Progress in Gallium Oxide Field-Effect Transistors for High-Power and RF Applications
Abstract
:1. Introduction
2. Crystal Growth and Material Properties of β-Ga2O3
2.1. Different Phases
2.2. Material Properties
Material Properties | Si | GaAs | 4H-SiC | GaN | β-Ga2O3 | Diamond |
---|---|---|---|---|---|---|
Bandgap, Eg (eV) | 1.1 | 1.4 | 3.3 | 3.4 | 4.9 | 5.5 |
Dielectric Constant, ε | 11.8 | 12.9 | 9.7 | 9 | 10 | 5.5 |
Breakdown field, Ebr (MV cm−1) | 0.3 | 0.4 | 2.5 | 3.3 | 8 | 10 |
Electron mobility, µ (cm2 V−1 s−1) | 1480 | 8400 | 1000 | 1250 | 200–250 | 2000 |
Saturation velocity, vsat (107 cm s−1) | 1 | 1.2 | 2 | 2.5 | 1.8–2 | 1 |
Thermal conductivity, λ (W m−1 K−1) | 150 | 55 | 270 | 210 | 10.9–27 | 1000 |
1 | 14.7 | 317 | 846 | 3214 | 24,660 | |
1 | 1.8 | 278 | 1089 | 2844 | 1100 | |
1 | 10.1 | 46.3 | 100.8 | 142.2 | 1501 | |
1 | 0.3 | 3.6 | 1.8 | 0.2 | 41.5 | |
1 | 5 | 48 | 85 | 279 | 619 |
2.3. Crystal Growth
2.4. Epitaxial Growth
2.5. Doping Strategies
3. β-Ga2O3 FET Designs
3.1. β-Ga2O3 FET Structures
3.1.1. MESFETs and Delta Doping
3.1.2. Self-Aligned Gate (SAG) FETs
3.1.3. Trench/Recessed-Gate FETs
3.1.4. FinFETs
3.1.5. Gate-Connected Field Plates
3.1.6. Source-Connected Field Plates
3.1.7. T-Gates
3.1.8. Semiconductor-on-Insulator (SOI)
3.1.9. Other Novel Structures
3.2. Channel and Substrate Materials
3.2.1. Current Aperture Vertical Transistors and U-Shaped Trench MOSFETs
3.2.2. Oxygen Annealing
3.2.3. Heterostructures
(AlxGa1−x)2O3/β-Ga2O3 Modulation-Doped FETs
AlN/GO
SiC/GO
Diamond/GO
3.3. Source and Drain Ohmic Contacts
3.3.1. Metals and Processes
3.3.2. Improvements
Ion Implantation
Regrown Layers
Intermediate Layers
Diffusion Doping (Spin-on-Glass)
3.4. Gate Dielectrics
3.4.1. Materials and Processes
3.4.2. p-Gates
p-NiO
p-GaN
p-SnO
3.4.3. High-k Gate Dielectrics
3.4.4. Multi-Stack Gate Dielectrics
4. Defect Engineering
4.1. Defects
4.1.1. Characterization
4.1.2. Material Preparation
5. Current Challenges and Major Strategies
5.1. Lack of p-Type Doping
5.2. Low Thermal Conductivity
5.3. Monolithic and Heterogeneous Integration
5.4. Packaging
5.5. Optical Effects and Remote Switching
5.6. Requirements in Real Applications
6. Applications and Trends
7. Conclusions and Outlook
- (1)
- The importance of high-quality epitaxial growth and buffer layers cannot be understated. The highest BFOM FET to date also reports one of the highest mobilities of 184 cm2 V−1 s−1, realized through MOCVD varied low/high temperature layers;
- (2)
- The SAG is vital to both high power and RF in that it is used to scale device geometries and reduce source–gate series resistance. It should be implemented, if possible, in both lateral and vertical FETs;
- (3)
- For high currents, vertical transistors are preferred because the current scales with the device area as opposed to the channel thickness, as in lateral devices. FinFETs and CAVETs show the best results, with FinFETs offering more gate control and reduced leakage, but increased complexity. MacEtch FinFETs are a non-dry-etching alternative;
- (4)
- Normally off (E-mode) FETs are crucial for power electronics because of their reduced off-state power loss, fail-safe high-voltage operation, and simplified circuitry for power switching. The lack of p-type doping, and therefore inversion, in β-Ga2O3 requires approaches such as recessed gates (Section 3.1.3), low-doped channels and CBLs (Section 3.2.1), small-width FinFETs (Section 3.1.4), oxygen annealing (Section 3.2.2), and p-gate materials for normally off operation (Section 3.4.2);
- (5)
- FP structures (GFP, SFP) including T-gates are vital to any high-power device. High-k or extreme-k FP dielectrics are an attractive option to improve breakdown;
- (6)
- SOI FETs can be very useful in conducting studies on thermal, transport, novel gate dielectrics, etc. However, they are limited in their breakdown voltage and small sample size. SOI FETs should be considered as a proof of concept with the intent to apply successful designs into bulk devices;
- (7)
- Novel structures simulated through TCAD, such as vertical trench gates, GAA, air-gap FPs, HBTs, and others, should be used to evaluate the potential of a design before fabrication;
- (8)
- RF FETs have been realized in delta-doped MESFETs, AlGO/GO MODFETs, and HFETs, forming a 2DEG with Si-doped AlGO/UID-GO;
- (9)
- One commonality of RF FETs is their T-gate structure, allowing highly scaled LG while maintaining low noise figures;
- (10)
- RF FETs have reported high operating frequencies at ≥27 GHz with and without FP dielectrics;
- (11)
- Ohmic contacts should always utilize some improvements, such as regrowth, ion implantation, or interlayers;
- (12)
- P-NiO-gate dielectrics show promise in increasing the BFOM, while maintaining high-quality/low-defect density interfaces. A high-bandgap dielectric should be added to increase the gate swing beyond the pn turn-on voltage;
- (13)
- Thermal management is crucial, and the intention to use wafer-bonding techniques or flip-chips with high-thermally conductive substrates must be implemented to further enhance device performance;
- (14)
- For high-power applications, an appealing FET design with high FOM(s) should be fabricated as a large-area device to meet current and breakdown voltage ratings.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Technavio. Wide-Bandgap (WBG) Power Semiconductor Devices Market Analysis 2026. Available online: https://www.technavio.com/report/wide-bandgap-wbg-power-semiconductor-devices-market-industry-analysis (accessed on 15 October 2023).
- Reese, S.B.; Remo, T.; Green, J.; Zakutayev, A. How Much Will Gallium Oxide Power Electronics Cost? Joule 2019, 3, 903–907. [Google Scholar] [CrossRef]
- Millan, J.; Godignon, P.; Perpina, X.; Perez-Tomas, A.; Rebollo, J. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Chow, T.; Tyagi, R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans. Electron Devices 1994, 41, 1481–1483. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 2018, 124, 220901. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Yadava, N.; Chauhan, R.K. Review—Recent Advances in Designing Gallium Oxide MOSFET for RF Application. ECS J. Solid State Sci. Technol. 2020, 9, 065010. [Google Scholar] [CrossRef]
- Reese, S.B.; Zakutayev, A. Gallium oxide techno-economic analysis for the wide bandgap semiconductor market. In Oxide-Based Materials and Devices XI; SPIE: Bellingham, WA, USA, 2020; pp. 6–10. [Google Scholar] [CrossRef]
- Gupta, C.; Pasayat, S.S. Vertical GaN and Vertical Ga2O3 Power Transistors: Status and Challenges. Phys. Status Solidi (Appl. Mater. Sci.) 2022, 219, 2100659. [Google Scholar] [CrossRef]
- Dong, H.; Xue, H.; He, Q.; Qin, Y.; Jian, G.; Long, S.; Liu, M. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J. Semicond. 2019, 40, 011802. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.; Zhang, L.; Ma, Y.; Tang, W.; Chen, T.; Hu, Y.; Zhou, X.; Bian, C.; Zeng, C.; et al. A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties. J. Semicond. 2023, 44, 061801. [Google Scholar] [CrossRef]
- Liu, A.-C.; Hsieh, C.-H.; Langpoklakpam, C.; Singh, K.J.; Lee, W.-C.; Hsiao, Y.-K.; Horng, R.-H.; Kuo, H.-C.; Tu, C.-C. State-of-the-Art β-Ga2O3 Field-Effect Transistors for Power Electronics. ACS Omega 2022, 7, 36070–36091. [Google Scholar] [CrossRef]
- Qiao, R.; Zhang, H.; Zhao, S.; Yuan, L.; Jia, R.; Peng, B.; Zhang, Y. A state-of-art review on gallium oxide field-effect transistors. J. Phys. D: Appl. Phys. 2022, 55, 383003. [Google Scholar] [CrossRef]
- Roy, R.; Hill, V.G.; Osborn, E.F. Polymorphism of Ga2O3 and the System Ga2O3–H2O. J. Am. Chem. Soc. 1952, 74, 719–722. [Google Scholar] [CrossRef]
- Yoshioka, S.; Hayashi, H.; Kuwabara, A.; Oba, F.; Matsunaga, K.; Tanaka, I. Structures and energetics of Ga2O3 polymorphs. J. Phys. Condens. Matter 2007, 19, 346211. [Google Scholar] [CrossRef]
- Playford, H.Y.; Hannon, A.C.; Barney, E.R.; Walton, R.I. Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction. Chem. Eur. J. 2013, 19, 2803–2813. [Google Scholar] [CrossRef] [PubMed]
- Tak, B.R.; Kumar, S.; Kapoor, A.K.; Wang, D.; Li, X.; Sun, H.; Singh, R. Recent advances in the growth of gallium oxide thin films employing various growth techniques—A review. J. Phys. D: Appl. Phys. 2021, 54, 453002. [Google Scholar] [CrossRef]
- Geller, S. Crystal Structure of β-Ga2O3. J. Chem. Phys. 1960, 33, 676–684. [Google Scholar] [CrossRef]
- Mock, A.; Korlacki, R.; Briley, C.; Darakchieva, V.; Monemar, B.; Kumagai, Y.; Goto, K.; Higashiwaki, M.; Schubert, M. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β−Ga2O3. Phys. Rev. B 2017, 96, 245205. [Google Scholar] [CrossRef]
- Åhman, J.; Svensson, G.; Albertsson, J. A Reinvestigation of β-Gallium Oxide. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1996, 52, 1336–1338. [Google Scholar] [CrossRef]
