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Abstract: A ratiometric electrochemical sensor based on a carbon paste electrode modified with
quinazoline-engineered ZnFe Prussian blue analogue (PBA-qnz) was developed for the determi-
nation of herbicide butralin. The PBA-qnz was synthesized by mixing an excess aqueous solution
of zinc chloride with an aqueous solution of precursor sodium pentacyanido(quinazoline)ferrate.
The PBA-qnz was characterized by spectroscopic and electrochemical techniques. The stable signal
of PBA-qnz at +0.15 V vs. Ag/AgCl, referring to the reduction of iron ions, was used as an inter-
nal reference for the ratiometric sensor, which minimized deviations among multiple assays and
improved the precision of the method. Furthermore, the PBA-qnz-based sensor provided higher
current responses for butralin compared to the bare carbon paste electrode. The calibration plot for
butralin was obtained by square wave voltammetry in the range of 0.5 to 30.0 µmol L−1, with a limit
of detection of 0.17 µmol L−1. The ratiometric sensor showed excellent precision and accuracy and
was applied to determine butralin in lettuce and potato samples.

Keywords: Prussian blue analogue; quinazoline; ratiometric sensor; butralin

1. Introduction

Prussian blue (PB) was the first polymeric coordination compound recorded in the
literature by Diesbach and Dippel in the early 18th century [1]. The different oxidation
states between iron atoms coordinated by a cyanide bridge give PB its characteristic blue
color due to an intervalence transition around 720 nm [2]. A Prussian blue analogue (PBA)
is the result of changes in the chemical composition of PB. When Fe2+ and/or Fe3+ ions are
replaced by other different transition metal centers, such as cobalt, nickel, and zinc [3], it
is also possible to change its properties by making small changes in its composition (and
consequently in its structure): replacing the metallic centers and/or a CN− group with
other ligands, such as those of quinazoline [4].

Quinazoline (qnz, 1,3-diazanaphthalene) is a heterocyclic hybrid that has the molecu-
lar formula C8H6N2, and it is an important bicyclic skeleton structure in manifold natural
products [5,6]. The quinazoline ring is formed by the union of a benzene ring with a six-
membered ring containing 2 N atoms and contains three main isomers, namely, quinoxaline,
cinnoline, and phthalazine [5]. Quinazoline and its derivatives have multiple biological
activities and show a high affinity for metal ions; they also form all kinds of coordination
compounds with sundry transition metals [7]. Regarding the application in electrochemical
sensors, introducing nitrogen moieties into the electrode composition has obtained con-
siderable interest, as it leads to the improvement of conductivity and of the electroactive
area of the sensor, hence further boosting its electrochemical performance [8]. Therefore,
quinazoline is an interesting ligand to be explored in the development of novel PBA for
application in the field of electrochemical sensors.

Research on PBA composites and their derivatives has kept growing in the past
decade, and they have been applied in energy conversion, energy storage, adsorption,
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and electrochemical sensors [9]. Regarding the application of electrochemical sensors, for
PB/PBA, both oxidized and reduced forms have catalytic activity [3]. In addition, their
zeolitic form has a channel diameter of approximately 3.2 Å and a cubic unit cell of 10.2 Å,
allowing the diffusion of ions by the structure [3,9]. Furthermore, their high electronic
transfer rate is another benefit, which is directly associated to the insertion/disinsertion
of small ions [3]. Li et al. [10] developed a PBA-modified glassy carbon electrode for
2-nitrophenol determination. The synthesized PBA (KxNi[Fe(CN)6]·nH2O) provided the
electrochemical sensor with a higher electrocatalytic performance for the 2-nitrophenol
reduction in comparison to bare GCE, which could be attributed to the better intrinsic
catalytic nature of Ni, improved conductivity, and larger electroactive area.

