Effect of Forced Convection on Magnesium Dendrite: Comparison between Constant and Altering Flow Fields
Abstract
:1. Introduction
2. Methods
2.1. Phase-Field Method
2.2. Lattice Boltzmann Method
2.3. Convection Conditions
2.4. Computation Settings
3. Results
4. Discussion
4.1. Effect of Constant Flow Fields
4.2. Effect of Altering Flow Fields
4.3. Parameter Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garces, G.; Medina, J.; Perez, P.; Stark, A.; Schell, N.; Adeva, P. The effect of temperature on load partitioning evolution in magnesium metal matrix composite reinforced with Ti particles using in-situ synchrotron radiation diffraction experiments. J. Magnes. Alloys 2023, 11, 706–719. [Google Scholar] [CrossRef]
- Jiang, B.; Dong, Z.; Zhang, A.; Song, J.; Pan, F. Recent advances in micro-alloyed wrought magnesium alloys: Theory and design. Trans. Nonferrous Met. Soc. China 2022, 32, 1741–1780. [Google Scholar] [CrossRef]
- Jaafreh, R.; Kang, Y.S.; Hamad, K. Brittle and ductile characteristics of intermetallic compounds in magnesium alloys: A large-scale screening guided by machine learning. J. Magnes. Alloys 2023, 11, 392–404. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, A.; Li, C.; Xie, H.; Jiang, B.; Dong, Z.; Jin, P.; Pan, F. Recent advances of high strength Mg-RE alloys: Alloy development, forming and application. J. Mater. Res. Technol. 2023, 26, 2919–2940. [Google Scholar] [CrossRef]
- Dantzig, J.A.; Rappaz, M. Solidification; EPFL Press: Lausanne, Switzerland, 2016. [Google Scholar]
- Wu, M.; Tian, B.; Zhang, A.; Guo, Z.; Xiong, S. Phase-field lattice-Boltzmann study on dendritic growth of hcp metals under gravity-driven natural convection. Trans. Nonferrous Met. Soc. China 2023, 33, 1629–1643. [Google Scholar] [CrossRef]
- Dobravec, T.; Mavrič, B.; Zahoor, R.; Šarler, B. A coupled domain–boundary type meshless method for phase-field modelling of dendritic solidification with the fluid flow. Int. J. Numer. Methods Heat Fluid Flow 2023, 33, 2963–2981. [Google Scholar] [CrossRef]
- Laxmipathy, V.P.; Wang, F.; Selzer, M.; Nestler, B. A two-dimensional phase-field study on dendritic growth competition under convective conditions. Comput. Mater. Sci. 2021, 186, 109964. [Google Scholar] [CrossRef]
- Casari, D.; Mirihanage, W.U.; Falch, K.V.; Ringdalen, I.G.; Friis, J.; Schmid-Fetzer, R.; Zhao, D.; Li, Y.; Sillekens, W.H.; Mathiesen, R.H. α-Mg primary phase formation and dendritic morphology transition in solidification of a Mg-Nd-Gd-Zn-Zr casting alloy. Acta Mater. 2016, 116, 177–187. [Google Scholar] [CrossRef]
- Panchal, M.; Kaushik, L.; Ravi, K.R.; Khatirkar, R.; Choi, S.H.; Singh, J. Recent advances in the in-plane shear testing of Mg alloy sheets. J. Magnes. Alloys 2023, 11, 405–424. [Google Scholar] [CrossRef]
- Kurz, W.; Rappaz, M.; Trivedi, R. Progress in modelling solidification microstructures in metals and alloys. Part II: Dendrites from 2001 to 2018. Int. Mater. Rev. 2021, 66, 30–76. [Google Scholar] [CrossRef]
- Jeong, J.H.; Dantzig, J.A.; Goldenfeld, N. Dendritic growth with fluid flow in pure materials. Metall. Mater. Trans. A 2003, 34, 459–466. [Google Scholar] [CrossRef]
- Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S. The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys. J. Cryst. Growth 2015, 417, 1–8. [Google Scholar] [CrossRef]
- Jalilvand, M.M.; Akbarifar, M.; Divandari, M.; Saghafian, H. On the dynamically formed oxide films in molten Mg. J. Magnes. Alloys 2020, 8, 219–230. [Google Scholar] [CrossRef]