- Ueda, N.; Hosono, H.; Waseda, R.; Kawazoe, H. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl. Phys. Lett. 1997, 71, 933–935. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Murakami, H.; Kumagai, Y.; Koukitu, A.; Kuramata, A.; Masui, T.; Yamakoshi, S. Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 2016, 31, 034001. [Google Scholar] [CrossRef]
- Varley, J.B.; Janotti, A.; Franchini, C.; Van de Walle, C.G. Role of self-trapping in luminescence andp-type conductivity of wide-band-gap oxides. Phys. Rev. B 2012, 85, 081109. [Google Scholar] [CrossRef]
- Tippins, H.H. Optical Absorption and Photoconductivity in the Band Edge of β-Ga2O3. Phys. Rev. B 1965, 140, A316–A319. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater. 2018, 4, 1600501. [Google Scholar] [CrossRef]
- Guo, Z.; Verma, A.; Wu, X.; Sun, F.; Hickman, A.; Masui, T.; Kuramata, A.; Higashiwaki, M.; Jena, D.; Luo, T. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. 2015, 106, 111909. [Google Scholar] [CrossRef]
- Boteler, L.; Lelis, A.; Berman, M.; Fish, M. Thermal Conductivity of Power Semiconductors—When Does It Matter? In Proceedings of the 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 29–21 October 2019; pp. 265–271. [Google Scholar]
- Ghosh, K.; Singisetti, U. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement. J. Mater. Res. 2017, 32, 4142–4152. [Google Scholar] [CrossRef]
- Kang, Y.; Krishnaswamy, K.; Peelaers, H.; Van de Walle, C.G. Fundamental limits on the electron mobility of β-Ga2O3. J. Phys. Condens. Matter 2017, 29, 234001. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Tanen, N.; Verma, A.; Guo, Z.; Luo, T.; Xing, H.; Jena, D. Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett. 2016, 109, 212101. [Google Scholar] [CrossRef]
- Chen, X.; Jagadish, C.; Ye, J. Fundamental properties and power electronic device progress of gallium oxide. In Oxide Electronics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 235–352. [Google Scholar] [CrossRef]
- Kuramata, A.; Koshi, K.; Watanabe, S.; Yamaoka, Y.; Masui, T.; Yamakoshi, S. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 2016, 55, 1202A2. [Google Scholar] [CrossRef]
- Aida, H.; Nishiguchi, K.; Takeda, H.; Aota, N.; Sunakawa, K.; Yaguchi, Y. Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method. Jpn. J. Appl. Phys. 2008, 47, 8506–8509. [Google Scholar] [CrossRef]
- Tomm, Y.; Reiche, P.; Klimm, D.; Fukuda, T. Czochralski grown Ga2O3 crystals. J. Cryst. Growth 2000, 220, 510–514. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Kobayashi, T.; Matsuki, Y.; Ohba, E. 2-inch diameter (1 0 0) β-Ga2O3 crystal growth by the vertical Bridgman technique in a resistance heating furnace in ambient air. J. Cryst. Growth 2020, 545, 125724. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Ohba, E.; Kobayashi, T.; Yanagisawa, J.; Miyagawa, C.; Nakamura, Y. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J. Cryst. Growth 2016, 447, 36–41. [Google Scholar] [CrossRef]
- Ohira, S.; Yoshioka, M.; Sugawara, T.; Nakajima, K.; Shishido, T. Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3. Thin Solid Films 2006, 496, 53–57. [Google Scholar] [CrossRef]
- Víllora, E.G.; Shimamura, K.; Yoshikawa, Y.; Aoki, K.; Ichinose, N. Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth 2004, 270, 420–426. [Google Scholar] [CrossRef]
- Chase, A.O. Growth of beta-Ga2, O3 by the Verneuil Technique. J. Am. Ceram. Soc. 1964, 47, 470. [Google Scholar] [CrossRef]
- Lorenz, M.; Woods, J.; Gambino, R. Some electrical properties of the semiconductor β-Ga2O3. J. Phys. Chem. Solids 1967, 28, 403–404. [Google Scholar] [CrossRef]
- Chi, Z.; Asher, J.J.; Jennings, M.R.; Chikoidze, E.; Pérez-Tomás, A. Ga2O3 and Related Ultra-Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation. Materials 2022, 15, 1164. [Google Scholar] [CrossRef]
- Tsai, M.-Y.; Bierwagen, O.; White, M.E.; Speck, J.S. β-Ga2O3 growth by plasma-assisted molecular beam epitaxy. J. Vac. Sci. Technol. A 2010, 28, 354–359. [Google Scholar] [CrossRef]
- Hadamek, T.; Posadas, A.B.; Al-Quaiti, F.; Smith, D.J.; McCartney, M.R.; Demkov, A.A. β-Ga2O3 on Si (001) grown by plasma-assisted MBE with γ-Al2O3 (111) buffer layer: Structural characterization. AIP Adv. 2021, 11, 045209. [Google Scholar] [CrossRef]
- Kalarickal, N.K.; Xia, Z.; McGlone, J.; Krishnamoorthy, S.; Moore, W.; Brenner, M.; Arehart, A.R.; Ringel, S.A.; Rajan, S. Mechanism of Si doping in plasma assisted MBE growth of β-Ga2O3. Appl. Phys. Lett. 2019, 115, 152106. [Google Scholar] [CrossRef]
- Oshima, Y.; Vίllora, E.G.; Shimamura, K. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0 0 0 1) substrates by halide vapor phase epitaxy. J. Cryst. Growth 2015, 410, 53–58. [Google Scholar] [CrossRef]
- Ranga, P.; Bhattacharyya, A.; Whittaker-Brooks, L.; Scarpulla, M.A.; Krishnamoorthy, S. N-type doping of low-pressure chemical vapor deposition grown β-Ga2O3 thin films using solid-source germanium. J. Vac. Sci. Technol. A 2021, 39, 030404. [Google Scholar] [CrossRef]
- Rafique, S.; Karim, R.; Johnson, J.M.; Hwang, J.; Zhao, H. LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates. Appl. Phys. Lett. 2018, 112, 052104. [Google Scholar] [CrossRef]
- Rafique, S.; Han, L.; Zhao, H. (Invited) Ultrawide Bandgap β-Ga2O3 Thin Films: Growths, Properties and Devices. ECS Trans. 2017, 80, 203–216. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, J.; Qi, D.-C.; Chen, L.; Zhang, K.H.L. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater. 2020, 8, 020906. [Google Scholar] [CrossRef]
- Peelaers, H.; Lyons, J.L.; Varley, J.B.; Van de Walle, C.G. Deep acceptors and their diffusion in Ga2O3. APL Mater. 2019, 7, 022519. [Google Scholar] [CrossRef]
- Dong, L.; Jia, R.; Xin, B.; Peng, B.; Zhang, Y. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci. Rep. 2017, 7, 40160. [Google Scholar] [CrossRef]
- Varley, J.B.; Weber, J.R.; Janotti, A.; Van de Walle, C.G. Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 2010, 97, 142106. [Google Scholar] [CrossRef]
- Neal, A.T.; Mou, S.; Rafique, S.; Zhao, H.; Ahmadi, E.; Speck, J.S.; Stevens, K.T.; Blevins, J.D.; Thomson, D.B.; Moser, N.; et al. Donors and deep acceptors in β-Ga2O3. Appl. Phys. Lett. 2018, 113, 062101. [Google Scholar] [CrossRef]
- Wang, Y.; Su, J.; Lin, Z.; Zhang, J.; Chang, J.; Hao, Y. Recent progress on the effects of impurities and defects on the properties of Ga2O3. J. Mater. Chem. C 2022, 10, 13395–13436. [Google Scholar] [CrossRef]
- Ingebrigtsen, M.E.; Varley, J.B.; Kuznetsov, A.Y.; Svensson, B.G.; Alfieri, G.; Mihaila, A.; Badstübner, U.; Vines, L. Iron and intrinsic deep level states in Ga2O3. Appl. Phys. Lett. 2018, 112, 042104. [Google Scholar] [CrossRef]
- Chikoidze, E.; Fellous, A.; Perez-Tomas, A.; Sauthier, G.; Tchelidze, T.; Ton-That, C.; Huynh, T.T.; Phillips, M.; Russell, S.; Jennings, M.; et al. P-type β-gallium oxide: A new perspective for power and optoelectronic devices. Mater. Today Phys. 2017, 3, 118–126. [Google Scholar] [CrossRef]
- Chikoidze, E.; Tchelidze, T.; Sartel, C.; Chi, Z.; Kabouche, R.; Madaci, I.; Rubio, C.; Mohamed, H.; Sallet, V.; Medjdoub, F.; et al. Ultra-high critical electric field of 13.2 MV/cm for Zn-doped p-type β-Ga2O3. Mater. Today Phys. 2020, 15, 100263. [Google Scholar] [CrossRef]
- Islam, M.; Liedke, M.O.; Winarski, D.; Butterling, M.; Wagner, A.; Hosemann, P.; Wang, Y.; Uberuaga, B.; Selim, F.A. Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3. Sci. Rep. 2020, 10, 6134. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Y.; Lv, Y.; Han, S.; Han, T.; Dun, S.; Guo, H.; Bu, A.; Feng, Z. 10-kV Lateral β-Ga2O3 MESFETs with B Ion Implanted Planar Isolation. IEEE Electron Device Lett. 2023, 44, 1048–1051. [Google Scholar] [CrossRef]
- Joishi, C.; Xia, Z.; Jamison, J.S.; Sohel, S.H.; Myers, R.C.; Lodha, S.; Rajan, S. Deep-Recessed β-Ga2O3 Delta-Doped Field-Effect Transistors with In Situ Epitaxial Passivation. IEEE Trans. Electron. Devices 2020, 67, 4813–4819. [Google Scholar] [CrossRef]
- Kalarickal, N.K.; Dheenan, A.; McGlone, J.F.; Dhara, S.; Brenner, M.; Ringel, S.A.; Rajan, S. Demonstration of self-aligned β-Ga2O3 δ-doped MOSFETs with current density >550 mA/mm. Appl. Phys. Lett. 2023, 122, 113506. [Google Scholar] [CrossRef]
- Tetzner, K.; Treidel, E.B.; Hilt, O.; Popp, A.; Bin Anooz, S.; Wagner, G.; Thies, A.; Ickert, K.; Gargouri, H.; Wurfl, J. Lateral 1.8 kV β-Ga2O3 MOSFET with 155 MW/cm2 Power Figure of Merit. IEEE Electron. Device Lett. 2019, 40, 1503–1506. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Roy, S.; Ranga, P.; Peterson, C.; Krishnamoorthy, S. High-Mobility Tri-Gate β-Ga2O3 MESFETs with a Power Figure of Merit Over 0.9 GW/cm2. IEEE Electron. Device Lett. 2022, 43, 1637–1640. [Google Scholar] [CrossRef]
- Sharma, S.; Meng, L.; Bhuiyan, A.F.M.A.U.; Feng, Z.; Eason, D.; Zhao, H.; Singisetti, U. Vacuum Annealed β-Ga2O3 Recess Channel MOSFETs with 8.56 kV Breakdown Voltage. IEEE Electron. Device Lett. 2022, 43, 2029–2032. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, H.; Zhou, X.; Wang, Y.; Song, X.; Cai, Y.; Yan, Q.; Wang, C.; Liang, S.; Zhang, J.; et al. Lateral β-Ga2O3 MOSFETs with High Power Figure of Merit of 277 MW/cm2. IEEE Electron. Device Lett. 2020, 41, 537–540. [Google Scholar] [CrossRef]