Traditional electrochemical sensors usually depend on the precise measurement of a
single current intensity, which further leads to low repeatability, reliability, and accuracy,
and occasionally false negative results [11]. For this reason, ratiometric electrochemical
sensors have recently attracted extensive attention [12–15]. These special sensors quantify
the analyte with ratiometric a record of two signals (one is from the analyte and the
other is from the inner reference). A peak intensity ratio (Ianalyte/Iinner reference) is used as
the measurement criteria for analytes [13]. Commonly, this ratiometric strategy reduces
the intrinsic errors or background electric signals and exhibits a significant ability to
further improve the accuracy and precision of the measurements [13,14]. Constant current
responses from the internal reference can also indicate that the electrode surface remains
homogeneous [14]. Consequently, ratiometric electrochemical sensors are considered more
reliable and accurate than common electrochemical sensors [16]. PB has been used as an
internal reference for ratiometric electrochemical sensors [15]. However, reports of works
using these materials for ratiometric sensors are still limited.

In that regard, the detection of butralin (BTL) is of great importance, since BTL is a
dinitroaniline herbicide applied in pre-emergence management of pests in manifold crops
such as cotton, sunflower, rice, peanuts, corn, and vegetable crops [17,18]. Dinitroaniline
herbicides are slightly soluble in water and moderately persistent in the environment by
adsorbing to soil particles, such as organic matter, so it presents an environmental pollution
and a potential threat to human health [19–21]. Regarding electrochemical sensors dedi-
cated to the determination of BTL, only two works are found in the literature. Sreedhar and
Reddy [22] developed a polarographic method for BTL determination using a dropping
mercury electrode, and Gerent et al. [17] used a glassy carbon electrode modified with
Co-Ag bimetallic nanoparticles stabilized in poly(vinylpyrrolidone). The electrochemi-
cal methods are greatly attractive because of their advantages, such as quick detection,
convenient operation, cheap instrumentation, facile integration, and portability [23–25].
Therefore, the development of novel electrochemical tools to detect and supervise the
dissipation behavior of BTL in edible raw food and in the environment is relevant.

In this work, the use of the quinazoline ligand and the metals Fe and Zn coordinated
by the cyanide bridge was chosen to synthesize a novel PBA. To the best of our knowledge,
this is the first report to the use quinazoline ligand to the synthesis of a PBA. Here, the
PBA was incorporated into a carbon paste electrode and boosted the conductivity of the
system, thus providing greater current intensities and, consequently, greater sensitivity and
also serving as an internal reference to improve the precision and accuracy of the novel
ratiometric sensor in the determination of BTL.

2. Materials and Methods
2.1. Reagents and Solutions

All reagents used in the experiment were analytical grade and purchased from commer-
cial sources. Acetone, ethanol, sodium iodide, and sodium nitroprusside were purchased
from Neon, Cambridge, MA, USA. Chloridric acid, zinc(II) chloride, iron(III) chloride,
potassium chloride, sodium chloride, DMSO, butralin, and quinazoline were purchased
from Merck, Darmstadt, Germany. The aqueous solutions were prepared with ultrapure
water (18.2 MΩ cm), obtained with the Milli-Q system (Millipore, St. Louis, MO, USA).
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A stock solution of 10.0 mmol L−1 butralin was prepared in acetone and stored at 4 ◦C.
Britton–Robinson (B–R) buffer (H3BO3, CH3COOH, H3PO4) (0.1 mol L−1) was used as
the supporting electrolyte. The pH adjustments were performed with 6.0 mol L−1 HCl or
NaOH.

To build the carbon paste electrode, Acheson 38 graphite powder (Fisher Scientific,
Waltham, MA, USA) served as the conductor, and Nujol mineral oil (Merck, Darmstadt,
Germany) served as a binding agent.

2.2. Synthesis and Characterization of PBA-qnz

The precursor complex pentacyanido(quinazoline)ferrate (PCF-qnz) was synthesized
by solubilizing 0.58 mmol of PCF-amine in 1.0 mL of distilled water and mixing it with
1.0 mL of aqueous quinazoline solution (0.29 mmol). The reaction solution was kept under
stirring, out of the reach of light, and in an ice bath for 30 min. After this period, 0.67 mmol
of sodium iodide was added to the solution, and then 30 mL of ethanol was slowly added.
The precipitated solid was filtered in a vacuum pump, washed with ethanol, and kept in a
desiccator until a constant mass was obtained.

The Prussian blue analogue derivative from quinazoline ligand and zinc(II) (PBA-qnz)
was synthesized by the direct method, which consists of mixing an excess aqueous solution
of zinc chloride (0.40 mmol) with an aqueous solution of PCF-qnz (0.10 mmol) under agita-
tion. After 15 min, the solid was precipitated with acetone and isolated by centrifugation.

