Research Progress on Multi-Component Alloying and Heat Treatment of High Strength and Toughness Al–Si–Cu–Mg Cast Aluminum Alloys
Abstract
:1. Introduction
2. Strengthening Mechanism
2.1. Solid Solution Strengthening
2.2. Fine Grain Strengthening
2.3. Second Phase Strengthening
3. Multi-Component Alloying Optimization
3.1. Main Alloying Elements
3.2. Microalloying
3.2.1. Modification
3.2.2. Grain Refinement
3.2.3. New Precipitated Strengthened Phase
4. Heat Treatment Process Optimization
4.1. Solution Treatment
4.1.1. Dissolution Characteristics of Intermetallic Compounds
4.1.2. Application of Two-Step Solution and Thermodynamic Calculation in Solution Heat Treatment
4.2. Aging Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Li, X. The present situation and the development trend of new materials used in automobile lightweight. Appl. Mech. Mater. 2012, 189, 58–62. [Google Scholar] [CrossRef]
- Schönemann, M.; Schmidt, C.; Herrmann, C.; Thiede, S. Multi-level Modeling and Simulation of Manufacturing Systems for Lightweight Automotive Components. Procedia CIRP 2016, 41, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Witik, R.A.; Payet, J.; Michaud, V.; Ludwig, C.; Månson, J. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1694–1709. [Google Scholar] [CrossRef]
- Sengupta, B.; Shekhar, S.; Kulkarni, K.N. A novel ultra-high strength and low-cost as-cast titanium alloy. Mater. Sci. Eng. A 2017, 696, 478–481. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, J.; Zhu, P. Lightweight design of automotive composite bumper system using modified particle swarm optimizer. Compos. Struct. 2016, 140, 630–664. [Google Scholar] [CrossRef]
- Shaji, M.C.; Ravikumar, K.K.; Ravi, M.; Sukumaran, K. Development of a High Strength Cast Aluminium Alloy for Possible Automotive Applications. Mater. Sci. Forum 2013, 765, 54–58. [Google Scholar] [CrossRef]
- Nowak, M.; Bolzoni, L.; Babu, N.H. Grain refinement of Al-Si alloys by Nb-B inoculation. Part I: Concept development and effect on binary alloys. Mater. Des. 2015, 66, 366–375. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Samuel, E.; Samuel, A.M.; Abdulrahman, A.A. Metallurgical parameters controlling the microstructure and hardness of Al-Si-Cu-Mg base alloys. Mater. Des. 2011, 32, 2130–2142. [Google Scholar] [CrossRef]
- Wang, Q.G. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall. Mater. Trans. A. 2003, 34, 2887–2899. [Google Scholar] [CrossRef]
- Zheng, Q.J.; Zhang, L.L.; Jiang, H.X.; Zhao, J.Z.; He, J. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys. J. Mater. Sci. Technol. 2020, 47, 142–151. [Google Scholar] [CrossRef]
- Cao, Y.D.; Chen, X.H.; Wang, Z.D.; Chen, K.X.; Tang, W.Z.; Pan, S.W.; Yang, X.H.; Qin, J.W.; Li, S.H.; Wang, Y.L. Effect of Cd micro-addition on microstructure and mechanical properties in ternary Al-Si-Cu alloy. J. Alloys Compd. 2021, 851, 156739. [Google Scholar] [CrossRef]
- Zhang, M.S.; Wang, J.S.; Wang, B.; Xue, C.P.; Liu, X.G. Improving mechanical properties of Al-Si-Cu-Mg alloys by microallying Sc using thermodynamic calculations. Calphad 2022, 76, 102394. [Google Scholar] [CrossRef]
