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Abstract: The performance of a hydraulically expanded joint between tubesheet and titanium tube
was analyzed using a finite element numerical calculation. The connection strength of Q345R
tubesheet and TA2-Q345R clad tubesheet was studied using a tight expansion method. The results
proved that the residual contact pressure and pullout force of the tight expansion joint of TA2-Q345R
clad tubesheet were greater than those of the Q345R tubesheet. However, the residual contact pressure
of the expanded joint without a groove for the TA2-Q345R tubesheet and the pullout force failed to
meet the requirement of connection strength. Hence, the groove was employed on the contact surface.
The influences of groove position and groove width on the connection strength of the expanded joint
with grooves in tubesheet hole were studied. The results show that the residual contact pressure
of the clad tubesheet of grooving in the cladding layer was higher than that of grooving in the
base layer. The effect of the position of groove in the cladding layer and base layer on the residual
contact pressure could be neglected. A wider groove led to a higher residual contact pressure, which
increased significantly when the groove width was 4 mm.

Keywords: TA2-Q345R clad tubesheet; expanded joint; residual contact pressure; groove width

1. Introduction

Titanium is an alloy with low density, high strength, and strong corrosion resistance,
which is widely used in the chemical industry, marine ships, aviation, medical instruments,
automotive industry, livelihood supplies, and other fields [1,2]. Because of its good eco-
nomic and applicability, titanium-steel clad tubeplate structures are applied in titanium
shells and tube heat exchangers.

The joint between the tube and tubesheet is the key part of the shell and tube heat
exchanger, which is also prone to failure. Expansion is an important type of connection
between the tube and tubesheet, which can be divided into hydraulic expansion, mechanical
expansion, and explosion expansion. Among them, hydraulic expansion is a uniform
flexible expansion method. The expansion pressure is easy to control and does not damage
the inner wall surface of the expansion; thus, the joint is of good quality.

How to improve the sealing performance and tensile resistance of hydraulic expanded
joints has always been the focus of research. Therefore, many research achievements
have been made on the influence of material properties [3,4], machining accuracy [5,6],
geometric parameters [7,8], manufacturing process [9,10], and other factors on the per-
formance of joints. In order to improve the connection strength and sealing performance
of the tube-to-tubesheet joints, tubesheet holes are grooved [11,12]. Material properties,
especially plasticity, play a crucial role in obtaining accurate results close to true values [7].
Before finite element analysis, it is important to determine material properties such as
yield stress [13]. Previous studies have shown that strain hardening is an important factor
influencing the accuracy of joint numerical analysis results [14,15]. Previous studies mainly
focused on the combination of a carbon steel tube and low-alloy steel tube sheet, or the
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combination of a titanium tube and single-material tube sheet. For the combination of
titanium tube and titanium–steel clad tubesheet, we can find reports on the stress analy-
sis [16,17], creep of titanium [18], etc. However, there are few reports on the impact of the
titanium–steel clad tubesheet cladding layer and grooving parameters on the performance
of expanded joints. Jawad et al. [7] used experimental methods to study the expanded
joint of titanium–steel clad tubesheet; the best result was obtained when the groove width
was equal to 1.56

√
rot, where ro and t are the outside radius and thickness of the tube,

respectively. The residual contact stress of titanium–steel clad tubesheet with a groove
in the base layer was calculated by numerical simulation [19]. The above studies did not
discuss the influence of groove form on titanium–steel clad tubesheet joint performance. By
means of an experiment, Ma Qiulin [20] found that TA2 had the characteristic of elastic hys-
teresis after loading, and its residual contact pressure decreased with the increase in time
after the completion of titanium tube expansion. Subsequently, the experimental results of
the same research team [21] showed that, under 260 MPa hydraulic expansion pressure,
after 96 h of unloading the expansion pressure, the pullout force of the joint decreased by
60% and 23%, corresponding to the expanded joint without grooves in the tubesheet hole
and with two grooves in the tubesheet hole, respectively. Therefore, the residual contact
pressure at the moment of expansion completion should not be used as the only basis for
analyzing the performance of expanded joints, and the negative effect caused by elastic
hysteresis should also be considered. Therefore, in this paper, the hydraulic expanded tube
joint of a titanium–steel clad tubesheet is taken as the research object. Through numerical
simulation, the sealing performance and connection strength of the tight expansion (joint
without groove) are studied; furthermore, the joint with grooves is analyzed. The influence
of the expansion method and structural parameters, including groove form, groove width,
and groove location in the base, is investigated, which provides a basis for the optimization
of the expansion structure of the clad tubesheet.