- Dryden, D.M.; Liddy, K.J.; Islam, A.E.; Williams, J.C.; Walker, D.E.; Hendricks, N.S.; Moser, N.A.; Arias-Purdue, A.; Sepelak, N.P.; DeLello, K.; et al. Scaled T-Gate β-Ga2O3 MESFETs with 2.45 kV Breakdown and High Switching Figure of Merit. IEEE Electron. Device Lett. 2022, 43, 1307–1310. [Google Scholar] [CrossRef]
- Feng, Z.; Cai, Y.; Yan, G.; Hu, Z.; Dang, K.; Zhang, Y.; Lu, Z.; Cheng, H.; Lian, X.; Xu, Y.; et al. A 800 V β-Ga2O3 Metal–Oxide–Semiconductor Field-Effect Transistor with High-Power Figure of Merit of over 86.3 MW cm−2. Phys. Status Solidi A 2019, 216, 1900421. [Google Scholar] [CrossRef]
- Zhou, H.; Maize, K.; Qiu, G.; Shakouri, A.; Ye, P.D. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl. Phys. Lett. 2017, 111, 092102. [Google Scholar] [CrossRef]
- Wong, M.H.; Goto, K.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Current Aperture Vertical β-Ga2O3 MOSFETs Fabricated by N- and Si-Ion Implantation Doping. IEEE Electron. Device Lett. 2019, 40, 431–434. [Google Scholar] [CrossRef]
- Joishi, C.; Zhang, Y.; Xia, Z.; Sun, W.; Arehart, A.R.; Ringel, S.; Lodha, S.; Rajan, S. Breakdown Characteristics of β-(Al0.22Ga0.78)2O3/Ga2O3 Field-Plated Modulation-Doped Field-Effect Transistors. IEEE Electron. Device Lett. 2019, 40, 1241–1244. [Google Scholar] [CrossRef]
- Lei, D.; Han, K.; Wu, Y.; Liu, Z.; Gong, X. High Performance Ga2O3 Metal-Oxide-Semiconductor Field-Effect Transistors on an AlN/Si Substrate. IEEE J. Electron. Devices Soc. 2019, 7, 596–600. [Google Scholar] [CrossRef]
- Song, Y.; Bhattacharyya, A.; Karim, A.; Shoemaker, D.; Huang, H.-L.; Roy, S.; McGray, C.; Leach, J.H.; Hwang, J.; Krishnamoorthy, S.; et al. Ultra-Wide Band Gap Ga2O3-on-SiC MOSFETs. ACS Appl. Mater. Interfaces 2023, 15, 7137–7147. [Google Scholar] [CrossRef]
- Noh, J.; Ye, P.D.; Alajlouni, S.; Tadjer, M.J.; Culbertson, J.C.; Bae, H.; Si, M.; Zhou, H.; Bermel, P.A.; Shakouri, A. High Performance β-Ga2O3 Nano-Membrane Field Effect Transistors on a High Thermal Conductivity Diamond Substrate. IEEE J. Electron. Devices Soc. 2019, 7, 914–918. [Google Scholar] [CrossRef]
- Wang, C.; Gong, H.; Lei, W.; Cai, Y.; Hu, Z.; Xu, S.; Liu, Z.; Feng, Q.; Zhou, H.; Ye, J.; et al. Demonstration of the p-NiOx/n-Ga2O3 Heterojunction Gate FETs and Diodes with BV2/Ron,sp Figures of Merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron. Device Lett. 2021, 42, 485–488. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, H.; Zhang, J.; Mu, W.; Wei, J.; Jia, Z.; Zheng, X.; Luo, X.; Tao, X.; Hao, Y. Hysteresis-free and μs-switching of D/E-modes Ga2O3 hetero-junction FETs with the BV2/Ron,sp of 0.74/0.28 GW/cm2. Appl. Phys. Lett. 2022, 120, 112101. [Google Scholar] [CrossRef]
- Wang, C.; Yan, Q.; Su, C.; Alghamdi, S.; Ghandourah, E.; Liu, Z.; Feng, X.; Zhang, W.; Dang, K.; Wang, Y.; et al. Demonstration of the β-Ga2O3 MOS-JFETs with Suppressed Gate Leakage Current and Large Gate Swing. IEEE Electron. Device Lett. 2023, 44, 380–383. [Google Scholar] [CrossRef]
- Tetzner, K.; Egbo, K.; Klupsch, M.; Unger, R.-S.; Popp, A.; Chou, T.-S.; Bin Anooz, S.; Galazka, Z.; Trampert, A.; Bierwagen, O.; et al. SnO/β-Ga2O3 heterojunction field-effect transistors and vertical p–n diodes. Appl. Phys. Lett. 2022, 120, 112110. [Google Scholar] [CrossRef]
- Kalarickal, N.K.; Feng, Z.; Bhuiyan, A.F.M.A.U.; Xia, Z.; Moore, W.; McGlone, J.F.; Arehart, A.R.; Ringel, S.A.; Zhao, H.; Rajan, S. Electrostatic Engineering Using Extreme Permittivity Materials for Ultra-Wide Bandgap Semiconductor Transistors. IEEE Trans. Electron. Devices 2021, 68, 29–35. [Google Scholar] [CrossRef]
- Kalarickal, N.K.; Xia, Z.; Huang, H.-L.; Moore, W.; Liu, Y.; Brenner, M.; Hwang, J.; Rajan, S. β-(Al0.18Ga0.82)2O3/Ga2O3 Double Heterojunction Transistor with Average Field of 5.5 MV/cm. IEEE Electron. Device Lett. 2021, 42, 899–902. [Google Scholar] [CrossRef]
- Chabak, K.D.; McCandless, J.P.; Moser, N.A.; Green, A.J.; Mahalingam, K.; Crespo, A.; Hendricks, N.; Howe, B.M.; Tetlak, S.E.; Leedy, K.; et al. Recessed-Gate Enhancement-Mode β-Ga2O3 MOSFETs. IEEE Electron. Device Lett. 2017, 39, 67–70. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Hu, Z.; Nakamura, T.; Jena, D.; Xing, H.G. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019. [Google Scholar] [CrossRef]
- Zhou, H.; Si, M.; Alghamdi, S.; Qiu, G.; Yang, L.; Ye, P.D. High-Performance Depletion/Enhancement-ode β-Ga2O3 on Insulator (GOOI) Field-Effect Transistors with Record Drain Currents of 600/450 mA/mm. IEEE Electron. Device Lett. 2017, 38, 103–106. [Google Scholar] [CrossRef]
- Zeng, K.; Soman, R.; Bian, Z.; Jeong, S.; Chowdhury, S. Vertical Ga2O3 MOSFET with Magnesium Diffused Current Blocking Layer. IEEE Electron. Device Lett. 2022, 43, 1527–1530. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, Y.; Xu, G.; Liu, Q.; Liu, J.; He, Q.; Zhao, X.; Long, S. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl. Phys. Lett. 2022, 121, 223501. [Google Scholar] [CrossRef]
- Wang, X.; Yan, S.; Mu, W.; Jia, Z.; Zhang, J.; Xin, Q.; Tao, X.; Song, A. Enhancement-Mode Ga2O3 FET with High Mobility Using p-Type SnO Heterojunction. IEEE Electron. Device Lett. 2022, 43, 44–47. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Mahadik, N.A.; Wheeler, V.D.; Glaser, E.R.; Ruppalt, L.; Koehler, A.D.; Hobart, K.D.; Eddy, C.R.; Kub, F.J. Editors’ Choice Communication—A (001) β-Ga2O3MOSFET with +2.9 V Threshold Voltage and HfO2Gate Dielectric. ECS J. Solid State Sci. Technol. 2016, 5, P468–P470. [Google Scholar] [CrossRef]
- Feng, Z.; Cai, Y.; Li, Z.; Hu, Z.; Zhang, Y.; Lu, X.; Kang, X.; Ning, J.; Zhang, C.; Feng, Q.; et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application. Appl. Phys. Lett. 2020, 116, 243503. [Google Scholar] [CrossRef]
- Xia, Z.; Xue, H.; Joishi, C.; Mcglone, J.; Kalarickal, N.K.; Sohel, S.H.; Brenner, M.; Arehart, A.; Ringel, S.; Lodha, S.; et al. β-Ga2O3 Delta-Doped Field-Effect Transistors with Current Gain Cutoff Frequency of 27 GHz. IEEE Electron. Device Lett. 2019, 40, 1052–1055. [Google Scholar] [CrossRef]
- Moser, N.A.; Asel, T.; Liddy, K.J.; Lindquist, M.; Miller, N.C.; Mou, S.; Neal, A.; Walker, D.E.; Tetlak, S.; Leedy, K.D.; et al. Pulsed Power Performance of β-Ga2O3 MOSFETs at L-Band. IEEE Electron. Device Lett. 2020, 41, 989–992. [Google Scholar] [CrossRef]
- Green, A.J.; Chabak, K.D.; Baldini, M.; Moser, N.; Gilbert, R.; Fitch, R.C.; Wagner, G.; Galazka, Z.; McCandless, J.; Crespo, A.; et al. β-Ga2O3 MOSFETs for Radio Frequency Operation. IEEE Electron. Device Lett. 2017, 38, 790–793. [Google Scholar] [CrossRef]
- Yu, X.; Gong, H.; Zhou, J.; Shen, Z.; Ren, F.-F.; Chen, D.; Ou, X.; Kong, Y.; Li, Z.; Chen, T.; et al. RF performance enhancement in sub-μm scaled β-Ga2O3 tri-gate FinFETs. Appl. Phys. Lett. 2022, 121, 072102. [Google Scholar] [CrossRef]
- Singh, M.; Casbon, M.A.; Uren, M.J.; Pomeroy, J.W.; Dalcanale, S.; Karboyan, S.; Tasker, P.J.; Wong, M.H.; Sasaki, K.; Kuramata, A.; et al. Pulsed Large Signal RF Performance of Field-Plated Ga2O3 MOSFETs. IEEE Electron. Device Lett. 2018, 39, 1572–1575. [Google Scholar] [CrossRef]
- Saha, C.N.; Vaidya, A.; Bhuiyan, A.F.M.A.U.; Meng, L.; Sharma, S.; Zhao, H.; Singisetti, U. Scaled β-Ga2O3 thin channel MOSFET with 5.4 MV/cm average breakdown field and near 50 GHz fMAX. Appl. Phys. Lett. 2023, 122, 182106. [Google Scholar] [CrossRef]
- Yu, X.; Gong, H.; Zhou, J.; Shen, Z.; Xu, W.; You, T.; Wang, J.; Zhang, S.; Wang, Y.; Zhang, K.; et al. High-Voltage β-Ga2O3 RF MOSFETs with a Shallowly-Implanted 2DEG-Like Channel. IEEE Electron. Device Lett. 2023, 44, 1060–1063. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, H.; Wang, Y.; Fu, X.; Ma, C.; Song, X.; Zhou, X.; Zhang, Y.; Dong, P.; Du, H.; et al. Oxygen annealing impact on β-Ga2O3 MOSFETs: Improved pinch-off characteristic and output power density. Appl. Phys. Lett. 2020, 117, 133503. [Google Scholar] [CrossRef]
- Saha, C.N.; Vaidya, A.; Singisetti, U. Temperature dependent pulsed IV and RF characterization of β-(AlxGa1−x)2O3/Ga2O3 hetero-structure FET with ex situ passivation. Appl. Phys. Lett. 2022, 120, 172102. [Google Scholar] [CrossRef]
- Vaidya, A.; Saha, C.N.; Singisetti, U. Enhancement Mode β-(AlxGa1−x)2O3/Ga2O3 Heterostructure FET (HFET) with High Transconductance and Cutoff Frequency. IEEE Electron. Device Lett. 2021, 42, 1444–1447. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, S.; Wei, K.; Zhang, S.; Wang, X.; Zheng, Y.; Liu, G.; Chen, X.; Li, Y.; Liu, X. Millimeter-Wave AlGaN/GaN HEMTs with 43.6% Power-Added-Efficiency at 40 GHz Fabricated by Atomic Layer Etching Gate Recess. IEEE Electron. Device Lett. 2020, 41, 701–704. [Google Scholar] [CrossRef]
- Moon, J.-S.; Grabar, B.; Wong, J.; Chuong, D.; Arkun, E.; Morales, D.V.; Chen, P.; Malek, C.; Fanning, D.; Venkatesan, N.; et al. Power Scaling of Graded-Channel GaN HEMTs with Mini-Field-Plate T-gate and 156 GHz fT. IEEE Electron. Device Lett. 2021, 42, 796–799. [Google Scholar] [CrossRef]