- Wang, D.T.; Liu, S.C.; Zhang, X.Z.; Li, X.Z.; Zhang, H.T.; Nagaumi, H. Fast aging strengthening by hybrid precipitates in high pressure die-cast Al-Si-Cu-Mg-Zn alloy. Mater. Charact. 2021, 179, 111312. [Google Scholar] [CrossRef]
- Yang, X.F.; Xu, C.; Lu, G.X.; Guan, S.K. Towards strength-ductility synergy through an optimized two-stage solution treatment in Al-7Si-3Cu-0.5Mg alloys. Mater. Sci. Eng. A 2022, 849, 143504. [Google Scholar] [CrossRef]
- Hansen, N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Eivani, A.R.; Taheri, A.K. Modeling age hardening kinetics of an Al-Mg-Si-Cu aluminum alloy. J. Mater. Process. Technol. 2008, 205, 388–393. [Google Scholar] [CrossRef]
- Sjölander, E.; Seifeddine, S. The heat treatment of Al-Si-Cu-Mg casting alloy. J. Mater. Process. Technol. 2010, 210, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Bhat, T.B.; Arunachalam, V.S. Strengthening mechanisms in alloys. Proc. Indian Acad. Sci. Sect. C Eng. Sci. 1980, 3, 275–296. [Google Scholar]
- Zhang, M.S.; Wang, J.S.; Wang, B.; Xue, C.P.; Liu, X.G. Quantifying the effects of Sc and Ag on the microstructure and mechanical properties of Al-Cu alloys. Mater. Sci. Eng. A 2022, 831, 142355. [Google Scholar] [CrossRef]
- Xu, S.Z.; McDowell, D.L.; Beyerlein, I.J. Sequential obstacle interactions with dislocations in a planar array. Acta Mater. 2019, 174, 160–172. [Google Scholar] [CrossRef]
- Zhen, Z.; Wang, H.; Teng, C.Y.; Bai, C.G.; Xu, D.S.; Yang, R. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations. J. Mater. Sci. Technol. 2021, 69, 138–147. [Google Scholar] [CrossRef]
- Joseph, S.; Kumar, S.A. systematic investigation of fracture mechanisms in Al-Si based eutectic alloy-Effect of Si modification. Mater. Sci. Eng. A 2013, 588, 111–124. [Google Scholar] [CrossRef]
- Haghshenas, M.; Jamali, J. Assessment of circumferential cracks in hypereutectic Al-Si clutch housings. Case Stud. Eng. Fail. Anal. 2017, 8, 11–20. [Google Scholar] [CrossRef]
- Hajkowski, M.; Bernat, Ł.; Hajkowski, J. Mechanical Properties of Al-Si-Mg Alloy Castings as a Function of Structure Refinement and Porosity Fraction. Arch. Foundry Eng. 2012, 12, 57–64. [Google Scholar] [CrossRef]
- Voort, G.V.; Asensio-Lozano, J. The Al-Si Phase Diagram. Microsc. Microanal. 2009, 5, 60–61. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, D.K.; Sharma, R.; Kumar, A. Influence of silicon content and heat treatment parameters on mechanical properties of cast Al-Si-Mg alloys. Int. J. Cast Met. Res. 2006, 19, 275–282. [Google Scholar] [CrossRef]
- Dybowski, B.; Szymszal, J.; Poloczek, Ł.; Kielbusl, A. Influence of the Chemical Composition on Electrical Conductivity and Mechanical Properties of the Hypoeutectic Al-Si-Mg Alloys. Arch. Metall. Mater. 2016, 61, 353–360. [Google Scholar] [CrossRef]
- Cáceres, C.H.; Svensson, I.L.; Taylor, J.A. Strength-Ductility Behaviour of Al-Si-Cu-Mg Casting Alloys in T6 Temper. Int. J. Cast Met. Res. 2003, 15, 531–543. [Google Scholar] [CrossRef]
- Lv, G.Q.; Yu, B.; Zhang, Y.F.; He, Y.F.; Ma, W.H.; Lei, Y. Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al-Si alloy with high Si content. Mat. Sci. Semicon. Proc. 2018, 81, 139–148. [Google Scholar] [CrossRef]
- Lin, Y.C.; Luo, S.C.; Huang, J.; Yin, L.X.; Jiang, X.Y. Effects of solution treatment on microstructures and micro-hardness of a Sr-modified Al-Si-Mg alloy. Mater. Sci. Eng. A 2018, 725, 530–540. [Google Scholar] [CrossRef]