The compounds were characterized by UV-Vis spectroscopy using a Lambda 35 spec-
trometer (Perkin Elmer, Waltham, MA, USA) with quartz cuvettes of 1.0 cm of optical
length. FTIR was used to verify the main functional groups of both compounds, using a
FTLA 2000 spectrophotometer (Asea Brown Boveri, Zürich, Switzerland). Electron param-
agnetic resonance (EPR) spectra were obtained using an EMX micro-9.5/2.7 spectrometer
(Bruker, Billerica, MA, USA) with a highly sensitive cylindrical cavity, operating in X-band
(9 GHz), at 120 K, with 5 mW microwave power, 5 G modulation amplitude, and 100 kHz
modulation frequency. Cyclic voltammetry and electrochemical impedance spectroscopy
(EIS) measurements were performed in an Autolab PGSTAT128N potentiostat (Metrohm
Autolab B.V., Utrecht, The Netherlands). EIS measurements were performed using the
K3[Fe(CN)6]/K4[Fe(CN)6] redox probe (5.0 mmol L−1 equimolar mixture) in 0.1 mol L−1

KCl. For the EIS measure, the OCP was applied with a perturbation amplitude of 10 mV
between the frequencies of 100,000 Hz and 0.1 Hz.

2.3. Construction of Electrochemical Sensor

Studies by our group have described the construction of sensors based on carbon
paste [26]. The construction procedure for the sensor involved hand-mixing 18 mg of
PBA-qnz (10% w/w) and 135 mg of graphite powder (75% w/w) for twenty minutes. After
that, 27 mg (15% w/v) of Nujol was added and hand-mixed for 20 min more in a mortar.
The resulting composite was packed firmly into the cavity of a syringe (3.0 mm inner
diameter), and a copper wire was inserted to establish electrical contact. For comparison
purposes, PCF-qnz/CPE and bare CPE were prepared using a similar procedure.

2.4. Electrochemical Measurements

The electrochemical measurements for the development of the analytical method
for BTL were performed using a portable potentiostat PalmSens 4 (Palm Instruments BV,
Houten, The Netherlands). The assays were carried out with a system of three electrodes:
the proposed sensor (PBA-qnz/CPE) as the working electrode, a platinum plate as the
auxiliary electrode, and Ag/AgCl (3.0 mol L−1 KCl) as the reference electrode. All assays
were carried out at room temperature (25 ± 0.5 ◦C) in an electrochemical cell containing
10.0 mL of B–R buffer (0.1 mol L−1; pH from 2.0 to 7.0), and successive additions of a
standard solution of BTL were carried out using a micropipette. Nitrogen gas was purged
to the supporting electrolyte for 10 min before the assays.
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2.5. Determination of BTL in Lettuce and Potato Samples

Fresh samples of lettuce (Lactuca sativa) and potato (Solanum tuberosum) were acquired
from a farmers’ market in Florianópolis, Brazil. The lettuce and potato samples were
prepared as follows: a mixture of 5.0 g of each vegetable with 25.0 mL of acetone was
crushed in a blender for 5 min. The extract was filtered (25.0 µm) two times and diluted in
acetone in a 50.0 mL volumetric flask for the analysis. For the assays, 500 µL of the samples
was added to the electrochemical cell with 9.5 mL of 0.1 mol L−1 B–R buffer (pH 2.0).

3. Results and Discussion
3.1. Characterization of PCF-qnz and PBA-qnz

The PCF-qnz complex (Figure 1A) and PBA-qnz (Figure 1B) were first characterized
using UV-Vis spectroscopy (Figure 2A). The PCF-qnz complex formed by the exchange
of NH3 ligand for qnz ligand exhibits two bands of metal–ligand charge transfer in the
visible region (355 and 474 nm, with log εmax equal to 3.33 and 3.40, respectively). One of
the characteristic bands of quinazoline [27] has a hypochromic shift when coordinating
with the Fe atom, from 271 nm to 290 nm in PCF-qnz and to 280 nm in PBA-qnz.