- Yu, C.; Zhou, C.; Guo, J.; He, Z.; Ma, M.; Yu, H.; Song, X.; Bu, A.; Feng, Z. Hydrogen-terminated diamond MOSFETs on (0 0 1) single crystal diamond with state of the art high RF power density. Funct. Diam. 2022, 2, 64–70. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 2012, 100, 013504. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Xia, Z.; Bajaj, S.; Brenner, M.; Rajan, S. Delta-doped β-gallium oxide field-effect transistor. Appl. Phys. Express 2017, 10, 051102. [Google Scholar] [CrossRef]
- Joishi, C.; Xia, Z.; McGlone, J.; Zhang, Y.; Arehart, A.R.; Ringel, S.; Lodha, S.; Rajan, S. Effect of buffer iron doping on delta-doped β-Ga2O3 metal semiconductor field effect transistors. Appl. Phys. Lett. 2018, 113, 123501. [Google Scholar] [CrossRef]
- Xia, Z.; Joishi, C.; Krishnamoorthy, S.; Bajaj, S.; Zhang, Y.; Brenner, M.; Lodha, S.; Rajan, S. Delta Doped β-Ga2O3 Field Effect Transistors with Regrown Ohmic Contacts. IEEE Electron. Device Lett. 2018, 39, 568–571. [Google Scholar] [CrossRef]
- McGlone, J.F.; Xia, Z.; Joishi, C.; Lodha, S.; Rajan, S.; Ringel, S.; Arehart, A.R. Identification of critical buffer traps in Si δ-doped β-Ga2O3 MESFETs. Appl. Phys. Lett. 2019, 115, 153501. [Google Scholar] [CrossRef]
- Dheenan, A.V.; Dheenan, A.V.; McGlone, J.F.; McGlone, J.F.; Kalarickal, N.K.; Kalarickal, N.K.; Huang, H.-L.; Huang, H.-L.; Brenner, M.; Brenner, M.; et al. β-Ga2O3 MESFETs with insulating Mg-doped buffer grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2022, 121, 113503. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Roy, S.; Ranga, P.; Shoemaker, D.; Song, Y.; Lundh, J.S.; Choi, S.; Krishnamoorthy, S. 130 mA mm−1 β-Ga2O3 metal semiconductor field effect transistor with low-temperature metalorganic vapor phase epitaxy-regrown ohmic contacts. Appl. Phys. Express 2021, 14, 076502. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Ranga, P.; Roy, S.; Peterson, C.; Alema, F.; Seryogin, G.; Osinsky, A.; Krishnamoorthy, S. Multi-kV Class β-Ga2O3 MESFETs with a Lateral Figure of Merit up to 355 MW/cm2. IEEE Electron. Device Lett. 2021, 42, 1272–1275. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Sharma, S.; Alema, F.; Ranga, P.; Roy, S.; Peterson, C.; Seryogin, G.; Osinsky, A.; Singisetti, U.; Krishnamoorthy, S. 4.4 kV β-Ga2O3 MESFETs with power figure of merit exceeding 100 MW cm−2. Appl. Phys. Express 2022, 15, 061001. [Google Scholar] [CrossRef]
- Liddy, K.J.; Green, A.J.; Hendricks, N.S.; Heller, E.R.; Moser, N.A.; Leedy, K.D.; Popp, A.; Lindquist, M.T.; Tetlak, S.E.; Wagner, G.; et al. Thin channel β-Ga2O3 MOSFETs with self-aligned refractory metal gates. Appl. Phys. Express 2019, 12, 126501. [Google Scholar] [CrossRef]
- Moser, N.; Liddy, K.; Islam, A.; Miller, N.; Leedy, K.; Asel, T.; Mou, S.; Green, A.; Chabak, K. Toward high voltage radio frequency devices in β-Ga2O3. Appl. Phys. Lett. 2020, 117, 242101. [Google Scholar] [CrossRef]
- Wong, M.H.; Nakata, Y.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl. Phys. Express 2017, 10, 041101. [Google Scholar] [CrossRef]
- Chabak, K.D.; Moser, N.; Green, A.J.; Walker, D.E.; Tetlak, S.E.; Heller, E.; Crespo, A.; Fitch, R.; McCandless, J.P.; Leedy, K.; et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl. Phys. Lett. 2016, 109, 213501. [Google Scholar] [CrossRef]
- Dong, H.; Long, S.; Sun, H.; Zhao, X.; He, Q.; Qin, Y.; Jian, G.; Zhou, X.; Yu, Y.; Guo, W.; et al. Fast Switching β-Ga2O3 Power MOSFET with a Trench-Gate Structure. IEEE Electron. Device Lett. 2019, 40, 1385–1388. [Google Scholar] [CrossRef]
- Do, H.-B.; Phan-Gia, A.-V.; Nguyen, V.Q.; De Souza, M.M. Optimization of normally-off β-Ga2O3 MOSFET with high Ion and BFOM: A TCAD study. AIP Adv. 2022, 12, 065024. [Google Scholar] [CrossRef]
- Sharma, R.; Patnaik, A.; Sharma, P. Impact of doping concentration and recess depth to achieve enhancement mode operation in β-Ga2O3 MOSFET. Microelectron. J. 2023, 135, 105755. [Google Scholar] [CrossRef]
- Jang, C.-H.; Atmaca, G.; Cha, H.-Y. Normally-off β-Ga2O3 MOSFET with an Epitaxial Drift Layer. Micromachines 2022, 13, 1185. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Nomoto, K.; Li, W.; Zhang, Z.; Tanen, N.; Thieu, Q.T.; Sasaki, K.; Kuramata, A.; Nakamura, T.; Jena, D.; et al. Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors. Appl. Phys. Lett. 2018, 113, 122103. [Google Scholar] [CrossRef]
- Hu, Z.; Nomoto, K.; Li, W.; Tanen, N.; Sasaki, K.; Kuramata, A.; Nakamura, T.; Jena, D.; Xing, H.G. Enhancement-Mode Ga2O3 Vertical Transistors with Breakdown Voltage >1 kV. IEEE Electron. Device Lett. 2018, 39, 869–872. [Google Scholar] [CrossRef]
- Hu, Z.; Nomoto, K.; Li, W.; Jinno, R.; Nakamura, T.; Jena, D.; Xing, H. 1.6 kV Vertical Ga2O3 FinFETs with Source-Connected Field Plates and Normally-off Operation. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), Shanghai, China, 12–23 May 2019; pp. 483–486. [Google Scholar] [CrossRef]
- Wakimoto, D.; Lin, C.-H.; Thieu, Q.T.; Miyamoto, H.; Sasaki, K.; Kuramata, A. Nitrogen-doped β-Ga2O3 vertical transistors with a threshold voltage of ≥1.3 V and a channel mobility of 100 cm2 V−1 s−1. Appl. Phys. Express 2023, 16, 036503. [Google Scholar] [CrossRef]
- Tetzner, K.; Klupsch, M.; Popp, A.; Bin Anooz, S.; Chou, T.-S.; Galazka, Z.; Ickert, K.; Matalla, M.; Unger, R.-S.; Treidel, E.B.; et al. Enhancement-mode vertical (100) β-Ga2O3 FinFETs with an average breakdown strength of 2.7 MV cm−1. Jpn. J. Appl. Phys. 2023, 62, SF1010. [Google Scholar] [CrossRef]
- Song, Y.; Mohseni, P.K.; Kim, S.H.; Shin, J.C.; Ishihara, T.; Adesida, I.; Li, X. Ultra-High Aspect Ratio InP Junctionless FinFETs by a Novel Wet Etching Method. IEEE Electron. Device Lett. 2016, 37, 970–973. [Google Scholar] [CrossRef]
- Huang, H.-C.; Ren, Z.; Chan, C.; Li, X. Wet etch, dry etch, and MacEtch of β-Ga2O3: A review of characteristics and mechanism. J. Mater. Res. 2021, 36, 4756–4770. [Google Scholar] [CrossRef]
- Huang, H.-C.; Ren, Z.; Bhuiyan, A.F.M.A.U.; Feng, Z.; Yang, Z.; Luo, X.; Huang, A.Q.; Green, A.; Chabak, K.; Zhao, H.; et al. β-Ga2O3 FinFETs with ultra-low hysteresis by plasma-free metal-assisted chemical etching. Appl. Phys. Lett. 2022, 121, 052102. [Google Scholar] [CrossRef]
- Huang, H.-C.; Kim, M.; Zhan, X.; Chabak, K.; Kim, J.D.; Kvit, A.; Liu, D.; Ma, Z.; Zuo, J.-M.; Li, X. High Aspect Ratio β-Ga2O3 Fin Arrays with Low-Interface Charge Density by Inverse Metal-Assisted Chemical Etching. ACS Nano 2019, 13, 8784–8792. [Google Scholar] [CrossRef]
- Ren, Z.; Huang, H.-C.; Lee, H.; Chan, C.; Roberts, H.C.; Wu, X.; Waseem, A.; Bhuiyan, A.F.M.A.U.; Zhao, H.; Zhu, W.; et al. Temperature dependent characteristics of β-Ga2O3 FinFETs by MacEtch. Appl. Phys. Lett. 2023, 123, 043505. [Google Scholar] [CrossRef]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Field-Plated Ga2O3 MOSFETs with a Breakdown Voltage of over 750 V. IEEE Electron. Device Lett. 2016, 37, 212–215. [Google Scholar] [CrossRef]
- Zeng, K.; Vaidya, A.; Singisetti, U. 1.85 kV Breakdown Voltage in Lateral Field-Plated Ga2O3 MOSFETs. IEEE Electron. Device Lett. 2018, 39, 1385–1388. [Google Scholar] [CrossRef]
- Zeng, K.; Vaidya, A.; Singisetti, U. A field-plated Ga2O3 MOSFET with near 2-kV breakdown voltage and 520 mΩ · cm2 on-resistance. Appl. Phys. Express 2019, 12, 081003. [Google Scholar] [CrossRef]
- Sharma, S.; Zeng, K.; Saha, S.; Singisetti, U. Field-Plated Lateral Ga2O3 MOSFETs with Polymer Passivation and 8.03 kV Breakdown Voltage. IEEE Electron. Device Lett. 2020, 41, 836–839. [Google Scholar] [CrossRef]
- Vetury, R.; Zhang, N.Q.; Keller, S.; Mishra, U.K. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron. Devices 2001, 48, 560–566. [Google Scholar] [CrossRef]
- Vaidya, A.; Singisetti, U. Temperature-Dependent Current Dispersion Study in β-Ga2O3 FETs Using Submicrosecond Pulsed I–V Characteristics. IEEE Trans. Electron. Devices 2021, 68, 3755–3761. [Google Scholar] [CrossRef]
- Maimon, O.; A Moser, N.; Liddy, K.J.; Green, A.J.; Chabak, K.D.; Cheung, K.P.; Pookpanratana, S.; Li, Q. Measurement and gate-voltage dependence of channel and series resistances in lateral depletion-mode β-Ga2O3 MOSFETs. Semicond. Sci. Technol. 2023, 38, 075016. [Google Scholar] [CrossRef]
- Mun, J.K.; Cho, K.; Chang, W.; Jung, H.-W.; Do, J. Editors’ Choice—2.32 kV Breakdown Voltage Lateral β-Ga2O3 MOSFETs with Source-Connected Field Plate. ECS J. Solid State Sci. Technol. 2019, 8, Q3079–Q3082. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, X.; Long, S.; Liang, S.; Song, X.; Zhou, X.; Dong, H.; Wang, Y.; Feng, Z.; Cai, S. Lateral source field-plated β-Ga2O3 MOSFET with recorded breakdown voltage of 2360 V and low specific on-resistance of 560 mΩ cm2. Semicond. Sci. Technol. 2019, 34, 11LT02. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, X.; Long, S.; Song, X.; Wang, Y.; Liang, S.; He, Z.; Han, T.; Tan, X.; Feng, Z.; et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2. IEEE Electron. Device Lett. 2019, 40, 83–86. [Google Scholar] [CrossRef]