- Yeganeh, H.; Bahmani, A.; Lotfpour, M.; Malekan, M.; Emamy, M.; Nayebi, B.; Shin, K.S. Enhanced oxidation and overheating resistance of the extruded Mg–Zn–Al–Mn magnesium alloy by Calcium addition. J. Magnes. Alloys 2023, 11, 1276–1291. [Google Scholar] [CrossRef]
- Boettinger, W.J.; Warren, J.A.; Beckermann, C.; Karma, A. Phase-field simulation of solidification. Annu. Rev. Mater. Res. 2002, 32, 163–194. [Google Scholar] [CrossRef]
- Zhang, A.; Guo, Z.; Jiang, B.; Du, J.; Wang, C.; Huang, G.; Zhang, D.; Liu, F.; Xiong, S.; Pan, F. Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification. Acta Mater. 2021, 214, 117005. [Google Scholar] [CrossRef]
- Mukherjee, A.; Warren, J.A.; Voorhees, P.W. A quantitative variational phase field framework. Acta Mater. 2023, 251, 118897. [Google Scholar] [CrossRef]
- Dorari, E.; Ji, K.; Guillemot, G.; Gandin, C.; Karma, A. Growth competition between columnar dendritic grains—The role of microstructural length scales. Acta Mater. 2022, 223, 117395. [Google Scholar] [CrossRef]
- Geslin, P.; Chen, C.; Tabrizi, A.M.; Karma, A. Dendritic needle network modeling of the Columnar-to-Equiaxed transition. Part I: Two dimensional formulation and comparison with theory. Acta Mater. 2021, 202, 42–54. [Google Scholar] [CrossRef]
- Kavousi, S.; Zaeem, M.A. Quantitative phase-field modeling of solute trapping in rapid solidification. Acta Mater. 2021, 205, 116562. [Google Scholar] [CrossRef]
- Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method: Principles and Practice; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Latt, J.; Malaspinas, O.; Kontaxakis, D.; Parmigiani, A.; Lagrava, D.; Brogi, F.; Belgacem, M.B.; Thorimbert, Y.; Leclaire, S.; Li, S.; et al. Palabos: Parallel Lattice Boltzmann Solver. Comput. Math. Appl. 2021, 81, 334–350. [Google Scholar] [CrossRef]
- Medvedev, D.; Fischaleck, T.; Kassner, K. Influence of external flows on crystal growth: Numerical investigation. Phys. Rev. E 2006, 74, 031606. [Google Scholar] [CrossRef]
- Sakane, S.; Takaki, T. Phase-field lattice Boltzmann method with two-relaxation-time model for dendrite growth of a binary alloy with melt convection. Comput. Mater. Sci. 2021, 186, 110070. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, H.; Wu, Z.; Wang, J.; Li, B.; Cui, J.; Nagaumi, H.; Li, Y. Effects of an intermittent permanent magnet stirring on the melt flow and grain refinement of Al-4.5Cu alloy. J. Mater. Res. Technol. 2021, 14, 1585–1600. [Google Scholar] [CrossRef]
- Chatelain, M.; Botton, V.; Albaric, M.; Pelletier, D.; Cariteau, B.; Abdo, D.; Borrelli, M. Mechanical stirring influence on solute segregation during plane front directional solidification. Int. J. Therm. Sci. 2018, 126, 252–262. [Google Scholar] [CrossRef]
- Barman, N.; Kumar, P.; Dutta, P. Studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring. J. Mater. Process. Technol. 2009, 209, 5912–5923. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Z.; Li, J.; Zhang, T. Effect of Ultrasonic Vibration Solidification Treatment on the Corrosion Behavior of AZ80 Magnesium Alloy. Int. J. Electrochem. Sci. 2013, 8, 7298–7319. [Google Scholar] [CrossRef]
- Rashid, F.L.; Rahbari, A.; Ibrahem, R.K.; Talebizadehsardari, P.; Basem, A.; Kaood, A.; Mohammed, H.I.; Abbas, M.H.; Al-Obaidi, M.A. Review of solidification and melting performance of phase change materials in the presence of magnetic field, rotation, tilt angle, and vibration. J. Energy Storage 2023, 67, 107501. [Google Scholar] [CrossRef]
- Virk, A.S.; Park, C. Enhancement of thermal performance of latent thermal energy storage systems using periodically reciprocating flows. Appl. Therm. Eng. 2022, 204, 117961. [Google Scholar] [CrossRef]