Infrared spectra (Figure 2B) show that the PCF-qnz complex (curve a) exhibits charac-
teristic bands of benzene (1378–1487 cm−1) and a pyrimidine ring (1580–1617 cm−1) [28].
Furthermore, it is possible to observe the CN− (2047 cm−1) and Fe-CN (568 cm−1) stretches
in the complex. Evaluating the FTIR data of PBA-qnz (curve b), it is possible to observe the
presence of vibrations, referring to the vibrations of benzene at 1305–1492 cm−1 and the
pyrimidine ring of qnz at 1592–1619 cm−1. The CN− stretch can be observed at 2094 cm−1,
as well as the Fe-CN-Zn stretch at 485 cm−1. Finally, the broadening of the ν(CN−) band in
PBA-qnz means a variety of cyanides in the structure [29].

Cyclic voltammetry was used to study the electrochemical behaviors of PCF-qnz complex
and PBA-qnz in 0.1 mol L−1 KCl (Figure 2C). Pentacyanidoferrates have a well-defined
electrochemical process that is influenced by the nature of the ligand. The PCF-qnz complex
(curve a) has a half-wave potential (E 1

2
) of 545 mV (I) and 720 mV (II) vs. Ag/AgCl, assigned

to the pairs [Fe2+/3+(CN)5(qnz)Fe2+/3+(CN)5]6−/4−. The increase in potential represents a
greater difficulty in removing electron density from iron due to the presence of the heterocyclic
ligand [29]. Regarding the PBA-qnz (curve b), the E 1

2
values were 180 mV (III) and 860 mV

(IV) vs. Ag/AgCl. The fully reduced form of PBA-qnz, Zn[Fe2+(CN)5(qnz)Fe2+(CN)5] was
oxidized at +183 mV vs. Ag/AgCl to form Zn[Fe3+(CN)5(qnz)Fe2+(CN)5]. Due to the presence
of quinazoline in its structure, there is an increase in the amount of water coordinated, resulting
in a lower σ-donor contribution, consequently resulting in a shift in the oxidation potential to
more positive values, compared to traditional Prussian blue [30]. At +906 mV vs. Ag/AgCl,
the second metallic center is oxidized, formatting Berlin green (Zn[Fe3+(CN)5(qnz)Fe3+(CN)5]).
These processes occurred at more positive potential values than the traditional Prussian blue;
in other words, the oxidation of PBA-qnz required a more positive potential value, indicating
the coordination of the metal centers with the qnz ligand.

Although PCF compounds present iron atoms with the 2+ oxidation state, a broad
signal around g ~2.021 can be observed for PCF-qnz. As it is a metal with six electrons,
a value of g greater than ge is expected [31]. This result occurs due to the magnetic
interaction between iron ions, suggesting an Fe–Fe (spin–spin) interaction. The X-band
EPR spectrum measured at room temperature reveals a profile similar to the EPR spectrum
for PCF-amin (g ~2.2–2.3) presented by Ghobadi et al. [32]. The decrease in the value of
g when exchanging the NH3 ligand for qnz suggests that binding with a compound that
contributes to a strong field favors the MLCT process FeII-qnz→ FeIII-qnz. When analyzing
the EPR spectrum of PBA-qnz (Figure 2D), seven peaks are observed. Zinc atoms fully
occupy d orbitals, exhibiting no signs. Thus, the signs suggest a mixture of Fe2+ and Fe3+

valence states, with g values ranging from ~0.185 to ~0.214 [33]. These results agree with
cyclic voltammetry.
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and (b) PBA-qnz/CPE with a scan rate of 25 mV s−1 (supporting electrolyte: 0.1 mol L−1 KCl).
(D) EPR spectra in the X-band at room temperature of (a) PCF-qnz and (b) PBA-qnz, revealing the
nature of the iron sites.
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3.2. Electrochemical Characteristics of PCF-qnz and PBA-qnz