- Di Giovanni, M.T.; Cerri, E.; Saito, T.; Akhtar, S.; Åsholt, P.; Li, Y.; Di Sabatino, M. Effect of copper additions and heat treatment optimization of Al-7% Si aluminum alloy. Metall. Ital. 2016, 11, 43–47. [Google Scholar]
- Yang, Y.; Yu, K.L.; Li, Y.G.; Zhao, D.G.; Liu, X.F. Evolution of nickel-rich phases in Al-Si-Cu-Ni-Mg piston alloys with different Cu additions. Mater. Des. 2012, 33, 220–225. [Google Scholar] [CrossRef]
- Alyaldin, L.; Elgallad, E.M.; Samuel, A.; Mdoty, H.W.; Valtierra, S.; Samuel, F.H. Effect of additives and heat treatment on the tensile properties of 354 alloy at 25 °C and 250 °C. Mater. Sci. Eng. A 2017, 708, 77–90. [Google Scholar] [CrossRef]
- Yang, C.; Cao, L.; Gao, Y.; Cheng, P.M.; Zhang, P.; Kuang, J.; Zhang, J.Y.; Liu, G.; Sun, J. Nanostructural Sc-based hierarchy to improve the creep resistance of Al-Cu alloys. Mater. Des. 2020, 186, 108309. [Google Scholar] [CrossRef]
- Li, J.H.; Wang, X.D.; Ludwig, T.H.; Tsunekawa, Y.; Arnberg, L.; Jiang, J.Z.; Schumacher, P. Modification of eutectic Si in Al-Si alloys with Eu addition. Acta Mater. 2015, 84, 153–163. [Google Scholar] [CrossRef]
- Sheng, B.; Yun, X.B.; Pei, J.Y.; Zhao, Y.; Yan, Z.Y.; Zhang, X. Microstructure evolution of Al-Sr master alloy during continuous extrusion. Trans. Nonferrous Met. Soc. China 2017, 27, 305–311. [Google Scholar]
- Weiss, J.C.; Loper, C.R. Primary silicon in hypereutectic aluminum-silicon casting alloys. AFS Trans. 1987, 32, 51. [Google Scholar]
- Xu, C.; Xiao, W.L.; Hanada, S.; Yamagata, H.; Ma, C. The effect of scandium addition on microstructure and mechanical properties of Al-Si-Mg alloy: A multi-refinement modifier. Mater. Charact. 2015, 110, 160–169. [Google Scholar] [CrossRef]
- Aguilera-Luna, I.; Castro-Román, M.J.; Escobedo-Bocardo, J.C.; García-Pastor, F.A.; Herrera-Trejo, M. Effect of cooling rate and Mg content on the Al-Si eutectic for Al-Si-Cu-Mg alloys. Mater. Charact. 2014, 95, 211–218. [Google Scholar] [CrossRef]
- Samuel, A.M.; Ouellet, P.; Samuel, F.H.; Doty, H.W. Microstructural interpretation of the thermal analysis of commercial 319 Al alloy with Mg and Sr additions. AFS Trans. 1997, 156, 951–962. [Google Scholar]
- Hamilton, D.R.; Seidensticker, R.G. Propagation mechanism of germanium dendrites. J. Appl. Phys. 1960, 31, 1165–1168. [Google Scholar] [CrossRef]
- Lu, S.Z.; Hellawell, A. The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning. Met. Mater. Trans. A 1987, 18, 1721–1733. [Google Scholar] [CrossRef]
- Timpel, M.; Wanderka, N.; Schlesiger, R.; Yamamoto, T.; Lazarev, N.; Isheim, D.; Schmitz, G.; Matsumura, S.; Banhart, J. The role of strontium in modifying aluminium-silicon alloys. Acta Mater. 2012, 60, 3920–3928. [Google Scholar] [CrossRef]
- Shamsuzzoha, M.; Hogan, L.M. Twinning in fibrous eutectic silicon in modified Al-Si alloys. J. Cryst. Growth 1985, 72, 735–737. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Jie, J.; Wei, Z.J. Microstructure evolution and modification mechanism of the ytterbium modified Al-7.5%Si-0.45%Mg alloys. J. Alloys Compd. 2011, 509, 3387–3392. [Google Scholar] [CrossRef]