- Karma, A. Phase-field formulation for quantitative modeling of alloy solidification. Phys. Rev. Lett. 2001, 87, 115701. [Google Scholar] [CrossRef]
- Ramirez, J.C.; Beckermann, C.; Karma, A.; Diepers, H.J. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Phys. Rev. E 2004, 69, 051607. [Google Scholar] [CrossRef] [PubMed]
- Echebarria, B.; Folch, R.; Karma, A.; Plapp, M. Quantitative phase-field model of alloy solidification. Phys. Rev. E 2004, 70 Pt 1, 061604. [Google Scholar] [CrossRef] [PubMed]
- Karma, A.; Rappel, W. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 1998, 57, 4323–4349. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, A.; Qin, L.; Yang, M.; Du, J.; Liu, F.; Jiang, B.; Pan, F. Interaction between growing dendrite and rising bubble under convection. Int. J. Multiph. Flow 2024, 170, 104656. [Google Scholar] [CrossRef]
- Takaki, T.; Sakane, S.; Ohno, M.; Shibuta, Y.; Aoki, T. Large-scale phase-field lattice Boltzmann study on the effects of natural convection on dendrite morphology formed during directional solidification of a binary alloy. Comput. Mater. Sci. 2020, 171, 109209. [Google Scholar] [CrossRef]
- Bhadauria, A.; Dorschner, B.; Karlin, I. Lattice Boltzmann method for fluid–structure interaction in compressible flow. Phys. Fluids 2021, 33, 106111. [Google Scholar] [CrossRef]
- Kazemian, Y.; Rashidi, S.; Esfahani, J.A.; Samimi-Abianeh, O. Effects of grains shapes of porous media on combustion onset—A numerical simulation using Lattice Boltzmann method. Comput. Math. Appl. 2021, 81, 547–561. [Google Scholar] [CrossRef]
- Ovri, H. Mechanisms and anisotropy of serrated flow in Mg-Gd single crystals. J. Magnes. Alloys 2023, 11, 1643–1655. [Google Scholar] [CrossRef]
- Rezaei, A.; Mahmudi, R.; Logé, R.E. Superplastic behavior of a fine-grained Mg-Gd-Y-Ag alloy processed by equal channel angular pressing. J. Magnes. Alloys 2023, 11, 3815–3828. [Google Scholar] [CrossRef]
- Zhang, A.; Guo, Z.; Jiang, B.; Xiong, S.; Pan, F. Numerical solution to phase-field model of solidification: A review. Comput. Mater. Sci. 2023, 228, 112366. [Google Scholar] [CrossRef]
Case | k1 | k2 | k3 | k4 | k5 | k6 | Reduced Chi-Square | Adjusted r-Square |
---|---|---|---|---|---|---|---|---|
I | 255 | −60 | −14.5 | - | - | - | 0.0123 | 0.945 |
II | 125 | −24 | −13.5 | - | - | - | 5.389 × 10−4 | 0.995 |
III | 24.7 | −48 | −15 | 769.231 | −23,076.92 | 153,846.15 | 0.00414 | 0.944 |
IV | 616 | −70 | −4.13 | 22.727 | −1136.36 | 8227.27 | 0.00220 | 0.981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Zhang, A.; Du, J.; Dong, Z.; Liu, F.; Jiang, B. Effect of Forced Convection on Magnesium Dendrite: Comparison between Constant and Altering Flow Fields. Materials 2023, 16, 7695. https://doi.org/10.3390/ma16247695
Qin L, Zhang A, Du J, Dong Z, Liu F, Jiang B. Effect of Forced Convection on Magnesium Dendrite: Comparison between Constant and Altering Flow Fields. Materials. 2023; 16(24):7695. https://doi.org/10.3390/ma16247695
Chicago/Turabian StyleQin, Lang, Ang Zhang, Jinglian Du, Zhihua Dong, Feng Liu, and Bin Jiang. 2023. "Effect of Forced Convection on Magnesium Dendrite: Comparison between Constant and Altering Flow Fields" Materials 16, no. 24: 7695. https://doi.org/10.3390/ma16247695
APA StyleQin, L., Zhang, A., Du, J., Dong, Z., Liu, F., & Jiang, B. (2023). Effect of Forced Convection on Magnesium Dendrite: Comparison between Constant and Altering Flow Fields. Materials, 16(24), 7695. https://doi.org/10.3390/ma16247695