Surface Performance of Nano-CrN/TiN Multi-Layered Coating on the Surface of Ti Alloy
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. Construction
3.2. Hardness
3.3. Wear
3.4. High-Temperature Oxidation
4. Conclusions
- A nano-CrN/TiN multi-layered coating was successfully prepared on the surface of a TC4 Ti-alloy using high-power pulse magnetically controlled sputtering technology. The coating was uniform, dense, and free of obvious defects and grew optimally on (111) and (200) crystal surfaces as the modulation period decreased.
- Compared to the single-layered CrN coating and the single-layered TiN coating, the present nano-multi-layered coating had a higher hardness and reached the maximum hardness at the modulation period of 6 nm.
- The wear rate of the nano-CrN/TiN multi-layered coating ranged from 1.22 × 10−6 to 2.45 × 10−7 mm3/(N·m), lower than the single-layered CrN and TiN coatings, and had a minimum of 2.45 × 10−7 mm3/(N·m) at a modulation period of 6 nm.
- Compared to the single-layered CrN and TiN coatings, the nano-CrN/TiN multi-layered coating had better resistance to high-temperature oxidation at 800 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez, I.; Arrazola, P.J.; Cuesta, M.; Sterle, L.; Pusavec, F. Improving surface integrity when drilling CFRPs and Ti-6Al-4V using sustainable lubricated liquid carbon dioxide. Chin. J. Aeronaut. 2023, 36, 129–146. [Google Scholar] [CrossRef]
- Lv, P.; Xu, J.B.; Yang, R.R.; Zhang, C.L.; Zhang, F.T. Effect of thermocycling on the microstructure of Ti-6Al-4V alloy in simulated low Earth orbit space environment. Sci. China Mater. 2016, 59, 363–370. [Google Scholar] [CrossRef]
- Turner, R.P.; Warnken, N.; Brooks, J.W. A study of the deformation derivatives for a Ti-6Al-4V inertia friction weld. Adv. Aerosp. Sci. Technol. 2021, 6, 114–121. [Google Scholar] [CrossRef]
- Ji, H.R.; Zhao, M.C.; Xie, B.; Zhao, Y.C.; Yin, D.F.; Gao, C.D. Corrosion and antibacterial performance of novel selective-laser-melted (SLMed) Ti-xCu biomedical alloys. J. Alloys Compd. 2021, 864, 158415. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.Z.; Shen, J.Y.; Vilar, R. Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 2011, 206, 1389–1395. [Google Scholar] [CrossRef]
- Kermanpur, A.; Amin, H.S.; Ziaei-Rad, S.; Nourbakhshnia, N.; Mosaddeghfar, M. Failure analysis of Ti6Al4V gas turbine compressor blades. Eng. Fail. Anal. 2008, 15, 1052–1064. [Google Scholar] [CrossRef]
- Kityk, A.; Protsenko, V.; Danilov, F.; Bobrova, L.; Hnatko, M. Design of Ti-6Al-4V alloy surface properties by galvanostatic electrochemical treatment in a deep eutectic solvent Ethaline. Surf. Coat. Technol. 2022, 429, 27–36. [Google Scholar] [CrossRef]
- Sadeghi, M.H.; Haddad, M.J.; Tawakoli, T.; Emami, M. Minimal quantity lubrication-MQL in grinding of Ti-6Al-4V titanium alloy. Int. J. Adv. Manuf. Technol. 2009, 44, 487–500. [Google Scholar] [CrossRef]
- Abhinay, S.V.; Raman, S.G.S.; Sivakumar, G. Effect of coating prepared using CuNiIn mixed with graphite and MoS2 on fretting wear behaviour of Ti6Al4V. Mater. Lett. 2022, 325, 132816. [Google Scholar] [CrossRef]