- Srirangam, P.; Kramer, M.J.; Shankar, S. Effect of strontium on liquid structure of Al-Si hypoeutectic alloys using high-energy X-ray diffraction. Acta Mater. 2011, 59, 503–513. [Google Scholar] [CrossRef]
- Shankar, S.; Riddle, Y.W.; Makhlouf, M.M. Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys. Acta Mater. 2004, 52, 4447–4460. [Google Scholar] [CrossRef]
- Mao, F.; Yan, G.Y.; Li, J.Q.; Wang, T.M.; Cao, Z.Q. The interaction between Eu and P in high purity Al-7Si alloys. Mater. Charact. 2016, 120, 129–142. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, L. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys. Mater. Des. 2017, 116, 427–437. [Google Scholar] [CrossRef]
- Mao, F.; Li, J.Q.; Yan, G.Y.; Zou, L.J.; Cao, Z.Q.; Wang, T.M. Effect of Eu on the silicon phase in Al-40Zn-5Si alloys. J. Alloys Compd. 2017, 722, 116–130. [Google Scholar] [CrossRef]
- Mohanty, P.S.; Gruzleski, J.E. Grain refinement mechanisms of hypoeutectic Al-Si alloys. Acta Mater. 1996, 44, 3749–3760. [Google Scholar] [CrossRef]
- Doheim, M.A.; Omran, A.M.; Abdel-Gwad, A.; Sayed, G.A. Evaluation of Al-Ti-C master alloys as grain refiner for aluminum and its alloys. Met. Mater. Trans. A 2011, 42, 2862–2867. [Google Scholar] [CrossRef]
- Colombo, M.; Gariboldi, E.; Morri, A. Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25%Er. Mater. Sci. Eng. A 2018, 713, 151–160. [Google Scholar] [CrossRef]
- Vlach, M.; Čížek, J.; Smola, B.; Melikhova, O.; Vlček, M.; Kodetová, V.; Kudrnová, H.; Hruška, P. Heat treatment and age hardening of Al-Si-Mg-Mn commercial alloy with addition of Sc and Zr. Mater. Charact. 2017, 129, 1–8. [Google Scholar] [CrossRef]
- Liu, G.; Blake, P.; Ji, S. Effect of Zr on the high cycle fatigue and mechanical properties of Al-Si-Cu-Mg alloys at elevated temperatures. J. Alloys Compd. 2019, 809, 151795. [Google Scholar] [CrossRef]
- Liu, W.; Xiao, W.; Xu, C.; Liu, M.W.; Ma, C.L. Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy. Mater. Sci. Eng. A 2017, 693, 93–100. [Google Scholar] [CrossRef]
- Shen, Y.F.; Guan, R.G.; Zhao, Z.Y.; Misra, R.D.K. Ultrafine-grained Al-0.2Sc-0.1Zr alloy: The mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion. Acta Mater. 2015, 100, 247–255. [Google Scholar] [CrossRef]
- Elhadari, H.A.; Patel, H.A.; Chen, D.L.; Kasprzak, W. Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions. Mater. Sci. Eng. A 2011, 528, 8128–8138. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Criteria for developing castable, creep-resistant aluminum-based alloys—A review. Z. Metallkd. 2006, 97, 246–265. [Google Scholar] [CrossRef] [Green Version]
- Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L. Ageing characteristics and high-temperature tensile properties of Al-Si-Cu-Mg alloys with micro-additions of Cr, Ti, V and Zr. Mater. Sci. Eng. A 2016, 652, 353–364. [Google Scholar] [CrossRef]
- Rahimian, M.; Amirkhanlou, S.; Blake, P.; Ji, S.X. Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys. Mater. Sci. Eng. A 2018, 721, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Xiao, W.; Zheng, R.; Hanada, S.J.; Yamagata, H.; Ma, C.L. The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al-Si-Mg alloy. Mater. Des. 2015, 88, 485–492. [Google Scholar] [CrossRef]
