Medical-Radiation-Shielding Film Fabricated by Imitating the Layered Structure Pattern of Abalone Shell and Verification of Its Shielding Effect
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AbuAlRoos, N.J.; Baharul Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Özdemir, T.; Güngör, A.; Akbay, I.K.; Uzun, H.; Babucçuoglu, Y. Nano lead oxide and EPDM composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests. Radiat. Phys. Chem. 2018, 144, 248–255. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Mousavi, S.M.; Faghihi, R.; Arjmand, M.; Sina, S.; Amani, A.M. Lead oxide-decorated graphene oxide/epoxy composite towards X-ray radiation shielding. Radiat. Phys. Chem. 2018, 146, 77–85. [Google Scholar] [CrossRef]
- Debnath, B.; Singh, W.S.; Manna, K. Sources and toxicological effects of lead on human health. Indian J. Med. Spec. 2019, 10, 66–71. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M. Dose rates in nuclear medicine and the effectiveness of lead aprons: Updating the department’s knowledge on old and new procedures. Nucl. Med. Commun. 2013, 34, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Colaco, J.; Lohani, R.B. Study of radiation shielding materials on microstrip patch antenna for sustainability. Mater. Today Proc. 2022, 49, 1625–1630. [Google Scholar] [CrossRef]
- Habashi, F. Tungsten and the mining industry. J. Powder Metall. Min. 2017, 6. [Google Scholar] [CrossRef]
- Aral, N.; Amor Duch, M.; Banu Nergis, F.; Candan, C. The effect of tungsten particle sizes on X-ray attenuation properties. Radiat. Phys. Chem. 2021, 187, 109586. [Google Scholar] [CrossRef]
- Abou Hussein, E.M.; Madbouly, A.M.; Ezz Eldin, F.M. Characterization of some radiation shielding, optical, and physical properties of fluorophosphate glasses modified by Sm3+. J. Mater. Sci. Mater. Electron. 2021, 32, 25933–25951. [Google Scholar] [CrossRef]
- Issa, S.A.M.; Zakaly, H.M.H.; Pyshkina, M.; Mostafa, Y.A.M.; Rashad, M.; Soliman, T.S. Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: An experimental investigation. Radiat. Phys. Chem. 2021, 180, 109281. [Google Scholar] [CrossRef]
- Afghah, F.; Dikyol, C.; Altunbek, M.; Koc, B. Biomimicry in bio-manufacturing: Developments in melt electrospinning writing technology towards hybrid biomanufacturing. Appl. Sci. 2019, 9, 3540. [Google Scholar] [CrossRef]
- Zhang, R.; Li, G.; Ma, S.; Pang, H.; Ren, L.; Zhang, H.; Su, B. Frictional performance of ostrich (Struthio camelus) foot sole on sand in all directions. Biomech. Model. Mechanobiol. 2021, 20, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Luo, H.; Linghu, C.; Song, J. Elastic energy storage enabled magnetically actuated, octopus-inspired smart adhesive. Adv. Funct. Mater. 2021, 31, 2009217. [Google Scholar] [CrossRef]
- Li, Q.; Wen, Z.; Chen, J.; Huang, H.; Shi, X.; Zhang, Q. Preparation of controllable hydroxyapaptite nanoparticles with abalone shells. Mater. Lett. 2019, 236, 562–565. [Google Scholar] [CrossRef]
- Gavryushkin, P.N.; Sagatov, N.; Belonoshko, A.B.; Banaev, M.V.; Litasov, K.D. Disordered aragonite: The new high-pressure, high-temperature phase of CaCO3. J. Phys. Chem. C 2020, 124, 26467–26473. [Google Scholar] [CrossRef]
- Mishra, S.; Katti, P.; Kumar, S.; Bose, S. Macroporous epoxy-carbon fiber structures with a sacrificial 3D printed polymeric mesh suppresses electromagnetic radiation. Chem. Eng. J. 2019, 357, 384–394. [Google Scholar] [CrossRef]
- Ji, H.M.; Liang, S.M.; Li, X.W.; Chen, D.L. Kinking and cracking behavior in nacre under stepwise compressive loading. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110364. [Google Scholar] [CrossRef]
- Nallabothula, H.; Bhattacharjee, Y.; Samantara, L.; Bose, S. Processing-mediated different states of dispersion of multiwalled carbon nanotubes in PDMS nanocomposites influence EMI shielding performance. ACS Omega 2019, 4, 1781–1790. [Google Scholar] [CrossRef]
- Hong, J.; Xu, P.; Xia, H.; Xu, Z.; Ni, Q.Q. Electromagnetic interference shielding anisotropy enhanced by CFRP laminated structures. Compos. Sci. Technol. 2021, 203, 108616. [Google Scholar] [CrossRef]
- Daneshvar, H.; Milan, K.G.; Sadr, A.; Sedighy, S.H.; Malekie, S.; Mosayebi, A. Multilayer radiation shield for satellite electronic components protection. Sci. Rep. 2021, 11, 20657. [Google Scholar] [CrossRef]
- Singh, H.; Singh, K.; Gerward, L.; Singh, K.; Sahota, H.S.; Nathuram, R. ZnO–PbO–B2O3 glasses as gamma-ray shielding materials. Nucl. Instrum. Methods Phys. Res. B 2003, 207, 257–262. [Google Scholar] [CrossRef]
- El-Sayed Abdo, A.; Ali, M.A.M.; Ismail, M.R. Natural fibre high-density polyethylene and lead oxide composites for radiation shielding. Radiat. Phys. Chem. 2003, 66, 185–195. [Google Scholar] [CrossRef]