2. Finite Element Model Analysis
2.1. Material Performance

The tube was made of commercial pure titanium TA2, and the titanium–steel clad
tubesheet material was TA2-Q345R, in which the base material was Q345R and the cladding
material was TA2. The physical properties of the two materials are shown in Table 1. The
true stress and strain of material were simulated using multilinear isotropic reinforcement
material, and their mechanical property curves are shown in Figure 1.

Table 1. Material properties.

Material Yield Strength, σs
(MPa)

Elasticity Modulus,
E (×105 MPa) Poisson’s Ratio, µ

TA2 380 1.1 0.41
Q345R 347 1.95 0.3
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2.2. Finite Element Model

The tubes were arranged in regular triangles. Due to the periodicity of pipe drainage,
a seven-hole model was adopted, and 1/12 of the circle, i.e., a 30◦ area, was taken as the
research object, as shown in Figure 2a. The size of the tube was ϕ25 mm × 1.5 mm, and
the length of the tube was 180 mm. The diameter of the tubesheet hole was 25.3 mm, the
distance between the tube centers was 32 mm, the outer diameter of the tubesheet was
480 mm, and the total thickness of the tubesheet was 50 mm with a 38 mm base layer and a
12 mm cladding layer, conforming to the recommended scope of the standard [22].
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Because the overall structure of all joints was similar, only the finite element model of
the joint with grooved clad tubesheet holes is shown in this manuscript. The SOLID185
element was used to establish the finite element model of the expanded joint, as shown in
Figure 2b. The mesh was finely divided near the expansion surface. The combination of
the outer wall of the titanium tube and the inner wall of the tubesheet hole was a nonlinear
contact problem. The outer wall of the titanium tube was the contact surface, and the
CONTA173 contact surface element was selected. The inner wall of the tubesheet hole was
the target surface, and the TARGE170 target surface element was selected. The contact
algorithm adopted the Augmented Lagrange method, and the appropriate solution value
was guaranteed by controlling the contact stiffness FKN and the maximum allowable
penetration value FTOLN [23,24].

During expansion, expansion pressure was applied on the inner surface of tube; the
tube end was subjected to axial and circumferential symmetric constraints, whereas the
outer cylindrical surface of the tubesheet was axially constrained, and the remaining
surfaces were free.

After expansion, the expansion pressure on the tube was removed. Under the pulling
condition, the axial displacement constraint of the tube was removed, axial (Z-direction)
displacement was applied, and the other boundary conditions remained unchanged. Dur-
ing calculation, an automatic step and large deformation were chosen, and a linear search
to stabilize the calculation and the complete Newton–Rapson method were used.
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3. Tight Expansion Analysis
3.1. Theoretical Calculation Method

Yan Huigeng’s [25] theoretical calculation method of residual contact pressure based
on the double-cylinder model is widely used for the calculation of residual contact pressure
of the tight expansion, as shown in Equation (1).

p∗c = (1− 2c)pi −
2√
3

σst ln Kt, (1)

Here,

c = 1/
{

K2
t (1− µt) + 1 + µt +

Et(K2
t − 1)

Es(K2
s − 1)

[1− µs + K2
s (1 + µs)]

}
,

where σst is the yield strength of the tube material (MPa), Kt = ro/ri is the diameter ratio
of the heat exchanger tube, ro, ri are respectively the inner and outer diameters of the
heat exchanger tube, Ks = Ro/Ri is the diameter ratio of the equivalent cylinder, Ro, Ri
are respectively the inner and outer diameters of the equivalent cylinder, µt, µs are the
Poisson’s ratios of the tube and tubesheet material, respectively, and Et, Es are respectively
the elastic moduli of the tube and tubesheet material (MPa).