- Ceschini, L.; Morri, A.; Toschi, S.; Johansson, S.; Seifeddine, S. Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature. Mater. Sci. Eng. A 2015, 648, 340–349. [Google Scholar] [CrossRef]
- Mohamed, A.; Samuel, F.H.; Kahtani, S.A. Microstructure, tensile properties and fracture behavior of high temperature Al-Si-Mg-Cu cast alloys. Mater. Sci. Eng. A 2013, 577, 64–72. [Google Scholar] [CrossRef]
- Cui, S.; Jung, I.H. Thermodynamic modeling of the quaternary Al-Cu-Mg-Si system. Calphad 2017, 57, 1–27. [Google Scholar] [CrossRef]
- He, Y.; Jia, Z.; Sanders, R.E.; Liu, Y.Y.; Ding, L.P.; Xing, Y.; Liu, Q. Quantitative study of dissolution of Mg2Si during solution treatment in AA6014 alloy. J. Alloys Compd. 2017, 703, 272–279. [Google Scholar] [CrossRef]
- Chen, G.; Chen, L.; Zhao, G.; Zhang, C.S. Microstructure evolution during solution treatment of extruded Al-Zn-Mg profile containing a longitudinal weld seam. J. Alloys Compd. 2017, 729, 210–221. [Google Scholar] [CrossRef]
- Tang, K.; Du, Q.; Li, Y. Modelling microstructure evolution during casting, homogenization and ageing heat treatment of Al-Mg-Si-Cu-Fe-Mn alloys. Calphad 2018, 63, 164–184. [Google Scholar] [CrossRef]
- Qi, Z.; Cong, B.; Qi, B.; Zhao, G.; Ding, J. Properties of wire+ arc additively manufactured 2024 aluminum alloy with different solution treatment temperature. Mater. Lett. 2018, 230, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Pan, Q.; Chen, C.; Wu, H.H.; Yin, Z.M. Effects of solution treatment on microstructural and mechanical properties of Al-Zn-Mg alloy by microalloying with Sc and Zr. J. Alloys Compd. 2016, 664, 553–564. [Google Scholar] [CrossRef]
- Lados, D.A.; Apelian, D.; Wang, L. Solution treatment effects on microstructure and mechanical properties of Al-(1 to 13 pct) Si-Mg cast alloys. Met. Mater. Trans. B 2011, 42, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Lasa, L.; Rodriguez-Ibabe, J.M. Characterization of the dissolution of the Al2Cu phase in two Al-Si-Cu-Mg casting alloys using calorimetry. Mater. Charact. 2002, 48, 371–378. [Google Scholar] [CrossRef]
- Kang, H.J.; Jang, H.S.; Oh, S.H.; Yoon, P.H.; Lee, G.H.; Park, J.Y.; Kim, E.S.; Choi, Y.S. Effects of solution treatment temperature and time on the porosities and mechanical properties of vacuum die-casted and T6 heat-treated Al-Si-Mg alloy. Vacuum 2012, 193, 110536. [Google Scholar] [CrossRef]
- Yang, C.L.; Li, Y.B.; Dang, B.; LÜ, H.B.; Liu, F. Effects of cooling rate on solution heat treatment of as-cast A356 alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 3189–3196. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, R.; Xiao, W.; Peng, Q.M.; Yamagata, H.; Ma, C.L. Remarkable enhancement in precipitation hardening of Al7Si1.7Cu alloy by high pressure solution treatment. Mater. Sci. Eng. A 2018, 735, 378–381. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Arnberg, L.; Zhang, D.L. Modelling dissolution of Mg2Si and homogenisation in Al-Si-Mg casting alloys. Int. J. Cast Met. Res. 1999, 12, 1–8. [Google Scholar] [CrossRef]
- Djurdjevic, M.; Stockwell, T.; Sokolowski, J. The effect of strontium on the microstructure of the aluminium-silicon and aluminium-copper eutectics in the 319 aluminium alloy. Int. J. Cast Met. Res. 1999, 12, 67–73. [Google Scholar] [CrossRef]