- Zhu, M.; Xie, Y.; Shao, J.; Chen, Y. Nanofabrications of T shape gates for high electron mobility transistors in microwaves and THz waves, a review. Micro Nano Eng. 2021, 13, 100091. [Google Scholar] [CrossRef]
- Chabak, K.; Walker, D.; Green, A.; Crespo, A.; Lindquist, M.; Leedy, K.; Tetlak, S.; Gilbert, R.; Moser, N.A.; Jessen, G. Sub-Micron Gallium Oxide Radio Frequency Field-Effect Transistors. In Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Ann Arbor, MI, USA, 16–18 July 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Kamimura, T.; Nakata, Y.; Higashiwaki, M. Delay-time analysis in radio-frequency β-Ga2O3 field effect transistors. Appl. Phys. Lett. 2020, 117, 253501. [Google Scholar] [CrossRef]
- Hwang, W.S.; Verma, A.; Peelaers, H.; Protasenko, V.; Rouvimov, S.; Xing, H.; Seabaugh, A.; Haensch, W.; Van de Walle, C.; Galazka, Z.; et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl. Phys. Lett. 2014, 104, 203111. [Google Scholar] [CrossRef]
- Ahn, S.; Ren, F.; Kim, J.; Oh, S.; Kim, J.; Mastro, M.A.; Pearton, S.J. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl. Phys. Lett. 2016, 109, 062102. [Google Scholar] [CrossRef]
- Kim, J.; Oh, S.; Mastro, M.A.; Kim, J. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics. Phys. Chem. Chem. Phys. 2016, 18, 15760–15764. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Jang, S.; Ren, F.; Pearton, S.J.; Kim, J. Influence of High-Energy Proton Irradiation on β-Ga2O3 Nanobelt Field-Effect Transistors. ACS Appl. Mater. Interfaces 2017, 9, 40471–40476. [Google Scholar] [CrossRef]
- Son, J.; Kwon, Y.; Kim, J.; Kim, J. Tuning the Threshold Voltage of Exfoliated β-Ga2O3 Flake-Based Field-Effect Transistors by Photo-Enhanced H3PO4 Wet Etching. ECS J. Solid State Sci. Technol. 2018, 7, Q148–Q151. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhang, A.; Liu, Q.; Shen, C.; Wu, F.; Xu, C.; Chen, M.; Fu, H.; Zhou, C. Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies. Nano Res. 2019, 12, 143–148. [Google Scholar] [CrossRef]
- Kim, J.; Tadjer, M.J.; Mastro, M.A.; Kim, J. Controlling the threshold voltage of β-Ga2O3 field-effect transistors via remote fluorine plasma treatment. J. Mater. Chem. C 2019, 7, 8855–8860. [Google Scholar] [CrossRef]
- Polyakov, A.Y.; Smirnov, N.B.; Shchemerov, I.V.; Chernykh, S.V.; Oh, S.; Pearton, S.J.; Ren, F.; Kochkova, A.; Kim, J. Defect States Determining Dynamic Trapping-Detrapping in β-Ga2O3 Field-Effect Transistors. ECS J. Solid State Sci. Technol. 2019, 8, Q3013–Q3018. [Google Scholar] [CrossRef]
- Ma, J.; Lee, O.; Yoo, G. Effect of Al2O3 Passivation on Electrical Properties of β-Ga2O3 Field-Effect Transistor. IEEE J. Electron. Devices Soc. 2019, 7, 512–516. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J. Electrical Properties of Thermally Annealed β-Ga2O3 Metal-Semiconductor Field-Effect Transistors with Pt/Au Schottky Contacts. ECS J. Solid State Sci. Technol. 2019, 8, Q3122–Q3125. [Google Scholar] [CrossRef]
- Chen, J.-X.; Li, X.-X.; Tao, J.-J.; Cui, H.-Y.; Huang, W.; Ji, Z.-G.; Sai, Q.-L.; Xia, C.-T.; Lu, H.-L.; Zhang, D.W. Fabrication of a Nb-Doped β-Ga2O3 Nanobelt Field-Effect Transistor and Its Low-Temperature Behavior. ACS Appl. Mater. Interfaces 2020, 12, 8437–8445. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yoo, G. Low Subthreshold Swing Double-Gate β-Ga2O3 Field-Effect Transistors with Polycrystalline Hafnium Oxide Dielectrics. IEEE Electron. Device Lett. 2019, 40, 1317–1320. [Google Scholar] [CrossRef]
- Madadi, D.; Orouji, A.A. Scattering mechanisms in β-Ga2O3 junctionless SOI MOSFET: Investigation of electron mobility and short channel effects. Mater. Today Commun. 2021, 26, 102044. [Google Scholar] [CrossRef]
- Zhou, H.; Maize, K.; Noh, J.; Shakouri, A.; Ye, P.D. Thermodynamic Studies of β-Ga2O3 Nanomembrane Field-Effect Transistors on a Sapphire Substrate. ACS Omega 2017, 2, 7723–7729. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lee, O.; Yoo, G. Abnormal Bias-Temperature Stress and Thermal Instability of β-Ga2O3 Nanomembrane Field-Effect Transistor. IEEE J. Electron. Devices Soc. 2018, 6, 1124–1128. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Y.; Hao, Y.; Wang, X.; Wang, Y.; You, T.; Ou, X.; Han, G.; Hu, H.; Zhang, S.; et al. First Demonstration of Waferscale Heterogeneous Integration of Ga2O3 MOSFETs on SiC and Si Substrates by Ion-Cutting Process. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 12.5.1–12.5.4. [Google Scholar] [CrossRef]
- Cheng, Z.; Yates, L.; Shi, J.; Tadjer, M.J.; Hobart, K.D.; Graham, S. Thermal conductance across β-Ga2O3-diamond van der Waals heterogeneous interfaces. APL Mater. 2019, 7, 031118. [Google Scholar] [CrossRef]
- Lee, D.; Kim, H.W.; Kim, J.; Moon, J.H.; Lee, G.; Kim, J. Ultra-Wide Bandgap β-Ga2O3 Heterojunction Field-Effect Transistor Using p-Type 4H-SiC Gate for Efficient Thermal Management. ECS J. Solid State Sci. Technol. 2020, 9, 065006. [Google Scholar] [CrossRef]
- Wang, Y.; Han, G.; Xu, W.; You, T.; Hu, H.; Liu, Y.; Zhang, X.; Huang, H.; Ou, X.; Ma, X.; et al. Recessed-Gate Ga2O3-on-SiC MOSFETs Demonstrating a Stable Power Figure of Merit of 100 mW/cm2 Up to 200 °C. IEEE Trans. Electron. Devices 2022, 69, 1945–1949. [Google Scholar] [CrossRef]
- Kim, K.; Jin, H.; Choi, W.; Jeong, Y.; Shin, H.G.; Lee, Y.; Kim, K.; Im, S. High Performance β-Ga2O3 Schottky Barrier Transistors with Large Work Function TMD Gate of NbS2 and TaS2. Adv. Funct. Mater. 2021, 31, 2010303. [Google Scholar] [CrossRef]
- Kim, J.; Mastro, M.A.; Tadjer, M.J.; Kim, J. Heterostructure WSe2−Ga2O3 Junction Field-Effect Transistor for Low-Dimensional High-Power Electronics. ACS Appl. Mater. Interfaces 2018, 10, 29724–29729. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Ahn, J.; Kim, K.; Jin, H.; Hong, S.; Hwang, D.K.; Im, S. Ambipolar Channel p-TMD/n-Ga2O3 Junction Field Effect Transistors and High Speed Photo-sensing in TMD Channel. Adv. Mater. 2021, 33, 2103079. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, C.; Chen, J.; He, T.; Li, H.; Yang, Z.; Xie, L.; Wang, Z.; Zhang, K. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure. J. Semicond. 2020, 41, 082002. [Google Scholar] [CrossRef]
- Kim, J.; Mastro, M.A.; Tadjer, M.J.; Kim, J. Quasi-Two-Dimensional h-BN/β-Ga2O3 Heterostructure Metal–Insulator–Semiconductor Field-Effect Transistor. ACS Appl. Mater. Interfaces 2017, 9, 21322–21327. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J. Monolithically Integrated Enhancement-Mode and Depletion-Mode β-Ga2O3 MESFETs with Graphene-Gate Architectures and Their Logic Applications. ACS Appl. Mater. Interfaces 2020, 12, 7310–7316. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Huang, H.; Yin, L.; Lu, X.; Zhang, J.; Ren, K. A Novel Field-Plated Lateral β-Ga2O3 MOSFET Featuring Self-Aligned Vertical Gate Structure. IEEE Trans. Electron. Devices 2023, 70, 4309–4314. [Google Scholar] [CrossRef]
- Sun, Z.; Huang, H.; Sun, N.; Tao, P.; Zhao, C.; Liang, Y.C. A Novel GaN Metal-Insulator-Semiconductor High Electron Mobility Transistor Featuring Vertical Gate Structure. Micromachines 2019, 10, 848. [Google Scholar] [CrossRef]
- Goyal, P.; Kaur, H. Exploring the efficacy of implementing field plate design with air gap on β-Ga2O3 MOSFET for high power & RF applications. Micro Nanostruct. 2023, 173, 207454. [Google Scholar] [CrossRef]
- Ranjan, R.; Kashyap, N.; Raman, A. Design and investigation of field plate-based vertical GAA—β-(AlGa)2O3/Ga2O3 high electron mobility transistor. Micro Nanostruct. 2022, 164, 107117. [Google Scholar] [CrossRef]
- Mehta, M.; Avasthi, S. The possibility of gallium oxide (β-Ga2O3) heterojunction bipolar transistors. Phys. Scr. 2023, 98, 025013. [Google Scholar] [CrossRef]
- Hu, C.; Chi, M.-H.; Patel, V. Optimum design of power MOSFET’s. IEEE Trans. Electron. Devices 1984, 31, 1693–1700. [Google Scholar] [CrossRef]
- Shenoy, J.; Cooper, J.; Melloch, M. High-voltage double-implanted power MOSFET’s in 6H-SiC. IEEE Electron. Device Lett. 1997, 18, 93–95. [Google Scholar] [CrossRef]
- Ben-Yaacov, I.; Seck, Y.-K.; Mishra, U.K.; DenBaars, S.P. AlGaN/GaN current aperture vertical electron transistors with regrown channels. J. Appl. Phys. 2004, 95, 2073–2078. [Google Scholar] [CrossRef]
- Wong, M.H.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Enhancement-Mode β-Ga2O3 Current Aperture Vertical MOSFETs with N-Ion-Implanted Blocker. IEEE Electron. Device Lett. 2019, 41, 296–299. [Google Scholar] [CrossRef]
- Wong, M.H.; Goto, K.; Morikawa, Y.; Kuramata, A.; Yamakoshi, S.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer. Appl. Phys. Express 2018, 11, 064102. [Google Scholar] [CrossRef]
- Wong, M.H.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Aperture-limited conduction and its possible mechanism in ion-implanted current aperture vertical β-Ga2O3 MOSFETs. Appl. Phys. Lett. 2021, 118, 012102. [Google Scholar] [CrossRef]