However, Yan Huigeng’s theoretical calculation method assumes that the tube material
is an ideal elastic–plastic material, and σst in Equation (1) is the yield strength of the tube
material without considering the strain strengthening of the material; thus, the theoretically
calculated value of pc

* is greater than the real value. Hao Junwen [13] proposed the concept
of pipe equivalent yield strength σseq according to the research methods of predecessors [25],
i.e., replacing σst in Equation (1) with σseq, as shown in Figure 3.
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As shown in Figure 3, the curve OABCD represents the true stress–strain curve of

the titanium tube. The section OA is the elastic deformation stage, the section
_

AB is the
partial plastic deformation stage, and the section BD is the full strain strengthening stage.
Assuming that the tube contacts the tubesheet when the stress and strain develop to point
C, and that the abscissa Cx = g/ro corresponding to point C is the strain value of the outer
wall of the tube, g is the clearance between the outer wall of the tube and the inner wall
of the hole. By making a straight line with a slope of Et through the Cx point, the straight
line intersects the curve at point Q. Then, the ordinate Qy corresponding to point Q is the
equivalent yield strength of the tube material σseq. According to the tensile curve of TA2 in
Figure 1, σseq = 415 MPa, which is 35 MPa different from the original value of 380 MPa.

3.2. Comparison of Simulation Results and Theoretical Calculation Results

The experiment and numerical simulation results show that the friction coefficient f is
related to many factors such as the accuracy of the machined surface and the properties of
materials. According to the experimental data of the expansion connection between TA2
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tube and Q345R tubesheet in the literature [20], the friction coefficient f was set to 0.28. The
pc

* with tube material TA2 and tubesheet material Q345R was simulated, and the results
were respectively compared with the theoretical results of Yan [25] and Hao [13], as shown
in Figure 4. It can be seen that the simulation value was much smaller than the value of
Yan’s theoretical method, and it was mainly consistent with the result of Hao’s theoretical
method, which is closer to the real situation. Therefore, the parameters of the simulation
and the results were considered reasonable.
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3.3. Performance Analysis of Tight Expansion Joint

In order to investigate the influence of the cladding surface on the sealing performance
of the expansion joint, the expansion and pulling processes of the joints between the TA2
tube and Q345R tubesheet, and between the TA2 tube and TA2-Q345R clad tubesheet under
different expansion pressures were simulated. The average pc

* on the contact surface and
pullout force F were obtained, as shown in Figure 5.
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It can be seen from Figure 5 that pc
* and F of expanded joints of different materials

increased with the increase in expansion pressure, and pc
* and F of the TA2-Q345R clad

tubesheet were both higher than those of the Q345R tubesheet under the same expansion
pressure.

The pullout force provided by the expanded joint is expressed in Equation (2).

F > πdl[q]. (2)

According to GB/T151-2014 “Heat Exchanger” [26], the allowable pullout force [q]
of the steel heat exchange tube of tight expansion is 2 MPa; thus, the pullout force should
satisfy F > 7.23 kN according to Equation (2). For titanium expansion joints, the pullout
force decreases with the time after the expansion due to the elastic hysteresis effect. A
previous study [21] gave the relationship curve between the pullout force and time after the
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expansion of the titanium tube and steel tubesheet. Considering that the pullout force of
the joint decreases by about 75% during the period from the completion of manufacturing
until service, the corresponding pullout force of the titanium tube should be greater than
28.92 kN at the moment of completion of the expansion. As can be seen from Figure 5,
the pullout force of the joint still failed to meet this requirement even when the expansion
pressure exceeded 320 MPa.