EIS is a useful tool to investigate the interface properties of surface-modified electrodes.
Nyquist plots were obtained in [Fe(CN)6]3−/4− solution in KCl 0.1 mol L−1 for the following
electrodes: (a) CPE, (b) PCF-qnz/CPE, and (c) PBA-qnz/CPE, which are shown in Figure 3.
The charged transfer resistance (Rct) is positively correlated with the semicircle diameter
in the high-frequency region of the EIS, and the diffusion process indicates the resistance
offered by the mass transfer. Fitting the high-frequency region of the EIS plot, the Rct of CPE
is 6.1 kΩ (curve a). A reduced charge transfer resistance value of approximately 1000 Ω
was observed for PCF-qnz/CPE (curve b), confirming the improved electrical conductivity
based on the complex of Fe(II) and qnz. The Rct for PBA-qnz/CPE is 1484 Ω (curve c),
which is significantly lower than two working electrodes. This implies that, due to the
polymerization of complex with Zn(II) moiety, the Prussian blue analogue becomes less
resistive to charge transfer, increasing the electron transfer pathway between PBA-qnz/CPE
and the redox probe. In addition, the introduction of nitrogen moieties into the electrode
composition via quinazoline ligands leads to the improvement of conductivity, improving
their electrochemical performance [8]. Thus, the PBA-qnz/CPE modified electrode can
achieve an electrochemically sensitive determination of BTL.
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Figure 3. Nyquist plots for 5.0 mmol L−1 equimolar mixture of K3[Fe(CN)6]/K4[Fe(CN)6] in
0.1 mol L−1 KCl: (a) CPE, (b) PCF-qnz/CPE, and (c) PBA-qnz/CPE. We inserted the Randles cir-
cuit model for the electrodes. Rs: solution resistance; Rct: charge-transfer resistance; Zw: Warburg
impedance; Cdl: double-layer capacitance.

3.3. Evaluation of Butralin Ratiometric Sensor Performance

The electrochemical behavior of BTL was studied by square wave voltammetry (SWV)
using the bare CPE and the PBA-qnz/CPE ratiometric sensor (Figure 4A). The square
wave voltammogram exhibited a peak at −540 mV vs. Ag/AgCl, corresponding to the
BTL reduction at bare CPE (curve a). The peak is correlated to the reduction of both
nitro groups present in the molecule of BTL [17]. Using the PBA-qnz/CPE in the absence
of BTL (curve b), a peak was recorded at +300 mV vs. Ag/AgCl, corresponding to the
reduction of iron centers of the complex. Finally, when the BTL was analyzed using the
PBA-qnz/CPE (curve c) a three-fold increase in the current intensities of the BTL compared
to the performance of the CPE was recorded. This phenomenon can be attributed to the
presence of nitrogen moieties in the electrode composition via quinazoline ligands, which
leads to the improvement of conductivity and electroactive area of the sensor, boosting
their electrochemical performance [8]. Even more important, PBA incorporated in the
carbon paste was employed as a promising reference signal for the ratiometric sensor of
BTL. The electroactive PBA can be oxidized to Berlin green or reduced to Prussian white
at certain potentials and provide stable redox peaks, which can be used as an internal
reference [15]. Thus, the measurements provided by the PBA-qnz/CPE ratiometric sensor
show two signals (one is from the BTL analyte, and the other is from the PBA internal



Materials 2023, 16, 1024 7 of 12

reference). The constant current responses of PBA-qnz inner reference indicated that the
carbon paste was homogeneous, and consequently, the sensor surface was uniform, which
contributes to better precision of measurements.
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and in the presence of 10.0 µmol L−1 BTL in B–R buffer (pH 2.0) for (a) CPE and (c) PBA-qnz/CPE.
SWV parameters: f = 25.0 Hz, ∆Es = 1.0 mV, a = 50.0 mV (nonoptimized). (B) Current responses
for ISW − BTL and ISW − PBA-qnz (axis a) and the ISW − BTL/ISW − PBA-qnz ratio (axis b) using the same
PBA-qnz/CPE on the same day. (C) Square wave voltammograms for 10.0 µmol L−1 BTL in B–R buffer
using the PBA-qnz/CPE at different pH values. (D) Current (axis a) and potential (axis b) vs. pH (n = 3).
(E) Square-wave voltammograms for BTL at PBA-qnz/CPE in 0.1 mol L−1 B–R buffer (pH 2.0): (a) blank,
(b) 0.5, (c) 1.0, (d) 2.5, (e) 5.0, (f) 10.0, (g) 15.0, (h) 20.0, (i) 25.0, and (j) 30.0 µmol L−1 and (F) calibration
plot (n = 3). SWV parameters: f = 50.0 Hz, ∆Es = 2.0 mV, a = 60.0 mV (optimized).