- Iqbal, A.; Sambyal, P.; Koo, C.M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Zheng, T.; Chu, J.; Shen, C.; Sang, Y.; Hu, S.; Guo, J. Random lasing based on abalone shell. Opt. Commun. 2021, 493, 126979. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Lakshminarayana, G.; Dong, M.G.; Ersundu, M.Ç.; Ersundu, A.E.; Kityk, I.V. Investigation on gamma and neutron radiation shielding parameters for BaO/SrO–Bi2O3–B2O3 glasses. Radiat. Phys. Chem. 2018, 145, 26–33. [Google Scholar] [CrossRef]
- Malekie, S.; Shooli, H.; Hosseini, M.A. Assessment of new composites containing polyamide-6 and lead monoxide as shields against ionizing photonic radiation based on computational and experimental methods. Sci. Rep. 2022, 12, 9259. [Google Scholar] [CrossRef]
- Ahmed, B.; Shah, G.B.; Malik, A.H.; Aurangzeb, R.M.; Rizwan, M. Gamma-ray shielding characteristics of flexible silicone tungsten composites. Appl. Radiat. Isot. 2020, 155, 108901. [Google Scholar] [CrossRef]
- Abbas, Z.; Khaliq, S. Numerical study of non-isothermal analysis of exiting sheet thickness in the calendering of micropolar-Casson fluid. J. Plast. Film. Sheeting 2022, 38, 105–129. [Google Scholar] [CrossRef]
- Akhtar, K.; Khan, S.A.; Khan, S.B.; Asiri, A.M. Scanning electron microscopy: Principle and applications in nanomaterials characterization. In Handbook of Materials Characterization; Springer: Berlin/Heidelberg, Germany, 2018; pp. 113–145. [Google Scholar] [CrossRef]
- Korean Standards Association. Testing Method of Lead Equivalent for X-ray Protective Devices; Korean Standards Association: Seoul, Republic of Korea, 2017; Volume 17, p. 4025. [Google Scholar]
- Sankaran, S.; Deshmukh, K.; Ahamed, M.B.; Khadheer Pasha, S.K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. A 2018, 114, 49–71. [Google Scholar] [CrossRef]
- Kaplan, S.L.; Magill, D.; Felice, M.A.; Xiao, R.; Ali, S.; Zhu, X. Female gonadal shielding with automatic exposure control increases radiation risks. Pediatr. Radiol. 2018, 48, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Kubissa, W.; Glinicki, M.A.; Dąbrowski, M. Permeability testing of radiation shielding concrete manufactured at industrial scale. Mater. Struct. 2018, 51, 83. [Google Scholar] [CrossRef]
- Azman, M.N.; Abualroos, N.J.; Yaacob, K.A.; Zainon, R. Feasibility of nanomaterial tungsten carbide as lead-free nanomaterial-based radiation shielding. Radiat. Phys. Chem. 2023, 202, 110492. [Google Scholar] [CrossRef]
- Waly, E.A.; Al-Qous, G.S.; Bourham, M.A. Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 2018, 150, 120–124. [Google Scholar] [CrossRef]
- Zhang, Y.; Ruan, K.; Gu, J. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, e2101951. [Google Scholar] [CrossRef] [PubMed]
- Aygün, B.; Şakar, E.; Korkut, T.; Sayyed, M.I.; Karabulut, A.; Zaid, M.H.M. Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results Phys. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Adlienė, D.; Gilys, L.; Griškonis, E. Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine. Nucl. Instrum. Methods Phys. Res. B 2020, 467, 21–26. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, B.; Wang, Q.; Yu, J.; Dai, J.; Song, R.; Pu, Z.; He, D.; Wu, Z.; Mu, S. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 2018, 14, e1704332. [Google Scholar] [CrossRef]
Tube Voltage (kVp) | Mean of Exposure (μR) | Shielding Rate (%) | |||||
---|---|---|---|---|---|---|---|
No Shield | Conventional Rolled Shield | Abalone-Shell-Type Shield | Lead Plate | Conventional Rolled Shield | Abalone-Shell-Type Shield | Lead Plate | |
40 | 105.74 | 3.9230 | 1.9562 | 1.8927 | 96.29 | 98.15 | 98.21 |
60 | 405.73 | 61.7521 | 36.0694 | 8.1552 | 84.78 | 91.11 | 97.99 |
80 | 899.06 | 220.3596 | 151.8512 | 31.1075 | 75.49 | 83.11 | 96.54 |
100 | 1523.64 | 426.3145 | 317.0695 | 66.4307 | 72.02 | 79.19 | 95.64 |
120 | 1817.91 | 537.1924 | 410.3023 | 119.6185 | 70.45 | 77.43 | 93.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C. Medical-Radiation-Shielding Film Fabricated by Imitating the Layered Structure Pattern of Abalone Shell and Verification of Its Shielding Effect. Materials 2023, 16, 7700. https://doi.org/10.3390/ma16247700
Kim S-C. Medical-Radiation-Shielding Film Fabricated by Imitating the Layered Structure Pattern of Abalone Shell and Verification of Its Shielding Effect. Materials. 2023; 16(24):7700. https://doi.org/10.3390/ma16247700
Chicago/Turabian StyleKim, Seon-Chil. 2023. "Medical-Radiation-Shielding Film Fabricated by Imitating the Layered Structure Pattern of Abalone Shell and Verification of Its Shielding Effect" Materials 16, no. 24: 7700. https://doi.org/10.3390/ma16247700
APA StyleKim, S. -C. (2023). Medical-Radiation-Shielding Film Fabricated by Imitating the Layered Structure Pattern of Abalone Shell and Verification of Its Shielding Effect. Materials, 16(24), 7700. https://doi.org/10.3390/ma16247700