Figure 6 shows the contact pressure distribution on the contact surface of the TA2-
Q345R clad tubesheet or Q345R tubesheet after loading and after unloading. According
to Figure 6a,c, when the expansion pressure reached 320 MPa, there were two upper and
lower sealing rings on the contact surface of the two tubesheet conditions, consistent with
the simulation results in [4,27]. When the expansion pressure was unloaded, it can be seen
from Figure 6b,d that there was a residual contact pressure ring on the contact surface of
the tube side, but this was not obvious on the shell side. This is because the stiffness of
the tube on the shell side was greater than that on the tube side; hence, it was not easy
to expand and deform. It can also be found from Figure 6b,d that the residual contact
pressure of the sealing ring of the TA2-Q345R clad tubesheet after unloading was greater
than that of the Q345R tubesheet (57.9 MPa > 24.7 MPa) because the cladding layer of the
clad tubesheet and the tube were the same material TA2. When the expansion pressure
was removed, the tubesheet rebounded with the tube; thus, the contact pressure of the
cladding part could maintain high values. Therefore, although the contact pressure of the
base part decreased substantially because the elastic modulus of TA2 was less than that
of Q345R, the average residual contact pressure in the whole contact range of the clad
tubesheet was higher because the residual contact pressure of the cladding part was high,
and the corresponding pullout force was also higher.
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Q345R clad tubesheet after loading; (b) TA2-Q345R clad tubesheet after unloading; (c) Q345R
tubesheet after loading; (d) Q345R tubesheet after unloading.

Three axial paths A–A′, B–B′, and C–C′ (in Figure 6) were taken at 0◦, 15◦, and 30◦

of the circular direction of the contact surface, and the residual contact pressure along
the three paths was extracted as shown in Figure 7. It can be seen from Figure 7 that the
highest contact pressure of the two tubeplates was at the same position in the axial direction
(Z-direction). Compared with the Q345R tubesheet, the effective sealing range of the tube
side of the clad tubesheet was closer to the expansion edge, the pc

* value at the sealing ring
was much higher than that of the Q345R tubesheet, and the pc

* value of the middle and
shell side of the two kinds of tubeplates was similar.
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Figure 7. Axial distribution of residual contact pressure of the two kinds of tubesheets.

Figure 8 indicates the pc
* on the circumferential paths D–D′ (tube side) and E–E′

(shell side) on two sealing rings. The results show that the pc
* of the shell side of the two

tubesheets was low, and the pc
* at some point on the TA2-Q345R clad tubesheet was zero,

indicating that, with the rebound of the TA2 tube after unloading, the sealing ring at some
positions on the contact surface of the shell side gradually disappeared. When the heat
exchanger is in service, the shell side medium would leak along the contact surface and
extend to the pipe side, which would damage the contact surface and cause hidden dangers
to the safe operation of the equipment. Therefore, the method of ungrooved hole tight
expansion was not suitable for the titanium–steel clad tubesheet, and it was necessary to
groove the tubesheet hole for strength expansion to improve the joint connection strength.
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Q345R clad tubesheet.

4. Expanded Joint with Grooved Clad Tubesheet Holes

In the standard GB/T 151-2014, the structure and dimension of the circumferential
grooves in clad tubesheet holes are as shown in Figure 9. In order to study the effect
of groove form on residual contact pressure and pullout force, four groove forms were
designed, as depicted in Figure 10. Figure 10a–d feature one groove in the cladding layer
only, one groove in the base layer only, one groove in the cladding layer and one groove
in the base layer, and one groove in the cladding layer and two grooves in the base layer,
respectively. The effects of groove width w, groove distance s, and groove spacing b on the
connection strength and sealing performance are also investigated. The groove dimensions
are listed in Table 2.
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Figure 10. Four schemes for grooving: (a) one groove in the cladding layer only; (b) one groove in
the base layer only; (c) one groove in the cladding layer and one groove in the base layer; (d) one
groove in the cladding layer and two grooves in the base layer.

Table 2. Geometry of the grooves.