- Wong, M.H.; Lin, C.-H.; Kuramata, A.; Yamakoshi, S.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Acceptor doping of β-Ga2O3 by Mg and N ion implantations. Appl. Phys. Lett. 2018, 113, 102103. [Google Scholar] [CrossRef]
- Kim, I.K.; Cha, S.; Hong, S.-M. Optimization of Nitrogen Ion Implantation Condition for β-Ga2O3 Vertical MOSFETs via Process and Device Simulation. IEEE Trans. Electron. Devices 2022, 69, 6948–6955. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, X.; Tang, W.; Zhang, X.; Xu, G.; Zhang, L.; Chen, T.; Dai, S.; Bian, C.; Li, B.; et al. 702.3 A·cm−2/10.4 mΩ·cm2 β-Ga2O3 U-Shape Trench Gate MOSFET with N-Ion Implantation. IEEE Electron. Device Lett. 2023, 44, 384–387. [Google Scholar] [CrossRef]
- Hawkins, R.; Wang, X.; Moumen, N.; Wallace, R.M.; Young, C.D. Impact of process anneals on high-k/β-Ga2O3 interfaces and capacitance. J. Vac. Sci. Technol. A 2023, 41, 023203. [Google Scholar] [CrossRef]
- Kananen, B.E.; Halliburton, L.E.; Stevens, K.T.; Foundos, G.K.; Giles, N.C. Gallium vacancies in β-Ga2O3 crystals. Appl. Phys. Lett. 2017, 110, 202104. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Z.; Yang, H.; Wang, Y. Effects of Annealing on Surface Residual Impurities and Intrinsic Defects of β-Ga2O3. Crystals 2023, 13, 1045. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, X.; Long, S.; Wang, Y.; Song, X.; Zhou, X.; Xu, G.; Liang, S.; Feng, Z.; Cai, S.; et al. Enhancement-Mode β-Ga2O3 Metal-Oxide-Semiconductor Field-Effect Transistor with High Breakdown Voltage over 3000 V Realized by Oxygen Annealing. Phys. Status Solidi (RRL) Rapid Res. Lett. 2019, 14, 1900586. [Google Scholar] [CrossRef]
- Oshima, T.; Kato, Y.; Kawano, N.; Kuramata, A.; Yamakoshi, S.; Fujita, S.; Oishi, T.; Kasu, M. Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface. Appl. Phys. Express 2017, 10, 035701. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Xia, Z.; Joishi, C.; Zhang, Y.; McGlone, J.; Johnson, J.; Brenner, M.; Arehart, A.R.; Hwang, J.; Lodha, S.; et al. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor. Appl. Phys. Lett. 2017, 111, 023502. [Google Scholar] [CrossRef]
- Ahmadi, E.; Koksaldi, O.S.; Zheng, X.; Mates, T.; Oshima, Y.; Mishra, U.K.; Speck, J.S. Demonstration of β-(AlxGa1−x)2O3/β-Ga2O3modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy. Appl. Phys. Express 2017, 10, 071101. [Google Scholar] [CrossRef]
- Zhang, Y.; Neal, A.; Xia, Z.; Joishi, C.; Johnson, J.M.; Zheng, Y.; Bajaj, S.; Brenner, M.; Dorsey, D.; Chabak, K.; et al. Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures. Appl. Phys. Lett. 2018, 112, 173502. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Z.; Mcglone, J.; Sun, W.; Joishi, C.; Arehart, A.R.; Ringel, S.A.; Rajan, S. Evaluation of Low-Temperature Saturation Velocity in β-(AlxGa1−x)2O3/Ga2O3 Modulation-Doped Field-Effect Transistors. IEEE Trans. Electron. Devices 2020, 66, 1574–1578. [Google Scholar] [CrossRef]
- Zhang, Y.; Joishi, C.; Xia, Z.; Brenner, M.; Lodha, S.; Rajan, S. Demonstration of β-(AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors. Appl. Phys. Lett. 2018, 112, 233503. [Google Scholar] [CrossRef]
- Kalarickal, N.K.; Xia, Z.; McGlone, J.F.; Liu, Y.; Moore, W.; Arehart, A.R.; Ringel, S.A.; Rajan, S. High electron density β-(Al0.17Ga0.83)2O3/Ga2O3 modulation doping using an ultra-thin (1 nm) spacer layer. J. Appl. Phys. 2020, 127, 215706. [Google Scholar] [CrossRef]
- Atmaca, G.; Cha, H.-Y. β-(Al0.17Ga 0.83)2O3/Ga2O3 Delta-Doped Heterostructure MODFETs with an Ultrathin Spacer Layer and a Back-Barrier Layer: A Comprehensive Technology Computer-Aided Design Analysis. Phys. Status Solidi A 2022, 219, 2100732. [Google Scholar] [CrossRef]
- He, X.; Hu, J.; Zhang, Z.; Liu, W.; Song, K.; Meng, J. Study on the interface electronic properties of AlN(0001)/β-Ga2O3(100). Surf. Interfaces 2021, 28, 101585. [Google Scholar] [CrossRef]
- Singh, R.; Lenka, T.R.; Velpula, R.T.; Jain, B.; Bui, H.Q.T.; Nguyen, H.P.T. Investigation of current collapse and recovery time due to deep level defect traps in β-Ga2O3 HEMT. J. Semicond. 2020, 41, 102802. [Google Scholar] [CrossRef]
- Song, K.; Zhang, H.; Fu, H.; Yang, C.; Singh, R.; Zhao, Y.; Sun, H.; Long, S. Normally-off AlN/β-Ga2O3 field-effect transistors using polarization-induced doping. J. Phys. D Appl. Phys. 2020, 53, 345107. [Google Scholar] [CrossRef]
- Singh, R.; Lenka, T.R.; Velpula, R.T.; Jain, B.; Bui, H.Q.T.; Nguyen, H.P.T. A novel β-Ga2O3 HEMT with fT of 166 GHz and X-band POUT of 2.91 W/mm. Int. J. Numer. Model. Electron. Netw. Devices Fields 2021, 34, e2794. [Google Scholar] [CrossRef]
- Singh, R.; Rao, G.P.; Lenka, T.R.; Prasad, S.V.S.; Boukortt, N.E.I.; Crupi, G.; Nguyen, H.P.T. Design and simulation of T-gate AlN/β-Ga2O3 HEMT for DC, RF and high-power nanoelectronics switching applications. Int. J. Numer. Model. Electron. Netw. Devices Fields 2023, e3146. [Google Scholar] [CrossRef]
- Singh, R.; Lenka, T.; Panda, D.; Nguyen, H.; Boukortt, N.E.I.; Crupi, G. Analytical modeling of I–V characteristics using 2D Poisson equations in AlN/β-Ga2O3 HEMT. Mater. Sci. Semicond. Process. 2022, 145, 106627. [Google Scholar] [CrossRef]
- Russell, S.A.O.; Perez-Tomas, A.; McConville, C.F.; Fisher, C.A.; Hamilton, D.P.; Mawby, P.A.; Jennings, M.R. Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET with Reduced Self Heating. IEEE J. Electron. Devices Soc. 2017, 5, 256–261. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Yang, K.; Yao, J.; Tang, W.; Guo, Y. Breakdown Characteristics of Ga2O3-on-SiC Metal-Oxide-Semiconductor Field-Effect Transistors. Crystals 2023, 13, 917. [Google Scholar] [CrossRef]
- Hu, J.; Xu, B.; Zhang, Z.; He, X.; Li, L.; Cheng, H.; Wang, J.; Meng, J.; Wang, X.; Zhang, C.; et al. Step flow growth of β-Ga2O3 films on off-axis 4H-SiC substrates by LPCVD. Surf. Interfaces 2023, 37, 102732. [Google Scholar] [CrossRef]
- Song, Y.; Shoemaker, D.; Leach, J.H.; McGray, C.; Huang, H.-L.; Bhattacharyya, A.; Zhang, Y.; Gonzalez-Valle, C.U.; Hess, T.; Zhukovsky, S.; et al. Ga2O3-on-SiC Composite Wafer for Thermal Management of Ultrawide Bandgap Electronics. ACS Appl. Mater. Interfaces 2021, 13, 40817–40829. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Ma, J.; Yoo, G. Simulation study of reduced self-heating in β-Ga2O3 MOSFET on a nano-crystalline diamond substrate. Results Phys. 2019, 13, 102151. [Google Scholar] [CrossRef]
- Cheng, Z.; Wheeler, V.D.; Bai, T.; Shi, J.; Tadjer, M.J.; Feygelson, T.; Hobart, K.D.; Goorsky, M.S.; Graham, S. Integration of polycrystalline Ga2O3 on diamond for thermal management. Appl. Phys. Lett. 2020, 116, 062105. [Google Scholar] [CrossRef]
- Chatterjee, B.; Zeng, K.; Nordquist, C.D.; Singisetti, U.; Choi, S. Device-Level Thermal Management of Gallium Oxide Field-Effect Transistors. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 2352–2365. [Google Scholar] [CrossRef]
- Green, A.J.; Chabak, K.D.; Heller, E.R.; Fitch, R.C.; Baldini, M.; Fiedler, A.; Irmscher, K.; Wagner, G.; Galazka, Z.; Tetlak, S.E.; et al. 3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 2016, 37, 902–905. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kamimura, T.; Wong, M.H.; Krishnamurthy, D.; Kuramata, A.; Masui, T.; Yamakoshi, S. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 2013, 103, 123511. [Google Scholar] [CrossRef]
- Lee, M.-H.; Peterson, R.L. Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3. APL Mater. 2019, 7, 022524. [Google Scholar] [CrossRef]
- Lee, M.-H.; Peterson, R.L. Annealing Induced Interfacial Evolution of Titanium/Gold Metallization on Unintentionally Doped β-Ga2O3. ECS J. Solid State Sci. Technol. 2019, 8, Q3176–Q3179. [Google Scholar] [CrossRef]
- Lee, M.-H.; Peterson, R.L. Accelerated Aging Stability of β-Ga2O3–Titanium/Gold Ohmic Interfaces. ACS Appl. Mater. Interfaces 2020, 12, 46277–46287. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, M.-K.; Baik, K.H.; Jang, S. Low-Resistance Ti/Au Ohmic Contact on (001) Plane Ga2O3 Crystal. ECS J. Solid State Sci. Technol. 2022, 11, 045003. [Google Scholar] [CrossRef]
- Yao, Y.; Davis, R.F.; Porter, L.M. Investigation of Different Metals as Ohmic Contacts to β-Ga2O3: Comparison and Analysis of Electrical Behavior, Morphology, and Other Physical Properties. J. Electron. Mater. 2017, 46, 2053–2060. [Google Scholar] [CrossRef]
- Shi, J.; Xia, X.; Liang, H.; Abbas, Q.; Liu, J.; Zhang, H.; Liu, Y. Low resistivity ohmic contacts on lightly doped n-type β-Ga2O3 using Mg/Au. J. Mater. Sci. Mater. Electron. 2019, 30, 3860–3864. [Google Scholar] [CrossRef]
- Tetzner, K.; Schewski, R.; Popp, A.; Bin Anooz, S.; Chou, T.-S.; Ostermay, I.; Kirmse, H.; Würfl, J. Refractory metal-based ohmic contacts on β-Ga2O3 using TiW. APL Mater. 2022, 10, 071108. [Google Scholar] [CrossRef]
- Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S. Si-Ion Implantation Doping in β-Ga2O3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts. Appl. Phys. Express 2013, 6, 086502. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Wong, M.H.; Kamimura, T.; Krishnamurthy, D.; Kuramata, A.; Masui, T.; Yamakoshi, S. Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts. In Proceedings of the 2013 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 9–11 December 2013; pp. 28.7.1–28.7.4. [Google Scholar] [CrossRef]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer. Jpn. J. Appl. Phys. 2016, 55, 1202B9. [Google Scholar] [CrossRef]
- Tetzner, K.; Thies, A.; Seyidov, P.; Chou, T.-S.; Rehm, J.; Ostermay, I.; Galazka, Z.; Fiedler, A.; Popp, A.; Würfl, J.; et al. Ge-ion implantation and activation in (100) β-Ga2O3 for ohmic contact improvement using pulsed rapid thermal annealing. J. Vac. Sci. Technol. A 2023, 41, 043102. [Google Scholar] [CrossRef]
- Zhang, Y.; Alema, F.; Mauze, A.; Koksaldi, O.S.; Miller, R.; Osinsky, A.; Speck, J.S. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature. APL Mater. 2018, 7, 022506. [Google Scholar] [CrossRef]
- Alema, F.; Peterson, C.; Bhattacharyya, A.; Roy, S.; Krishnamoorthy, S.; Osinsky, A. Low Resistance Ohmic Contact on Epitaxial MOVPE Grown β-Ga2O3 and β-(AlxGa1−x)2O3 Films. IEEE Electron. Device Lett. 2022, 43, 1649–1652. [Google Scholar] [CrossRef]
- Oshima, T.; Wakabayashi, R.; Hattori, M.; Hashiguchi, A.; Kawano, N.; Sasaki, K.; Masui, T.; Kuramata, A.; Yamakoshi, S.; Yoshimatsu, K.; et al. Formation of indium–tin oxide ohmic contacts for β-Ga2O3. Jpn. J. Appl. Phys. 2016, 55, 1202B7. [Google Scholar] [CrossRef]
- Carey, P.H.; Yang, J.; Ren, F.; Hays, D.C.; Pearton, S.J.; Kuramata, A.; Kravchenko, I.I. Improvement of Ohmic contacts on Ga2O3 through use of ITO-interlayers. J. Vac. Sci. Technol. B 2017, 35, 061201. [Google Scholar] [CrossRef]
- Carey, P.H.; Yang, J.; Ren, F.; Hays, D.C.; Pearton, S.J.; Jang, S.; Kuramata, A.; Kravchenko, I.I. Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au. AIP Adv. 2017, 7, 095313. [Google Scholar] [CrossRef]
- Zeng, K.; Wallace, J.S.; Heimburger, C.; Sasaki, K.; Kuramata, A.; Masui, T.; Gardella, J.A.; Singisetti, U. Ga2O3MOSFETs Using Spin-On-Glass Source/Drain Doping Technology. IEEE Electron. Device Lett. 2017, 38, 513–516. [Google Scholar] [CrossRef]
- Zeng, K.; Singisetti, U. Temperature dependent characterization of Ga2O3 MOSFETs with Spin-on-Glass source/drain doping. In Proceedings of the 2017 75th Device Research Conference (DRC), South Bend, IN, USA, 25–28 June 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Spencer, J.A.; Mock, A.L.; Jacobs, A.G.; Schubert, M.; Zhang, Y.; Tadjer, M.J. A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3. Appl. Phys. Rev. 2022, 9, 011315. [Google Scholar] [CrossRef]
- Roy, S.; Chmielewski, A.E.; Bhattacharyya, A.; Ranga, P.; Sun, R.; Scarpulla, M.A.; Alem, N.; Krishnamoorthy, S. In Situ Dielectric Al2O3/β-Ga2O3 Interfaces Grown Using Metal–Organic Chemical Vapor Deposition. Adv. Electron. Mater. 2021, 7, 2100333. [Google Scholar] [CrossRef]
- Bhuiyan, A.F.M.A.U.; Meng, L.; Huang, H.-L.; Hwang, J.; Zhao, H. In situ MOCVD growth and band offsets of Al2O3 dielectric on β-Ga2O3 and β-(AlxGa1−x)2O3 thin films. J. Appl. Phys. 2022, 132, 165301. [Google Scholar] [CrossRef]
- Islam, A.E.; Zhang, C.; DeLello, K.; Muller, D.A.; Leedy, K.D.; Ganguli, S.; Moser, N.A.; Kahler, R.; Williams, J.C.; Dryden, D.M.; et al. Defect Engineering at the Al2O3/(010) β-Ga2O3 Interface via Surface Treatments and Forming Gas Post-Deposition Anneals. IEEE Trans. Electron. Devices 2022, 69, 5656–5663. [Google Scholar] [CrossRef]
- Zeng, K.; Singisetti, U. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations. Appl. Phys. Lett. 2017, 111, 122108. [Google Scholar] [CrossRef]
- Biswas, D.; Joishi, C.; Biswas, J.; Thakar, K.; Rajan, S.; Lodha, S. Enhanced n-type β-Ga2O3 (201) gate stack performance using Al2O3/SiO2 bi-layer dielectric. Appl. Phys. Lett. 2019, 114, 212106. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, P.; Dang, K.; Zhang, Y.; Yan, Q.; Xiang, H.; Su, J.; Liu, Z.; Si, M.; Gao, J.; et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat. Commun. 2022, 13, 3900. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.H.; Chen, X.H.; Xu, Y.; Ren, F.-F.; Gu, S.L.; Ye, J.D. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode. Appl. Phys. Lett. 2020, 117, 022104. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, X.; Jiang, H.; Ng, K.W.; Chen, Z.; Pei, Y.; Lau, K.M.; Wang, G. 1-kV Sputtered p-NiO/n-Ga2O3 Heterojunction Diodes with an Ultra-Low Leakage Current Below 1 μ A/cm2. IEEE Electron. Device Lett. 2020, 41, 449–452. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Q.; Hao, W.; Xu, G.; Long, S. Normally-off β-Ga2O3 Power Heterojunction Field-Effect-Transistor Realized by p-NiO and Recessed-Gate. In Proceedings of the 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vancouver, BC, Canada, 22–25 May 2022; pp. 101–104. [Google Scholar] [CrossRef]
- Lei, W.; Dang, K.; Zhou, H.; Zhang, J.; Wang, C.; Xin, Q.; Alghamdi, S.; Liu, Z.; Feng, Q.; Sun, R.; et al. Proposal and Simulation of Ga2O3 MOSFET with PN Heterojunction Structure for High-Performance E-Mode Operation. IEEE Trans. Electron. Devices 2022, 69, 3617–3622. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, H.; Jia, X.; Han, G.; Ye, J.; Liu, Y.; Hu, H.; Ou, X.; Ma, X.; Hao, Y. First Demonstration of RESURF and Superjunction β-Ga2O3 MOSFETs with p-NiO/n- Ga2O3 Junctions. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 36.6.1–36.6.4. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, H.; Jia, X.; Ye, J.; Liu, Y.; Hu, H.; Ou, X.; Ma, X.; Zhang, R.; Hao, Y.; et al. Demonstration of β-Ga2O3 Superjunction-Equivalent MOSFETs. IEEE Trans. Electron. Devices 2022, 69, 2203–2209. [Google Scholar] [CrossRef]
- Meshram, A.D.; Sengupta, A.; Bhattacharyya, T.K.; Dutta, G. Normally-Off β-(AlxGa1−x)2O3/Ga2O3 Modulation-Doped Field-Effect Transistors with p-GaN Gate: Proposal and Investigation. IEEE Trans. Electron. Devices 2023, 70, 454–460. [Google Scholar] [CrossRef]
- Yi, B.; Zhang, S.; Zhang, Z.; Cheng, J.; Huang, H.; Kong, M.; Yang, H. Analytical model and simulation study of a novel enhancement-mode Ga2O3 MISFET realized by p-GaN gate. Semicond. Sci. Technol. 2023, 38, 095003. [Google Scholar] [CrossRef]
- Budde, M.; Splith, D.; Mazzolini, P.; Tahraoui, A.; Feldl, J.; Ramsteiner, M.; von Wenckstern, H.; Grundmann, M.; Bierwagen, O. SnO/β-Ga2O3 vertical pn heterojunction diodes. Appl. Phys. Lett. 2020, 117, 252106. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, C.; Kalarickal, N.K.; Stemmer, S.; Rajan, S. Design of Transistors Using High-Permittivity Materials. IEEE Trans. Electron. Devices 2019, 66, 896–900. [Google Scholar] [CrossRef]
- Moser, N.A.; McCandless, J.P.; Crespo, A.; Leedy, K.D.; Green, A.J.; Heller, E.R.; Chabak, K.D.; Peixoto, N.; Jessen, G.H. High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl. Phys. Lett. 2017, 110, 143505. [Google Scholar] [CrossRef]
- Xia, Z.; Chandrasekar, H.; Moore, W.; Wang, C.; Lee, A.J.; McGlone, J.; Kalarickal, N.K.; Arehart, A.; Ringel, S.; Yang, F.; et al. Metal/BaTiO3/β-Ga2O3 dielectric heterojunction diode with 5.7 MV/cm breakdown field. Appl. Phys. Lett. 2019, 115, 252104. [Google Scholar] [CrossRef]
- Dong, H.; Mu, W.; Hu, Y.; He, Q.; Fu, B.; Xue, H.; Qin, Y.; Jian, G.; Zhang, Y.; Long, S.; et al. C-V and J-V investigation of HfO2/Al2O3 bilayer dielectrics MOSCAPs on (100) β-Ga2O3. AIP Adv. 2018, 8, 065215. [Google Scholar] [CrossRef]
- Yang, J.Y.; Ma, J.; Lee, C.H.; Yoo, G. Polycrystalline/Amorphous HfO2 Bilayer Structure as a Gate Dielectric for β-Ga2O3 MOS Capacitors. IEEE Trans. Electron. Devices 2021, 68, 1011–1015. [Google Scholar] [CrossRef]
- Feng, Z.; Tian, X.; Li, Z.; Hu, Z.; Zhang, Y.; Kang, X.; Ning, J.; Zhang, Y.; Zhang, C.; Feng, Q.; et al. Normally-Off-β -Ga2O3 Power MOSFET with Ferroelectric Charge Storage Gate Stack Structure. IEEE Electron. Device Lett. 2020, 41, 333–336. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Ren, F.-F.; Gu, S.; Ye, J. Deep-level defects in gallium oxide. J. Phys. D Appl. Phys. 2020, 54, 043002. [Google Scholar] [CrossRef]
- Jian, Z.; Mohanty, S.; Ahmadi, E. Deep UV-assisted capacitance–voltage characterization of post-deposition annealed Al2O3/β-Ga2O3 (001) MOSCAPs. Appl. Phys. Lett. 2020, 116, 242105. [Google Scholar] [CrossRef]
- Hirose, M.; Nabatame, T.; Irokawa, Y.; Maeda, E.; Ohi, A.; Ikeda, N.; Sang, L.; Koide, Y.; Kiyono, H. Interface characteristics of β-Ga2O3/Al2O3/Pt capacitors after postmetallization annealing. J. Vac. Sci. Technol. A 2021, 39, 012401. [Google Scholar] [CrossRef]
- Bae, H.; Noh, J.; Alghamdi, S.; Si, M.; Ye, P.D. Ultraviolet Light-Based Current–Voltage Method for Simultaneous Extraction of Donor- and Acceptor-like Interface Traps in β-Ga2O3 FETs. IEEE Electron. Device Lett. 2018, 39, 1708–1711. [Google Scholar] [CrossRef]