- Li, J.L.; Zhong, H.S.; Wang, Y.X. Dynamic tribo-chemical behavior of TiN/TiCN coated Ti6Al4V in artificial seawater. RSC Adv. 2016, 6, 105854–105861. [Google Scholar]
- Saravanan, I.; Perumal, A.E.; Issac, R.F.; Vettivel, S.C.; Devaraju, A. Optimization of wear parameters and their relative effects on TiN coated surface against Ti6Al4V alloy. Mater. Des. 2016, 92, 23–35. [Google Scholar] [CrossRef]
- Chang, Z.K.; Wan, X.S.; Pei, Z.L.; Gong, J.; Sun, C. Microstructure and mechanical properties of CrN coating deposited by arc ion plating on Ti6Al4V substrate. Surf. Coat. Technol. 2011, 205, 4690–4696. [Google Scholar] [CrossRef]
- Wiecinski, P.; Smolik, J.; Garbacz, H.; Kurzydłowski, K.J. Thermal stability and corrosion resistance of Cr/CrN multilayer coatings on Ti6Al4V Alloy. Solid State Phenom. 2015, 237, 47–53. [Google Scholar]
- Ji, J.; Niu, Y.; Wu, J.; Yu, Z. Improvement of properties of TiN coating by optimising microstructural design. Surf. Eng. 2014, 30, 36–40. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Jain, A.; Rajam, K.S. Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings. Vacuum 2004, 72, 241–248. [Google Scholar] [CrossRef]
- Sun, P.L.; Su, C.Y.; Liou, T.P.; Lin, C.K. Mechanical behavior of TiN/CrN nano-multilayer thin film deposited by unbalanced magnetron sputter process. J. Alloys Compd. 2011, 509, 3197–3201. [Google Scholar] [CrossRef]
- Chim, Y.C.; Ding, X.Z.; Zeng, X.T.; Zhang, S. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films 2009, 517, 4845–4849. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Kumaraswamidhas, L.A. Investigation of monolayer-multilayer PVD nitride coating. Surf. Eng. 2015, 31, 123–133. [Google Scholar] [CrossRef]
- Ou, Y.X.; Lin, J.; Che, H.L.; Sproul, W.D.; Moore, J.J.; Lei, M.K. Mechanical and tribological properties of TiN/CrN multilayer coatings deposited by pulsed dc magnetron sputtering. Surf. Coat. Technol. 2015, 276, 152–160. [Google Scholar] [CrossRef]
- Ou, Y.X.; Wang, H.Q.; Liao, B.; Lei, M.K.; Ouyang, X.P. Tribological behaviors in air and seawater of CrN/TiN superlattice coatings irradiated by high-intensity pulsed ion beam. Ceram. Int. 2019, 45, 24405–24412. [Google Scholar] [CrossRef]
- Jin, Q.L.; Wang, H.D.; Li, G.L.; Zhang, J.J.; Liu, J.N. Microstructures and mechanical properties of TiN/CrN multilayer films. Rare Met. Mater. Eng. 2017, 46, 2857–2862. [Google Scholar]
- Stanislava, R.; Lilyana, K.; Vasiliy, C.; Tetiana, C. Mechanical, wear and corrosion behavior of CrN/TiN multilayer coatings deposited by low temperature unbalanced magnetron sputtering for biomedical applications. Mater. Today Proc. 2018, 5, 16012–16021. [Google Scholar]
- Huang, M.D.; Liu, Y.; Meng, F.Y.; Tong, L.N.; Li, P. Thick CrN/TiN multilayers deposited by arc ion plating. Vacuum 2013, 89, 101–104. [Google Scholar] [CrossRef]
- Su, C.Y.; Pan, C.T.; Liou, T.P.; Chen, P.T.; Lin, C.K. Investigation of the microstructure and characterizations of TiN/CrN nanomultilayer deposited by unbalanced magnetron sputter process. Surf. Coat. Technol. 2008, 203, 657–660. [Google Scholar] [CrossRef]