Parameter
Level

Groove Width
w1 (mm)

Groove Width
w2 (mm)

Groove Distance
S (mm)

Groove Spacing
B (mm)

1 2 2 4 2
2 4 4 8 4
3 6 6 12 6
4 8 8 16 8
5 10 20 10
6 12
7 14

4.1. Effect of Groove Form

When a single groove was in the base layer or the cladding layer, the groove width
w1 or w2 was 8 mm; when both the cladding layer and the base layer were grooved, the
base layer groove width w2 was 8 mm, and the cladding layer groove width w1 was 6 mm.
Figures 11 and 12 illustrate the residual contact pressure and pullout force at the moment
of the expansion pressure being unloaded.
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Figure 11 shows that joints with grooved holes had a higher residual contact pressure
pc

* than those without grooved holes, and pc
* was positively correlated with expansion

pressure. Lines A and B coincided, indicating that grooving in the base layer or the cladding
layer had little effect on the average residual contact pressure. When there was a groove
in the cladding layer, the grooving in the base layer significantly improved pc

*, and the
double grooving in the base layer was best.

As shown in Figure 12, the pullout force F almost increased with pi, and pi had a weak
influence on F when the number of grooves was two or three. Under the same expansion
pressure, the relationship of pullout force at different grooving locations was as follows: F
for one groove in the cladding layer and two grooves in the base layer > F for one groove
in the cladding layer and one groove in the base layer > F for one groove in the cladding
layer only > F for one groove in the base layer only > F for no grooving. The pullout force
of grooved joints was greater than 28.92 kN; therefore, when the strength expansion with a
groove width of 8 mm was applied to titanium tubes, even when considering the decline
in the pullout force caused by elastic hysteresis, it could still meet the requirements of
the standard for the pullout force when the equipment is in service. In addition, during
grooved expansion, the pullout force drop caused by elastic hysteresis is smaller than it is in
the joint without groove [20]; thus, the pullout force value is more conservative. Although
lines A and B coincided in Figure 11, the values of the pulling force in these two cases were
quite different, indicating that the pullout force is related not only to the residual contact
pressure but also to the deformation of the heat exchange tube near the groove.

Figure 13 depicts the distribution of residual contact pressure along the axial path at
the position of circumfluence 0◦ when the expansion pressure was 280 MPa. Only two
cases are considered in Figure 13: a single groove in the cladding and a single groove in the
base. It can be seen from Figure 13 that, at the corner of each side of the groove, the residual
contact pressure was high because deformed tubes sank into the groove during expansion.
Both the tube and the cladding layer were titanium materials, and the rebound step was
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consistent. Therefore, the maximum residual contact pressure between the titanium tube
and the titanium cladding layer was greater than that between the titanium tube and the
Q345R base layer. The titanium pipe sank more deeply in the cladding groove than in the
base groove, and the pullout force was correspondingly greater.
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4.2. Effect of Groove Width

Figure 14 shows the influence of groove width on joint performance when the expan-
sion pressure was 280 MPa, the groove depth was 0.5 mm, and four grooving locations
were considered. If the expansion length allowed, the groove width was as large as possible.
It can be seen from the results in Figure 14 that the groove width had a great influence on
pc

*. With the increase in groove width, pc
* showed an overall upward trend. When the

groove width was 10 mm, pc
* approached the maximum, and the optimal groove width for

uniform expansion was generally 8–10 mm [13]. It is worth noting that, when the groove
width was 4 mm, pc

* increased significantly and peaked earlier. In this paper, the expansion
pressure of 290–320 MPa was also studied. The results show that a larger pc

* was obtained
when the groove width was 4 mm.
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The reasons were as follows: in the expansion process, the external surface of the
tube and the grooved structure always contacted from the edge of the groove, followed
by the bottom of the groove, and finally filled the side of the groove. When the groove
width was 2 mm, a small part of the titanium tube “sank” into the groove, the concentrated
line contact pressure was generated between the tube wall and the groove edge, and the
residual contact pressure after unloading increased compared with that without grooving.
When the width of the groove increased to 4 mm, the “sinking” effect was greater. However,
because the slot width was smaller, the middle of the depression was not in contact with
the bottom of the groove, and the titanium tube was close to the edge of the groove. At
this time, the pc