The repeatability of responses of the PBA-qnz/CPE sensor for BTL reduction was
assessed across 10 consecutive measurements (Figure 4B). The plot shows a variation
of current intensities for the BTL (axis a) with a relative standard deviation (RSD) of
8.0%. However, the ratio of ISW − BTL/ISW − PBA-qnz (axis b) remained nearly unchanged
(RSD = 1.5%), which indicates that the developed ratiometric sensing strategy minimized
deviations among multiple assays because of the intrinsic built-in correction from the inner
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reference. This leads to a remarkable enhancement in the precision of the data provided by
the sensor.

The effect of the pH of the supporting electrolyte on the electrochemical behavior of
BTL was analyzed in the pH range of 2.0 to 7.0 (Figure 4C). Figure 4D (axis a) highlights
how the cathodic peak currents vary as a function of the pH of the medium. It can be
noted that the current values decreased from pH 2.0 to 7.0. Since hydrogen ions participate
in the reduction of aromatic nitroanilines, the peak potential and intensities current of
these compounds are pH-dependent. The pH of the medium influences the intensity
and direction of the inductive and resonance effects operating in the molecule structure
by changing the nature of the substituent [34]. The adsorption of nitroanilines onto the
electrode surfaces in an acidic medium occurs because it has three different anchoring sites
(the nitro, the amino function, and the aromatic ring system) [35]. Thus, it can be proposed
that the adsorption of BTL onto the electrode surface occurs more efficiently at more acidic
pH values, which results in higher current intensities. Another point to be considered is
the lower stability of PBA-qnz as the pH of the medium increases, due to the affinity of
OH− ions for Fe(III) at pH close to 7.0, breaking the Fe3+−(CN)−Zn2+ bridge bond [36].
Thus, in aiming to obtain better sensitivity for the assays of BTL, pH 2.0 was selected for
the subsequent analysis.

In addition, a linear shift of the Ep vs. pH plot (Figure 4C, axis b) was reached, with a
slope of −58.1 mV pH−1, which was similar to the theoretical value of −59.2 mV pH−1 for
the Nernst equation. These data indicate that an equal number of mols of electrons and
protons are transferred during the reduction of BTL on the surface of the ratiometric sensor.
According to the literature, both nitro groups of the molecule were simultaneously reduced,
via the one-proton and one-electron mechanism for each nitro group [17]. A proposed
reduction reaction for BTL is shown in Figure 5.
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Figure 5. Proposed mechanism of BTL reduction on the surface of the PBA-qnz/CPE ratiometric sensor.

The calibration plot was built under optimized conditions at the PBA-qnz/CPE sensor
after successive additions of the BTL standard solution (Figure 4E). The reduction peak of
BTL can be observed at −0.57 ± 0.01 V vs. Ag/AgCl, with the current increasing propor-
tionally to the species concentration, while the peak intensities referring to the reduction of
the PBA-qnz remained stable at +0.15 V. The calibration plot was obtained in the range of 0.5
to 30.0 µmol L−1 (r = 0.998) (Figure 4F), and the equation for this plot can be expressed as
ISW− BTL/ISW− PBA-qnz = 0.05 (±2.0× 10−3) [BTL]/µmol L−1 + 0.03 (±2.6× 10−3). The limits
of detection and quantification (LOD and LOQ) were calculated according to LOD = 3× Sb/B
and LOQ = 10 × Sb/B, where Sb is the standard deviation of intercept and B is the slope of
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the calibration plot [37]. The LOD and LOQ values obtained were 0.17 and 0.54 µmol L−1,
respectively.

The analytical methods reported for the quantification of BTL are mostly chromato-
graphic (Table 1). Only two works dedicated to the determination of BTL using electro-
chemical methods were found in the literature [17,22]. In that regard, the LOD obtained
with the PBA-qnz/CPE is between the values obtained by other studies. The CPE can be
easily prepared and modified, and it can be easily cleaned by manual sanding on a sheet
of paper. Furthermore, the use of the PBA modifying agent served to increase the analyte
current intensities and as an internal reference for the development of the ratiometric sensor.
Thus, in addition to being sensitive, the proposed ratiometric sensor presented excellent
precision data.