- Han, Y.M.; Samuel, A.M.; Samuel, F.H.; Doty, H.W. Dissolution of Al2Cu phase in non-modified and Sr modified 319 type alloys. Int. J. Cast Met. Res. 2008, 21, 387–393. [Google Scholar] [CrossRef]
- Han, Y.M.; Samuel, A.M.; Samuel, F.H.; Valtierra, S. Effect of solution heat treatment type on the dissolution of copper phases in Al-Si-Cu-Mg type alloys. Trans. Am. Fish. Soc. 2008, 116, 79–90. [Google Scholar]
- Samuel, F.H. Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al-Si-Cu-Mg (319) alloys during solution heat treatment. J. Mater. Sci. 1998, 33, 2283–2297. [Google Scholar] [CrossRef]
- Zhang, M.S.; Liu, K.L.; Han, J.Q.; Qian, F.; Wang, J.S.; Guan, S.K. Investigating the role of Cu, Zr and V on the evolution of microstructure and properties of Al-Si-Mg cast alloys. Mater. Today Commun. 2021, 26, 102055. [Google Scholar] [CrossRef]
- Toschi, S. Optimization of A354 Al-Si-Cu-Mg alloy heat treatment: Effect on microstructure, hardness, and tensile properties of peak aged and overaged alloy. Metals 2018, 8, 961. [Google Scholar] [CrossRef] [Green Version]
- Lasa, L.; Rodriguez-Ibabe, J.M. Evolution of the main intermetallic phases in Al-Si-Cu-Mg casting alloys during solution treatment. J. Mater. Sci. 2004, 39, 1343–1355. [Google Scholar] [CrossRef]
- Colley, L.J.; Wells, M.; Mackay, R.I.; Kasprzak, W. Dissolution of second phase particles in 319-type aluminium alloy. In Heat Treating 2011: Proceedings of the 26th Conference, Cincinnati, OH, USA, 31 October–2 November 2011; ASM International: Materials Park, OH, USA, 2011; pp. 189–198. [Google Scholar]
- Sokolowski, J.H.; Sun, X.C.; Byczynski, G.; Northwood, D.O.; Thomas, R.; Esseltine, A. The removal of copper-phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminium alloys by a two-stage solution heat treatment. J. Mater. Process. Technol. 1995, 53, 385–392. [Google Scholar] [CrossRef]
- Ågren, J. Calculation of phase diagrams: Calphad. Curr. Opin. Solid State Mater. Sci. 1996, 1, 355–360. [Google Scholar] [CrossRef]
- Sha, G.; O’Reilly, K.A.O.; Cantor, B.; Titchmarsh, J.M.; Hamerton, R.G. Quasi-peritectic solidification reactions in 6xxx series wrought Al alloys. Acta Mater. 2003, 51, 1883–1897. [Google Scholar] [CrossRef]
- Jung, J.G.; Cho, Y.H.; Lee, J.M.; Kim, H.W.; Euh, K. Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. Calphad 2019, 64, 236–247. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.Z.; Luo, Q.; Chen, S.L.; Zhang, J.Y.; Chou, K.C. Experimental study and phase diagram calculation in Al-Zn-Mg-Si quaternary system. J. Alloys Compd. 2010, 501, 282–290. [Google Scholar] [CrossRef]
- Zhang, M.S.; Wang, J.S.; Han, J.Q.; Sui, H.M.; Huang, H.B.; Jin, K.; Qian, F. Optimization of heat treatment process of Al-Mg-Si cast alloys with Zn additions by simulation and experimental investigations. Calphad 2019, 67, 101684. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, D.M.; Li, W.J. The effect of multistage ageing on microstructure and mechanical properties of 7050 alloy. J. Alloys Compd. 2016, 671, 408–418. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Z.; Ying, P.; Li, J.L.; Lin, L.H.; Zeng, S.M. Multistage-aging process effect on formation of GP zones and mechanical properties in Al-Zn-Mg-Cu alloy. Trans. Nonferrous Met. Soc. China 2016, 26, 1183–1190. [Google Scholar] [CrossRef]