* of the outer wall of the tube at the corresponding groove corner increased
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significantly. When the groove width was 6 mm and 8 mm, the titanium tube and the
bottom of the groove contacted, and the corresponding position of the tube outer wall
generated residual contact pressure. At the same time, “bottoming” led to a decrease in
the titanium tube and groove edge line contact pressure, and the overall effect was a slight
decrease in pc

*. When the groove width was 10 mm, with the increase in contact area
between the titanium tube and the groove bottom, the contact was more sufficient, and
the pc

* increased. When the groove width was greater than 10 mm, pc
* showed a slight

downward trend.
The elastic modulus of titanium was small, and the titanium tube could easily “sink”

into the groove. Before contact with the bottom of the groove, the titanium tube contacted
the edge line of the groove. The groove edge produced a high radial force on the outer
surface of the titanium tube, which corresponded to a large pc

*. Figure 15 shows the radial
force of the outer surface of the titanium tube at the joint with a single groove in the base
layer only, and groove widths of 2 mm, 4 mm, 6 mm, and 8 mm. It can be observed that,
when the groove width was 4 mm, the radial force was the maximum.
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As shown in Figure 16, in general, the pullout force increased with the groove width.
This is because, with the increase in groove width, the heat exchange tube “sank” into the
groove more fully, and the shear force against the tube wall increased; hence, the pullout
force increased. However, when the groove width continued to increase, equivalent to the
increase in the initial expansion gap, the pullout force declined.
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Figure 16. Effects of groove width on pullout force.
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4.3. Effects of Groove Location in the Base

Figure 17 represents the influence of the distance from the single groove in the base
layer to the clad interface on pc

*, where w1 was 6 mm and the width of the single groove
in the base layer w2 was 10 mm. As depicted in Figure 17, with the increase in distance
from the single groove in the base layer to the interface, pc

* showed an upward trend. In
engineering practice, the distance from the single groove in the base layer to the interface
can be appropriately increased to improve the performance of the expanded joint.
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Figure 17. Effects of groove distance from the single groove in base to interface on residual contact
pressure of joints.

Figure 18 shows the influence of double groove space b on pc
*. Here, the width of the

clad groove w1 was 6 mm, the width of the double groove in the base layer w2 was 10 mm,
and the distance from the first groove in the base layer to the interface was 4 mm. As can
be seen from the figure, the double groove space b had little influence on pc

*. When the
spacing was 6 mm, pc

* exhibited the highest value.
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5. Conclusions

In this study, the finite element method was used to explore the influence of different
expansion parameters on the performance of the expanded joint between a titanium–steel
tubesheet and a titanium tube. The difference between a Q345R tubesheet and TA2-Q345R
tubesheet in tight expansion was analyzed, and the effects of groove position and width
on residual contact pressure pc

* and pullout force F in the TA2-Q345R tubesheet expanded
joint were analyzed. The following conclusions could be drawn:

(1) During tight expansion, the clad tubesheet and the tube were both made of titanium,
the rebound after the expansion was consistent; thus, pc

* and F in the cladding layer
were higher than in the base layer. The connection strength of the TA2-Q345R clad
tubesheet joint was better than that of the Q345R tubesheet joint.

(2) In the case of single groove, the residual contact pressure of grooving in the cladding
layer was equivalent to that in the base layer, while the pullout force of grooving in
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the cladding layer was higher than that in the base layer. When the number of grooves
in the base layer was two, the optimal pc

* and F could be obtained.
(3) The expansion performance of the joint was gradually enhanced with the increase

in groove width within the range of 2–14 mm. When the groove width was 4 mm,
the residual contact pressure increased significantly due to the higher radial force
of the groove edge. The position of the groove had no obvious effect on the joint
performance in the base layer or in the cladding layer.
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