- Fregolent, M.; Brusaterra, E.; De Santi, C.; Tetzner, K.; Würfl, J.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Logarithmic trapping and detrapping in β-Ga2O3 MOSFETs: Experimental analysis and modeling. Appl. Phys. Lett. 2022, 120, 163502. [Google Scholar] [CrossRef]
- Jiang, Z.; Wei, J.; Lv, Y.; Wei, Y.; Wang, Y.; Lu, J.; Liu, H.; Feng, Z.; Zhou, H.; Zhang, J.; et al. Nonuniform Mechanism for Positive and Negative Bias Stress Instability in β-Ga2O3 MOSFET. IEEE Trans. Electron. Devices 2022, 69, 5509–5515. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, X.; Zhou, X.; Wei, Y.; Wei, J.; Xu, G.; Long, S.; Luo, X. Experimental investigation on the instability for NiO/β-Ga2O3 heterojunction-gate FETs under negative bias stress. J. Semicond. 2023, 44, 072803. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Xu, W.; Jia, X.; Huang, S.; Li, Y.; Li, B.; Luo, Z.; Fang, C.; Liu, Y.; et al. Unique Bias Stress Instability of Heterogeneous Ga2O3-on-SiC MOSFET. IEEE Electron. Device Lett. 2023, 44, 1256–1259. [Google Scholar] [CrossRef]
- Binari, S.; Klein, P.; Kazior, T. Trapping effects in GaN and SiC microwave FETs. Proc. IEEE 2002, 90, 1048–1058. [Google Scholar] [CrossRef]
- Zhou, H.; Alghamdi, S.; Si, M.; Qiu, G.; Ye, P.D. Al2O3/β-Ga2O3(-201) Interface Improvement Through Piranha Pretreatment and Postdeposition Annealing. IEEE Electron. Device Lett. 2016, 37, 1411–1414. [Google Scholar] [CrossRef]
- Feng, B.; He, T.; He, G.; Zhang, X.; Wu, Y.; Chen, X.; Li, Z.; Zhang, X.; Jia, Z.; Niu, G.; et al. Reduction of MOS interfacial states between β-Ga2O3 and Al2O3 insulator by self-reaction etching with Ga flux. Appl. Phys. Lett. 2021, 118, 181602. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.; Sasaki, K.; Ye, J.; Zhang, Y. Recent progress of Ga2O3 power technology: Large-area devices, packaging and applications. Jpn. J. Appl. Phys. 2023, 62, SF0801. [Google Scholar] [CrossRef]
- Galazka, Z. β-Ga2O3 for wide-bandgap electronics and optoelectronics. Semicond. Sci. Technol. 2018, 33, 113001. [Google Scholar] [CrossRef]
- Hou, X.; Zou, Y.; Ding, M.; Qin, Y.; Zhang, Z.; Ma, X.; Tan, P.; Yu, S.; Zhou, X.; Zhao, X.; et al. Review of polymorphous Ga2O3materials and their solar-blind photodetector applications. J. Phys. D Appl. Phys. 2020, 54, 043001. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, H.; Fu, K.; Zhao, Y. Gallium oxide-based optical nonlinear effects and photonics devices. J. Mater. Res. 2021, 36, 4832–4845. [Google Scholar] [CrossRef]
- Ricci, F.; Boschi, F.; Baraldi, A.; Filippetti, A.; Higashiwaki, M.; Kuramata, A.; Fiorentini, V.; Fornari, R. Theoretical and experimental investigation of optical absorption anisotropy in β-Ga2O3. J. Phys. Condens. Matter. 2016, 28, 224005. [Google Scholar] [CrossRef]
- Bin Cho, J.; Jung, G.; Kim, K.; Kim, J.; Hong, S.-K.; Song, J.-H.; Jang, J.I. Highly Asymmetric Optical Properties of β-Ga2O3 as Probed by Linear and Nonlinear Optical Excitation Spectroscopy. J. Phys. Chem. C 2021, 125, 1432–1440. [Google Scholar] [CrossRef]
- Caddemi, A.; Cardillo, E.; Patanè, S.; Triolo, C. Light Exposure Effects on the DC Kink of AlGaN/GaN HEMTs. Electronics 2019, 8, 698. [Google Scholar] [CrossRef]
- Caddemi, A.; Cardillo, E.; Salvo, G.; Patanè, S. Microwave effects of UV light exposure of a GaN HEMT: Measurements and model extraction. Microelectron. Reliab. 2016, 65, 310–317. [Google Scholar] [CrossRef]
- Leach, J.H.; Metzger, R.; Preble, E.A.; Evans, K.R. High voltage bulk GaN-based photoconductive switches for pulsed power applications. Gallium Nitride Mater. Devices VIII 2013, 8625, 294–300. [Google Scholar]
- Mazumder, S.K. An Overview of Photonic Power Electronic Devices. IEEE Trans. Power Electron. 2016, 31, 6562–6574. [Google Scholar] [CrossRef]
Ref. | FET Design | On/Off | ID,max (mA mm−1) | Vbr (V) | Ebr (MV cm−1) | Ron,sp (Ω cm2) | µ (cm2 V−1 s−1) | BFOM (MW cm−2) |
---|---|---|---|---|---|---|---|---|
[59] | MESFET, T-gate + SFP, OA | 106 | 3.3 | 10 k | 1 | 2.92 | NR | >34.2 |
[60] | Delta-doped MESFET w/GFP | 107 | 180 | 315 | 2.3 | NR | 73 | 118 |
[61] | Delta-doped SAG | 103 | 560 | NR | NR | NR | 65 | NR |
[62] | Recessed and T-gate | 109 | 49 | 1.80 k | 1.8 | 20.9 m | 128 | 155 |
[63] | Tri-gate lateral FinFET | 1010 | 187 | 1.13 k | 4.2 | 1.34 m | 184 | 950 |
[64] | Composite + SU8 GFP | 109 | 40 | 7.16 k | 1.79 | 8.98 | NR | 5.71 |
[65] | SFP, T-gate, Al2O3/HfO2 gate oxide | 109 | 230 | 1.40 k | 2.90 | 7.08 m | NR | 277 |
[66] | Scaled T-gate MESFET | 104 | 60 | 2.45 k | 2.08 | 17.3 m | 84 | 347 |
[67] | SOI on sapphire | 108 | 232 | 800 | NR | 7.41 m | 137 | 86.3 |
[68] | Back-gate SOI on SiO2/Si | 1010 | 1500 | NR | NR | NR | NR | NR |
[69] | CAVET, N++ ion implant | 108 | 420 A cm−2 | 25 | NR | 31.5 m | 140 | NR |
[70] | AlGO/GO w/GFP | 108 | NR | 1.37 k | 0.86 | 120 m | 101 | 15.6 |
[71] | SOI on AlN/Si | 109 | 580 | 118 | 1.04 | 1.44 m | 82.9 | 9.70 |
[72] | SiC/GO composite wafer | 108 | NR | 2.37 k | 1.23 | 18.4 m | 94 | 303 |
[73] | SOI on Diamond | NR | 980 | NR | NR | NR | NR | NR |
[74] | p-NiO gate oxide | 1010 | 450 | 1.12 k | 2.48 | 3.19 m | NR | 390 |
[75] | p-NiO gate oxide | 1010 | 282 | 2.15 k | 3.5 | 6.24 m | 130 | 740 |
[76] | p-NiO/SiO2 gate oxide | 109 | 300 | 1.32 k | 1.47 | 4.30 m | NR | 405 |
[77] | p-SnO gate oxide | 106 | 100 | 750 | 1.9 | 3.15 m | 100 | 178 |
[78] | BTO (ε≈235) gate oxide | 105 | 359 | 640 | 1.5 | 1.08 m | 72 | 376 |
[79] | Al2O3/BTO gate oxide | 107 | 220 | 840 | 4.10 | 1.72 m | 85 | 408 |
Ref. | FET Design | On/Off | ID,max (mA mm−1) | Vbr (V) | Ebr (MV cm−1) | Ron,sp (Ω cm2) | µ (cm2 V−1 s−1) | BFOM (MW cm−2) |
---|---|---|---|---|---|---|---|---|
[80] | Recessed gate | 109 | 40 | 505 | 0.84 | 17.2 m | 106 | 14.8 |
[81] | Multi-fin vertical FET | 108 | 230 A cm−2 | 2.66 k | NR | 25.2 m | 40 | 280 |
[82] | SOI on SiO2/Si | 1010 | 450 | 185 | 2 | 20 Ω mm | 55.2 | NR |
[83] | Mg-diffused CAVET | 109 | 150 A cm−2 | 72 | NR | NR | 7.5 | NR |
[84] | Vertical U-trench w/CBL | 6.4 × 104 | 11 A cm−2 | 102 | NR | 1.48 | NR | 0.007 |
[76] | p-NiO/SiO2 gate oxide | 108 | NR | 2.96 k | 0.985 | 115 m | NR | 76 |
[75] | p-NiO gate oxide | 107 | 43.2 | 1.98 k | 3.3 | 13.8 m | 140 | 284 |
[85] | Back-gate SOI on SiO2/Si p-SnO on top | 2.26 × 106 | 14.1 | NR | NR | NR | 191 | NR |
[86] | SOI on SiO2/Si HfO2 gate oxide | 105 | 11.1 | 80 | 0.16 | 82 m | 81 | 0.078 |
[87] | Multi-stack gate: HZO/Al2O3/HfO2/Al2O3 | 108 | 23.2 | 2.14 k | 3.45 | 24 m | 97 | 193 |
Ref. | Type | Structure | On/Off | ID,max (mA mm−1) | Vbr (V) | Ebr (MV cm−1) | µ (cm2 V−1 s−1) | fT (GHz) | fmax (GHz) | Gp (dB) | GT (dB) | Pout (mW mm−1) | PAE (%) | fT Vbr (THz V) | vsat (fT Lg 2π) (cm s−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[88] | D-M | T-gate delta-doped MESFET | 108 | 260 | 150 | 1.07 | 70 | 27 | 16 | NR | NR | NR | NR | 4.05 | 2.01 × 106 |
[89] | D-M | SAG | 108 | Pulsed ≈ 300 | NR | NR | 74 | NR | NR | NR | 13 | 715 | 23.4 | NR | NR |
[90] | D-M | Recessed gate SiO2 passivation | 106 | 150 | NR | NR | 96 | 3.3 | 12.9 | 5.1 | 1.8 | 230 | 6.3 | NR | 1.45 × 106 |
[91] | D-M | Tri-gate FinFET | NR | 88 | NR | NR | NR | 5.4 | 11.4 | NR | NR | NR | NR | NR | 1.19 × 106 |
[92] | D-M | SiO2 GFP | NR | 58 | NR | NR | NR | NR | NR | 4.81 | NR | 130 | 22.4 | NR | NR |
[93] | D-M | T-gate, SiNx passivation SiO2 gate oxide | 1.23 × 105 | 285 | 192 | 5.4 | 80 | 11 | 48 | NR | NR | NR | NR | 2.112 | 2.45 × 106 |
[94] | D-M | T-gate, shallow ion-implanted channel | 108 | 165 | 193 | 2.09 | 23 | 29 | 35 | 7 | NR | 11.2 dBm | 11.6 | 5.597 | 2.73 × 106 |
[95] | D-M | OA, SiNx T-gate Multi-stack gate oxide: Al2O3/HfO2 | 109 | 200 | NR | NR | 75 | 1.8 | 4.2 | 3.6 | NR | 430 | 6.42 | NR | 1.13 × 106 |
[96] | D-M | AlGO/GO HFET | NR | Pulsed ≈ 80 | NR | NR | NR | 14 | 22 | NR | NR | NR | NR | NR | 1.76 × 106 |
[97] | E-M | AlGO/GO HFET | 1.55 × 105 | 74 | 23 | 1.35 | NR | 30 | 37 | NR | NR | NR | NR | NR | 3.02 × 106 |
GaN and Diamond RF FETs | |||||||||||||||
[98] | D-M | GaN HEMT | 103 | 1000 | 60 | 0.4 | 1900 | 104 | 205 | 8 | NR | 5100 | 43.6 | 6.24 | 9.80 × 106 |
[99] | D-M | GaN HEMT | 3 × 105 | Pulsed 1300 | 50 | NR | 1423 | 156 | 308 | 15 | NR | 2500 | 70 | 7.8 | 5.89 × 106 |
[100] | D-M | Diamond HEMT | NR | 500 | 121 | 0.81 | 101 | 6.2 | 17 | 12.2 | NR | 4200 | 21.5 | 0.75 | 3.51 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maimon, O.; Li, Q. Progress in Gallium Oxide Field-Effect Transistors for High-Power and RF Applications. Materials 2023, 16, 7693. https://doi.org/10.3390/ma16247693
Maimon O, Li Q. Progress in Gallium Oxide Field-Effect Transistors for High-Power and RF Applications. Materials. 2023; 16(24):7693. https://doi.org/10.3390/ma16247693
Chicago/Turabian StyleMaimon, Ory, and Qiliang Li. 2023. "Progress in Gallium Oxide Field-Effect Transistors for High-Power and RF Applications" Materials 16, no. 24: 7693. https://doi.org/10.3390/ma16247693
APA StyleMaimon, O., & Li, Q. (2023). Progress in Gallium Oxide Field-Effect Transistors for High-Power and RF Applications. Materials, 16(24), 7693. https://doi.org/10.3390/ma16247693