- Kasprzak, W.; Amirkhiz, B.S.; Niewczas, M. Structure and properties of cast Al-Si based alloy with Zr-V-Ti additions and its evaluation of high temperature performance. J. Alloys Compd. 2014, 595, 67–79. [Google Scholar] [CrossRef]
- Sjölander, E.; Seifeddine, S. Artificial ageing of Al-Si-Cu-Mg casting alloys. Mater. Sci. Eng. A 2011, 528, 7402–7409. [Google Scholar] [CrossRef]
- Li, R.X.; Li, R.D.; Zhao, Y.H.; He, L.Z.; Li, C.X.; Guan, H.R.; Hu, Z.Q. Age-hardening behavior of cast Al-Si base alloy. Mater. Lett. 2004, 58, 2096–2101. [Google Scholar] [CrossRef]
- Wang, F.; Wen, M.; Zhang, H.; Han, Z.Q. Effects of under-aging treatment on microstructure and mechanical properties of squeeze-cast Al-Zn-Mg-Cu alloy. Trans. Nonferrous Met. Soc. China 2018, 28, 1920–1927. [Google Scholar] [CrossRef]
- Marioara, C.D.; Andersen, S.J.; Stene, T.N.; Hasting, H.; Walmsley, J.; Van Helvoort, A.T.J.; Holmestad, R. The effect of Cu on precipitation in Al-Mg-Si alloys. Philos. Mag. 2007, 87, 3385–3413. [Google Scholar] [CrossRef]
- Zhang, D.L.; Zheng, L.H.; Stjohn, D.H. Effect of a short solution treatment time on microstructure and mechanical properties of modified Al-7wt.%Si-0.3wt.%Mg alloy. J. Light Met. 2002, 2, 27–36. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Samuel, F. A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys. In Heat Treatment: Conventional and Novel Applications; InTech: Rijeka, Croatia, 2012; pp. 55–72. [Google Scholar]
- Mørtsell, E.A.; Qian, F.; Marioara, C.D.; Li, Y.J. Precipitation in an A356 foundry alloy with Cu additions-A transmission electron microscopy study. J. Alloys Compd. 2019, 785, 1106–1114. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiao, W.L.; Ge, S.J.; Zhao, W.T.; Hanada, S.J.; Ma, C.L. Effects of Cu content and Cu/Mg ratio on the microstructure and mechanical properties of Al-Si-Cu-Mg alloys. J. Alloys Compd. 2015, 649, 291–296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Tian, Y.; Zheng, X.; Zhang, Y.; Chen, L.; Wang, J. Research Progress on Multi-Component Alloying and Heat Treatment of High Strength and Toughness Al–Si–Cu–Mg Cast Aluminum Alloys. Materials 2023, 16, 1065. https://doi.org/10.3390/ma16031065
Zhang M, Tian Y, Zheng X, Zhang Y, Chen L, Wang J. Research Progress on Multi-Component Alloying and Heat Treatment of High Strength and Toughness Al–Si–Cu–Mg Cast Aluminum Alloys. Materials. 2023; 16(3):1065. https://doi.org/10.3390/ma16031065
Chicago/Turabian StyleZhang, Mingshan, Yaqiang Tian, Xiaoping Zheng, Yuan Zhang, Liansheng Chen, and Junsheng Wang. 2023. "Research Progress on Multi-Component Alloying and Heat Treatment of High Strength and Toughness Al–Si–Cu–Mg Cast Aluminum Alloys" Materials 16, no. 3: 1065. https://doi.org/10.3390/ma16031065
APA StyleZhang, M., Tian, Y., Zheng, X., Zhang, Y., Chen, L., & Wang, J. (2023). Research Progress on Multi-Component Alloying and Heat Treatment of High Strength and Toughness Al–Si–Cu–Mg Cast Aluminum Alloys. Materials, 16(3), 1065. https://doi.org/10.3390/ma16031065