Table 1. Comparison of the performance of different analytical methods in the quantification of BTL.

Analytical Method Tools Matrix LOD/nmol L−1 Ref.

Chromatographic HPLC-UV with SPME a Surface water 0.2 [38]
Chromatographic HPLC-UV-ESI/MS b Tobacco leaf powder 508 [39]

Immunochromatographic Gold-based strip sensor Phosphate buffer saline (pH 7.4) 10.4 [20]
Electrochemical Co-Ag BMNPs-PVP/GCE c B–R buffer (pH 2.0) 32.0 [17]
Electrochemical Dropping mercury electrode B–R buffer (pH 4.0) 60.0 [22]
Electrochemical PBA-qnz/CPE B–R buffer (pH 2.0) 170 This study

a HPLC-UV with SPME—High-performance liquid chromatography with ultraviolet detection with solid phase
microextraction fiber coating based on silicone sealant/hollow ZnO@CeO2 composite; b HPLC-UV-ESI/MS—
High-performance liquid chromatography with ultraviolet detection and electrospray ionization mass spectrom-
etry; c Co-Ag BMNPs-PVP/GCE—Glassy carbon electrode modified with Co and Ag bimetallic nanoparticles
immobilized in poly(vinylpyrrolidone).

3.4. Interference and Stability Assays

The interference of organic compounds in the electroanalysis of BTL was studied
under optimized conditions. The assays were carried out in 0.1 mol L−1 B–R buffer (pH 2.0)
containing 10.0 µmol L−1 BTL (−0.56 V vs. Ag/AgCl) in the presence of 2-nitrophenol
(−0.48 V), 3-nitrophenol (−0.45 V), 4-nitrophenol (−0.45 V), and parathion (−0.43 V), which
were added at a concentration 10 times higher than that of the BTL. The reduction peak
potential of these interferents did not coincide with the reduction peak potential of BTL,
and, in addition, the decrease in the ISW − BTL/ISW − PBA-qnz ratio in the presence of these
interferents ranged from −0.5 to −1.5%. The results revealed that the proposed ratiometric
sensor is highly selective for BTL quantification in the presence of organic compounds.

The stability of the ratiometric sensor was also inquired by measuring its response
to 10.0 µmol L−1 BTL over 120 days. After this period, the PBA-qnz/CPE maintained a
percentage of ISW − BTL of 90% and 95% of ISW − BTL/ISW − PBA-qnz in relation to its first re-
sponse. These results indicated that the ratiometric sensor has excellent stability, evidencing
its competence for the quantification of BTL.

3.5. Quantification of BTL in Lettuce and Potato Samples

The quantification of BTL by SWV in fresh samples was performed using the PBA-
qnz/CPE ratiometric sensor (Table 2). Assays were carried out in triplicate using the
standard addition procedure. The presence of BTL was not detected in any sample. Recov-
ery values were obtained between 94 and 110%. These data confirm the accuracy of the
data provided by the analytical method. Furthermore, the slopes of the standard addition
plots were similar to those of the calibration plot (Figure 4F), which indicated that there
were no influences from the matrix species of fresh samples.
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Table 2. Determination of the level of BTL in fresh samples using the ratiometric sensor.

Samples Determined a

/µmol L−1 Added/µmol L−1 Found a/µmol L−1 Recovery b/%

Lettuce
(Lactuca sativa) Not detected

1.0 1.03 95–110
10.0 10.07 99–102

Potato
(Solanum tuberosum) Not detected

1.0 1.01 94–110
10.0 9.97 97–105

a Mean of three measurements under the same conditions by SWV using the PBA-qnz/CPE; b Recovery = (amount
found − amount determined)/amount added × 100.

4. Conclusions

A ratiometric sensor based on carbon paste modified with Prussian blue analogue
derived from quinazoline ligand and zinc(II) was developed for the determination of
BTL. This is the first device based on carbon paste dedicated to the electroanalysis of
this herbicide. The use of the PBA modifying agent served to increase the BTL current
intensities and as an internal reference for the development of the ratiometric sensor. The
ratiometric sensor showed excellent precision and accuracy data and adequate selectivity
for BTL. All of these capacities indicate the viability of the use of the PBA-qnz/CPE in the
determination of BTL.
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