic deformation. In other words, during the early stages, the load increases
linearly with the displacement and eventually shifts into a non-linear progression until it
reaches its maximum value. After reaching the maximum load value, the samples continue
deforming until reaching ultimate rupture.
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Additionally, there is a slight increase in maximum load values depicted in Figure 7
with increasing loading rates. For example, as the loading rate increased from 1 to
400 mm/min, the maximum load values for alpha (α) angles of 0, 15, 30, 50, and 67 in-
creased by approximately 7.9%, 5.3%, 4.5%, 5.25%, and 2%, respectively. These findings
suggest that the mixed-mode failure load in steel 304L DLSP samples remains largely
independent of the loading rate within the tested range of 1–400 mm/min in this study.
However, the ultimate displacement (dult) in DLSP samples is notably influenced by the
loading rate, exhibiting an increase with the ascending loading rate, so that this increase is
small for bigger mode mixities from M = 0.24 (α = 50

◦
) to M = 0 (α = 67

◦
). The variations in

the maximum load (Fc) and the ultimate displacement (dult) of DLSP samples are detailed
in Figures 8 and 9.

The bar graphs in Figure 7 clearly illustrate the independence of the maximum load
of the DLSP sample from loading rates. As depicted in Figure 7, unlike the loading rate,
the mode mixity (M) significantly influences the fracture behavior of DLSP samples. The
maximum failure load increases as the mode mixity shifts from pure mode I (M = 1) to pure
mode II (M = 0). For instance, the maximum load in pure mode II is 1.72 times greater than
that in pure mode I. According to Figure 8, the relationship between ultimate displacement,
loading rate, and mode mixity is evident. The increase in ultimate displacement with
varying loading rates (1–400 mm/min) and for different mode mixities—M = 1, M = 0.8,
M = 0.57, M = 0.24, and M = 0—is 207%, 89%, 102%, 93%, and 17%, respectively. Moreover,
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it is noticeable that for each specific loading rate, the ultimate displacement decreases from
M = 1 to M = 0.57 and then increases again from M = 0.24 to M = 0. Overall, the ratio of the
ultimate displacement in pure mode II to that in pure mode I remains consistent for the
1 mm/min loading rate. However, it decreases by about 62% and 70% for loading rates of
50 and 400 mm/min, respectively. Another noteworthy discovery is the negligible effect
of the loading rate on the crack initiation angle of DLSP samples across various loading
modes (M = 1, M = 0.8, M = 0.57, M = 0.24, and M = 0). The fracture path or trajectory in
pure modes I and II under different loading rates is presented in Figures 9 and 10. Upon
observing Figures 9 and 10, it becomes apparent that the loading rate (ranging from 1 to
400 mm/min) has an insignificant impact on the crack initiation angles for modes I and II.
Specifically, the mode I and mode II crack initiation angles (θI and θI I) remain consistent
across different loading rates, maintaining values of approximately 74, 72, and 69 degrees
for pure mode II at loading rates of 1, 50, and 400 mm/min, respectively. It should be noted
that the values of the crack initiation angles in Figures 9 and 10 are obtained by measuring
the angle between the pre-crack line and the direction of the crack growth. The angles
measured here align consistently with those documented in previous references, such as
ref. [36].
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4. Conclusions

This study examined the tensile behavior and fracture response of steel 304L sheets un-
der various loading rates and at different mode mixities. 304L stainless steel demonstrates
substantial plastic deformation capabilities compared to other metallic materials. For tensile
and fracture analysis of this material, dumbbell-shaped and pre-cracked DLSP samples
were prepared and subjected to tensile tests at loading rates of 1, 50, and 400 mm/min.
The findings indicated that the stress and strain diagrams derived from the dumbbell-
shaped samples were nearly independent of the loading rates tested in this study (i.e., 1 to
400 mm/min). Moreover, the results of fracture tests on the pre-cracked DLSP samples
revealed that the loading rates investigated did not significantly impact the maximum load
values in the DLSP samples. The primary discernible effect of the loading rate manifested
in the ultimate displacement of the DLSP samples, notably increasing with higher rates
(especially in dominant mode one loading). In contrast to the loading rate, a substantial
influence of the mode mixity (M) on the maximum load and ultimate displacement values
was observed. Transitioning from pure mode I to pure mode II resulted in increased maxi-
mum load values and decreased ultimate displacement values, respectively. It was noted
that elevating the loading rate led to an increase in displacement at failure, particularly in
fracture tests, as observed in similar studies on analogous alloys subjected to varying strain
rates. Another noteworthy discovery is the negligible effect of the loading rate on the crack
initiation angle of DLSP samples across various loading modes.
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