- Hu, L.; Hu, J.; Lin, G.; Zhang, L.; Sun, G.; Ma, G. Growth and mechanical properties of TiN/CrN multilayers by arc ion plating on TC4 Ti Alloy. J. Vac. Sci. Technol. 2012, 32, 872–877. [Google Scholar]
- Paulitsch, J.; Schenkel, M.; Schintlmeister, A.; Hutter, H.; Mayrhofer, P.H. Low friction CrN/TiN multilayer coatings prepared by a hybrid high power impulse magnetron sputtering/DC magnetron sputtering deposition technique. Thin Solid Films 2010, 518, 5553–5557. [Google Scholar] [CrossRef]
- Lin, J.L.; Sproul, W.D.; Moore, J.J.; Wu, Z.L.; Lee, S.; Chistyakov, R.; Abraham, B. Recent advances in modulated pulsed power magnetron sputtering for surface engineering. JOM 2011, 63, 48–58. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, M.C.; Wang, Z.B.; Tan, L.L.; Qi, Y.W.; Yin, D.F.; Yang, K.; Atrens, A. Enhanced initial biodegradation resistance of the biomedical Mg-Cu alloy by surface nanomodification. J. Magnes. Alloys 2023, 11, 2776–2788. [Google Scholar] [CrossRef]
- Liu, C.; Shi, Q.Q.; Yan, W.; Shen, C.G.; Yang, K. Designing a high Si reduced activation ferritic/martensitic steel for nuclear power generation by using Calphad method. J. Mater. Sci. Technol. 2019, 35, 266–274. [Google Scholar] [CrossRef]
- Li, X.; Li, H.Y.; Tang, H.Q.; Xiao, X.; Han, J.Q.; Zheng, Z.Q. Microstructure evolution and in situ resistivity response of 2196 Al−Li alloy during aging process. Materials 2023, 16, 7492. [Google Scholar] [CrossRef]
- Li, Y.G.; Li, G.Q.; Yang, D.; Li, G.Y. The relationship between superhardness effect and modulation structure in VC/TiN nanomultilayers. Mater. Lett. 2012, 80, 155–157. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Yang, H.S.; Pang, X.L.; Gao, K.W.; Volinsky, A.A. Microstructure, residual stress, and fracture of sputtered TiN films. Surf. Coat. Technol. 2013, 224, 120–125. [Google Scholar] [CrossRef]
- Helmersson, U.; Todorova, S.; Barnett, S.A.; Sundgren, J.E.; Markert, L.C.; Greene, J.E. Growth of single crystal TiN/VN strained layer super lattices with extremely high mechanical hardness. J. Appl. Phys. 1987, 62, 481–484. [Google Scholar] [CrossRef]
- Nam, N.D.; Jo, D.S.; Kim, J.G.; Yoon, D.H. Corrosion protection of CrN/TiN multi-coatings for bipolar plate of polymer electrolyte membrane fuel cell. Thin Solid Coat. 2011, 519, 6787–6791. [Google Scholar] [CrossRef]
- Gallegos-Cantu, S.; Hernandez-Rodriguez, M.A.L.; Garcia-Sanchez, E.; Juarez-Hernandez, A.; Hernandez-Sandoval, J.; Cue-Sampedro, R. Tribological study of TiN monolayer and TiN/CrN (multilayer and super lattice) on Co-Cr alloy. Wear 2015, 330–331, 439–447. [Google Scholar] [CrossRef]
- Ou, Y.X.; Lin, J.; Tong, S.; Sproul, W.D.; Lei, M.K. Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering. Surf. Coat. Technol. 2016, 293, 21–27. [Google Scholar] [CrossRef]
- Tao, J.X.; Zhao, M.C.; Zhao, Y.; Yin, D.F.; Liu, L.; Gao, C.D.; Shuai, C.J.; Atrens, A. Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting. J. Magnes. Alloys 2020, 8, 952–962. [Google Scholar] [CrossRef]
- Yang, Q.; He, C.; Zhao, L.R.; Immarigeon, J.P. Preferred orientation and hardness enhancement of TiN/CrN superlattice coatings deposited by reactive magnetron sputtering. Scr. Mater. 2002, 46, 293–297. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, J.; Yu, H.; Lin, W. Comparative study on biodegradation of pure iron prepared by microwave sintering and laser melting. Materials 2022, 15, 1604. [Google Scholar] [CrossRef]
- Zhao, M.C.; Zhao, Y.C.; Yin, D.F.; Wang, S.; Shangguan, Y.M. Biodegradation behavior of coated as-extruded Mg-Sr alloy in simulated body fluid. Acta Metall. Sin. Engl. Lett. 2019, 32, 1195–1206. [Google Scholar] [CrossRef]
- Leonov, A.A.; Denisova, Y.A.; Denisov, V.V.; Syrtanov, M.S.; Shmakov, A.N.; Savostikov, V.M.; Teresov, A.D. Structure and properties of CrN/TiN multi-layer coatings obtained by vacuum-arc plasma-assisted deposition method. Coatings 2023, 13, 351. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, L.L.; Ni, D.R.; Chen, J.X. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy. J. Mater. Sci. Technol. 2019, 35, 777–783. [Google Scholar] [CrossRef]
- Patnaik, L.; Maity, S.R.; Kumar, S. Comprehensive structural, nanomechanical and tribological evaluation of silver doped DLC thin film coating with chromium interlayer (Ag-DLC/Cr) for biomedical application. Ceram. Int. 2020, 46, 22805–22818. [Google Scholar] [CrossRef]
- Mendibide, C.; Steyer, P.; Fontaine, J.; Goudeau, P. Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings—An explanation. Surf. Coat. Technol. 2006, 201, 4119–4124. [Google Scholar] [CrossRef]
- Srinivasan, D.; Kulkarni, T.G.; Anand, K. Thermal stability and high-temperature wear of Ti-TiN and TiN-CrN nanomultilayer coatings under self-mated conditions. Tribol. Int. 2007, 40, 266–277. [Google Scholar] [CrossRef]
- Fu, T.; Cui, K.K.; Zhang, Y.Y.; Wang, J.; Shen, F.Q.; Yu, L.H.; Qie, J.M.; Zhang, X. Oxidation protection of tungsten alloys for nuclear fusion applications: A comprehensive review. J. Alloys Compd. 2021, 884, 161057. [Google Scholar] [CrossRef]
- Cheng, W.J.; Wang, J.J.; Ma, X.; Liu, P.; Liaw, P.K.; Li, W. A review on microstructures and mechanical properties of protective nano-multilayered films or coatings. J. Mater. Res. Technol. 2023, 27, 2413–2442. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Shi, Z.; Zhao, Y.; Wang, J.; Yang, X.; Zhao, M. Surface Performance of Nano-CrN/TiN Multi-Layered Coating on the Surface of Ti Alloy. Materials 2023, 16, 7707. https://doi.org/10.3390/ma16247707
Feng J, Shi Z, Zhao Y, Wang J, Yang X, Zhao M. Surface Performance of Nano-CrN/TiN Multi-Layered Coating on the Surface of Ti Alloy. Materials. 2023; 16(24):7707. https://doi.org/10.3390/ma16247707
Chicago/Turabian StyleFeng, Jun, Zhiyong Shi, Yingchao Zhao, Jun Wang, Xudong Yang, and Mingchun Zhao. 2023. "Surface Performance of Nano-CrN/TiN Multi-Layered Coating on the Surface of Ti Alloy" Materials 16, no. 24: 7707. https://doi.org/10.3390/ma16247707
APA StyleFeng, J., Shi, Z., Zhao, Y., Wang, J., Yang, X., & Zhao, M. (2023). Surface Performance of Nano-CrN/TiN Multi-Layered Coating on the Surface of Ti Alloy. Materials, 16(24), 7707. https://doi.org/10.3390/ma16247707